1 /* 2 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx 3 * 4 * Copyright (c) 2000 Nils Faerber 5 * 6 * Based on rtc.c by Paul Gortmaker 7 * 8 * Original Driver by Nils Faerber <nils@kernelconcepts.de> 9 * 10 * Modifications from: 11 * CIH <cih@coventive.com> 12 * Nicolas Pitre <nico@cam.org> 13 * Andrew Christian <andrew.christian@hp.com> 14 * 15 * Converted to the RTC subsystem and Driver Model 16 * by Richard Purdie <rpurdie@rpsys.net> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 #include <linux/platform_device.h> 25 #include <linux/module.h> 26 #include <linux/rtc.h> 27 #include <linux/init.h> 28 #include <linux/fs.h> 29 #include <linux/interrupt.h> 30 #include <linux/string.h> 31 #include <linux/pm.h> 32 #include <linux/bitops.h> 33 34 #include <asm/hardware.h> 35 #include <asm/irq.h> 36 #include <asm/rtc.h> 37 38 #ifdef CONFIG_ARCH_PXA 39 #include <asm/arch/pxa-regs.h> 40 #endif 41 42 #define TIMER_FREQ CLOCK_TICK_RATE 43 #define RTC_DEF_DIVIDER 32768 - 1 44 #define RTC_DEF_TRIM 0 45 46 static unsigned long rtc_freq = 1024; 47 static struct rtc_time rtc_alarm; 48 static DEFINE_SPINLOCK(sa1100_rtc_lock); 49 50 static int rtc_update_alarm(struct rtc_time *alrm) 51 { 52 struct rtc_time alarm_tm, now_tm; 53 unsigned long now, time; 54 int ret; 55 56 do { 57 now = RCNR; 58 rtc_time_to_tm(now, &now_tm); 59 rtc_next_alarm_time(&alarm_tm, &now_tm, alrm); 60 ret = rtc_tm_to_time(&alarm_tm, &time); 61 if (ret != 0) 62 break; 63 64 RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL); 65 RTAR = time; 66 } while (now != RCNR); 67 68 return ret; 69 } 70 71 static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id) 72 { 73 struct platform_device *pdev = to_platform_device(dev_id); 74 struct rtc_device *rtc = platform_get_drvdata(pdev); 75 unsigned int rtsr; 76 unsigned long events = 0; 77 78 spin_lock(&sa1100_rtc_lock); 79 80 rtsr = RTSR; 81 /* clear interrupt sources */ 82 RTSR = 0; 83 RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2); 84 85 /* clear alarm interrupt if it has occurred */ 86 if (rtsr & RTSR_AL) 87 rtsr &= ~RTSR_ALE; 88 RTSR = rtsr & (RTSR_ALE | RTSR_HZE); 89 90 /* update irq data & counter */ 91 if (rtsr & RTSR_AL) 92 events |= RTC_AF | RTC_IRQF; 93 if (rtsr & RTSR_HZ) 94 events |= RTC_UF | RTC_IRQF; 95 96 rtc_update_irq(rtc, 1, events); 97 98 if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm)) 99 rtc_update_alarm(&rtc_alarm); 100 101 spin_unlock(&sa1100_rtc_lock); 102 103 return IRQ_HANDLED; 104 } 105 106 static int rtc_timer1_count; 107 108 static irqreturn_t timer1_interrupt(int irq, void *dev_id) 109 { 110 struct platform_device *pdev = to_platform_device(dev_id); 111 struct rtc_device *rtc = platform_get_drvdata(pdev); 112 113 /* 114 * If we match for the first time, rtc_timer1_count will be 1. 115 * Otherwise, we wrapped around (very unlikely but 116 * still possible) so compute the amount of missed periods. 117 * The match reg is updated only when the data is actually retrieved 118 * to avoid unnecessary interrupts. 119 */ 120 OSSR = OSSR_M1; /* clear match on timer1 */ 121 122 rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF); 123 124 if (rtc_timer1_count == 1) 125 rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2))); 126 127 return IRQ_HANDLED; 128 } 129 130 static int sa1100_rtc_read_callback(struct device *dev, int data) 131 { 132 if (data & RTC_PF) { 133 /* interpolate missed periods and set match for the next */ 134 unsigned long period = TIMER_FREQ/rtc_freq; 135 unsigned long oscr = OSCR; 136 unsigned long osmr1 = OSMR1; 137 unsigned long missed = (oscr - osmr1)/period; 138 data += missed << 8; 139 OSSR = OSSR_M1; /* clear match on timer 1 */ 140 OSMR1 = osmr1 + (missed + 1)*period; 141 /* Ensure we didn't miss another match in the mean time. 142 * Here we compare (match - OSCR) 8 instead of 0 -- 143 * see comment in pxa_timer_interrupt() for explanation. 