xref: /openbmc/linux/drivers/rtc/rtc-s5m.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
4 //	http://www.samsung.com
5 //
6 //  Copyright (C) 2013 Google, Inc
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/bcd.h>
13 #include <linux/regmap.h>
14 #include <linux/rtc.h>
15 #include <linux/platform_device.h>
16 #include <linux/mfd/samsung/core.h>
17 #include <linux/mfd/samsung/irq.h>
18 #include <linux/mfd/samsung/rtc.h>
19 #include <linux/mfd/samsung/s2mps14.h>
20 
21 /*
22  * Maximum number of retries for checking changes in UDR field
23  * of S5M_RTC_UDR_CON register (to limit possible endless loop).
24  *
25  * After writing to RTC registers (setting time or alarm) read the UDR field
26  * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
27  * been transferred.
28  */
29 #define UDR_READ_RETRY_CNT	5
30 
31 enum {
32 	RTC_SEC = 0,
33 	RTC_MIN,
34 	RTC_HOUR,
35 	RTC_WEEKDAY,
36 	RTC_DATE,
37 	RTC_MONTH,
38 	RTC_YEAR1,
39 	RTC_YEAR2,
40 	/* Make sure this is always the last enum name. */
41 	RTC_MAX_NUM_TIME_REGS
42 };
43 
44 /*
45  * Registers used by the driver which are different between chipsets.
46  *
47  * Operations like read time and write alarm/time require updating
48  * specific fields in UDR register. These fields usually are auto-cleared
49  * (with some exceptions).
50  *
51  * Table of operations per device:
52  *
53  * Device     | Write time | Read time | Write alarm
54  * =================================================
55  * S5M8767    | UDR + TIME |           | UDR
56  * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
57  * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
58  * S2MPS15    | WUDR       | RUDR      | AUDR
59  */
60 struct s5m_rtc_reg_config {
61 	/* Number of registers used for setting time/alarm0/alarm1 */
62 	unsigned int regs_count;
63 	/* First register for time, seconds */
64 	unsigned int time;
65 	/* RTC control register */
66 	unsigned int ctrl;
67 	/* First register for alarm 0, seconds */
68 	unsigned int alarm0;
69 	/* First register for alarm 1, seconds */
70 	unsigned int alarm1;
71 	/*
72 	 * Register for update flag (UDR). Typically setting UDR field to 1
73 	 * will enable update of time or alarm register. Then it will be
74 	 * auto-cleared after successful update.
75 	 */
76 	unsigned int udr_update;
77 	/* Auto-cleared mask in UDR field for writing time and alarm */
78 	unsigned int autoclear_udr_mask;
79 	/*
80 	 * Masks in UDR field for time and alarm operations.
81 	 * The read time mask can be 0. Rest should not.
82 	 */
83 	unsigned int read_time_udr_mask;
84 	unsigned int write_time_udr_mask;
85 	unsigned int write_alarm_udr_mask;
86 };
87 
88 /* Register map for S5M8763 and S5M8767 */
89 static const struct s5m_rtc_reg_config s5m_rtc_regs = {
90 	.regs_count		= 8,
91 	.time			= S5M_RTC_SEC,
92 	.ctrl			= S5M_ALARM1_CONF,
93 	.alarm0			= S5M_ALARM0_SEC,
94 	.alarm1			= S5M_ALARM1_SEC,
95 	.udr_update		= S5M_RTC_UDR_CON,
96 	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
97 	.read_time_udr_mask	= 0, /* Not needed */
98 	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
99 	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
100 };
101 
102 /* Register map for S2MPS13 */
103 static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
104 	.regs_count		= 7,
105 	.time			= S2MPS_RTC_SEC,
106 	.ctrl			= S2MPS_RTC_CTRL,
107 	.alarm0			= S2MPS_ALARM0_SEC,
108 	.alarm1			= S2MPS_ALARM1_SEC,
109 	.udr_update		= S2MPS_RTC_UDR_CON,
110 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
111 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
112 	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
113 	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
114 };
115 
116 /* Register map for S2MPS11/14 */
117 static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
118 	.regs_count		= 7,
119 	.time			= S2MPS_RTC_SEC,
120 	.ctrl			= S2MPS_RTC_CTRL,
121 	.alarm0			= S2MPS_ALARM0_SEC,
122 	.alarm1			= S2MPS_ALARM1_SEC,
123 	.udr_update		= S2MPS_RTC_UDR_CON,
124 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
125 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
126 	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
127 	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
128 };
129 
130 /*
131  * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
132  * are swapped.