144 */ 145 while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) { 146 data += 0x100; 147 OSSR = OSSR_M1; /* clear match on timer 1 */ 148 OSMR1 = osmr1 + period; 149 } 150 } 151 return data; 152 } 153 154 static int sa1100_rtc_open(struct device *dev) 155 { 156 int ret; 157 158 ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED, 159 "rtc 1Hz", dev); 160 if (ret) { 161 dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz); 162 goto fail_ui; 163 } 164 ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED, 165 "rtc Alrm", dev); 166 if (ret) { 167 dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm); 168 goto fail_ai; 169 } 170 ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED, 171 "rtc timer", dev); 172 if (ret) { 173 dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1); 174 goto fail_pi; 175 } 176 return 0; 177 178 fail_pi: 179 free_irq(IRQ_RTCAlrm, dev); 180 fail_ai: 181 free_irq(IRQ_RTC1Hz, dev); 182 fail_ui: 183 return ret; 184 } 185 186 static void sa1100_rtc_release(struct device *dev) 187 { 188 spin_lock_irq(&sa1100_rtc_lock); 189 RTSR = 0; 190 OIER &= ~OIER_E1; 191 OSSR = OSSR_M1; 192 spin_unlock_irq(&sa1100_rtc_lock); 193 194 free_irq(IRQ_OST1, dev); 195 free_irq(IRQ_RTCAlrm, dev); 196 free_irq(IRQ_RTC1Hz, dev); 197 } 198 199 200 static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd, 201 unsigned long arg) 202 { 203 switch(cmd) { 204 case RTC_AIE_OFF: 205 spin_lock_irq(&sa1100_rtc_lock); 206 RTSR &= ~RTSR_ALE; 207 spin_unlock_irq(&sa1100_rtc_lock); 208 return 0; 209 case RTC_AIE_ON: 210 spin_lock_irq(&sa1100_rtc_lock); 211 RTSR |= RTSR_ALE; 212 spin_unlock_irq(&sa1100_rtc_lock); 213 return 0; 214 case RTC_UIE_OFF: 215 spin_lock_irq(&sa1100_rtc_lock); 216 RTSR &= ~RTSR_HZE; 217 spin_unlock_irq(&sa1100_rtc_lock); 218 return 0; 219 case RTC_UIE_ON: 220 spin_lock_irq(&sa1100_rtc_lock); 221 RTSR |= RTSR_HZE; 222 spin_unlock_irq(&sa1100_rtc_lock); 223 return 0; 224 case RTC_PIE_OFF: 225 spin_lock_irq(&sa1100_rtc_lock); 226 OIER &= ~OIER_E1; 227 spin_unlock_irq(&sa1100_rtc_lock); 228 return 0; 229 case RTC_PIE_ON: 230 spin_lock_irq(&sa1100_rtc_lock); 231 OSMR1 = TIMER_FREQ/rtc_freq + OSCR; 232 OIER |= OIER_E1; 233 rtc_timer1_count = 1; 234 spin_unlock_irq(&sa1100_rtc_lock); 235 return 0; 236 case RTC_IRQP_READ: 237 return put_user(rtc_freq, (unsigned long *)arg); 238 case RTC_IRQP_SET: 239 if (arg < 1 || arg > TIMER_FREQ) 240 return -EINVAL; 241 rtc_freq = arg; 242 return 0; 243 } 244 return -ENOIOCTLCMD; 245 } 246 247 static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm) 248 { 249 rtc_time_to_tm(RCNR, tm); 250 return 0; 251 } 252 253 static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm) 254 { 255 unsigned long time; 256 int ret; 257 258 ret = rtc_tm_to_time(tm, &time); 259 if (ret == 0) 260 RCNR = time; 261 return ret; 262 } 263 264 static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 265 { 266 u32 rtsr; 267 268 memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time)); 269 rtsr = RTSR; 270 alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0; 271 alrm->pending = (rtsr & RTSR_AL) ? 1 : 0; 272 return 0; 273 } 274 275 static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 276 { 277 int ret; 278 279 spin_lock_irq(&sa1100_rtc_lock); 280 ret = rtc_update_alarm(&alrm->time); 281 if (ret == 0) { 282 if (alrm->enabled) 283 RTSR |= RTSR_ALE; 284 else 285 RTSR &= ~RTSR_ALE; 286 } 287 spin_unlock_irq(&sa1100_rtc_lock); 288 289 return ret; 290 } 291 292 static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq) 293 { 294 seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR); 295 seq_printf(seq, "update_IRQ\t: %s\n", 296 (RTSR & RTSR_HZE) ? "yes" : "no"); 297 seq_printf(seq, "periodic_IRQ\t: %s\n", 298 (OIER & OIER_E1) ? "yes" : "no"); 299 seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq); 300 301 return 0; 302 } 303 304 static const struct rtc_class_ops sa1100_rtc_ops = { 305 .open = sa1100_rtc_open, 306 .read_callback = sa1100_rtc_read_callback, 307 .release = sa1100_rtc_release, 308 .ioctl = sa1100_rtc_ioctl, 309 .read_time = sa1100_rtc_read_time, 310 .set_time = sa1100_rtc_set_time, 311 .read_alarm = sa1100_rtc_read_alarm, 312 .set_alarm = sa1100_rtc_set_alarm, 313 .proc = sa1100_rtc_proc, 314 }; 315 316 static int sa1100_rtc_probe(struct platform_device *pdev) 317 { 318 struct rtc_device *rtc; 319 320 /* 321 * According to the manual we should be able to let RTTR be zero 322 * and then a default diviser for a 32.768KHz clock is used. 323 * Apparently this doesn't work, at least for my SA1110 rev 5. 324 * If the clock divider is uninitialized then reset it to the 325 * default value to get the 1Hz clock. 326 */ 327 if (RTTR == 0) { 328 RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); 329 dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n"); 330 /* The current RTC value probably doesn't make sense either */ 331 RCNR = 0; 332 } 333 334 rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops, 335 THIS_MODULE); 336 337 if (IS_ERR(rtc)) 338 return PTR_ERR(rtc); 339 340 device_init_wakeup(&pdev->dev, 1); 341 342 platform_set_drvdata(pdev, rtc); 343 344 return 0; 345 } 346 347 static int sa1100_rtc_remove(struct platform_device *pdev) 348 { 349 struct rtc_device *rtc = platform_get_drvdata(pdev); 350 351 if (rtc) 352 rtc_device_unregister(rtc); 353 354 return 0; 355 } 356 357 #ifdef CONFIG_PM 358 static int sa1100_rtc_suspend(struct platform_device *pdev, pm_message_t state) 359 { 360 if (device_may_wakeup(&pdev->dev)) 361 enable_irq_wake(IRQ_RTCAlrm); 362 return 0; 363 } 364 365 static int sa1100_rtc_resume(struct platform_device *pdev) 366 { 367 if (device_may_wakeup(&pdev->dev)) 368 disable_irq_wake(IRQ_RTCAlrm); 369 return 0; 370 } 371 #else 372 #define sa1100_rtc_suspend NULL 373 #define sa1100_rtc_resume NULL 374 #endif 375 376 static struct platform_driver sa1100_rtc_driver = { 377 .probe = sa1100_rtc_probe, 378 .remove = sa1100_rtc_remove, 379 .suspend = sa1100_rtc_suspend, 380 .resume = sa1100_rtc_resume, 381 .driver = { 382 .name = "sa1100-rtc", 383 }, 384 }; 385 386 static int __init sa1100_rtc_init(void) 387 { 388 return platform_driver_register(&sa1100_rtc_driver); 389 } 390 391 static void __exit sa1100_rtc_exit(void) 392 { 393 platform_driver_unregister(&sa1100_rtc_driver); 394 } 395 396 module_init(sa1100_rtc_init); 397 module_exit(sa1100_rtc_exit); 398 399 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>"); 400 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)"); 401 MODULE_LICENSE("GPL"); 402 MODULE_ALIAS("platform:sa1100-rtc"); 403