133  */
134 static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
135 	.regs_count		= 7,
136 	.time			= S2MPS_RTC_SEC,
137 	.ctrl			= S2MPS_RTC_CTRL,
138 	.alarm0			= S2MPS_ALARM0_SEC,
139 	.alarm1			= S2MPS_ALARM1_SEC,
140 	.udr_update		= S2MPS_RTC_UDR_CON,
141 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
142 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
143 	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
144 	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
145 };
146 
147 struct s5m_rtc_info {
148 	struct device *dev;
149 	struct i2c_client *i2c;
150 	struct sec_pmic_dev *s5m87xx;
151 	struct regmap *regmap;
152 	struct rtc_device *rtc_dev;
153 	int irq;
154 	enum sec_device_type device_type;
155 	int rtc_24hr_mode;
156 	const struct s5m_rtc_reg_config	*regs;
157 };
158 
159 static const struct regmap_config s5m_rtc_regmap_config = {
160 	.reg_bits = 8,
161 	.val_bits = 8,
162 
163 	.max_register = S5M_RTC_REG_MAX,
164 };
165 
166 static const struct regmap_config s2mps14_rtc_regmap_config = {
167 	.reg_bits = 8,
168 	.val_bits = 8,
169 
170 	.max_register = S2MPS_RTC_REG_MAX,
171 };
172 
173 static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
174 			       int rtc_24hr_mode)
175 {
176 	tm->tm_sec = data[RTC_SEC] & 0x7f;
177 	tm->tm_min = data[RTC_MIN] & 0x7f;
178 	if (rtc_24hr_mode) {
179 		tm->tm_hour = data[RTC_HOUR] & 0x1f;
180 	} else {
181 		tm->tm_hour = data[RTC_HOUR] & 0x0f;
182 		if (data[RTC_HOUR] & HOUR_PM_MASK)
183 			tm->tm_hour += 12;
184 	}
185 
186 	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
187 	tm->tm_mday = data[RTC_DATE] & 0x1f;
188 	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
189 	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
190 	tm->tm_yday = 0;
191 	tm->tm_isdst = 0;
192 }
193 
194 static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
195 {
196 	data[RTC_SEC] = tm->tm_sec;
197 	data[RTC_MIN] = tm->tm_min;
198 
199 	if (tm->tm_hour >= 12)
200 		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
201 	else
202 		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
203 
204 	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
205 	data[RTC_DATE] = tm->tm_mday;
206 	data[RTC_MONTH] = tm->tm_mon + 1;
207 	data[RTC_YEAR1] = tm->tm_year - 100;
208 
209 	return 0;
210 }
211 
212 /*
213  * Read RTC_UDR_CON register and wait till UDR field is cleared.
214  * This indicates that time/alarm update ended.
215  */
216 static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
217 {
218 	int ret, retry = UDR_READ_RETRY_CNT;
219 	unsigned int data;
220 
221 	do {
222 		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
223 	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
224 
225 	if (!retry)
226 		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
227 
228 	return ret;
229 }
230 
231 static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
232 		struct rtc_wkalrm *alarm)
233 {
234 	int ret;
235 	unsigned int val;
236 
237 	switch (info->device_type) {
238 	case S5M8767X:
239 	case S5M8763X:
240 		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
241 		val &= S5M_ALARM0_STATUS;
242 		break;
243 	case S2MPS15X:
244 	case S2MPS14X:
245 	case S2MPS13X:
246 		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
247 				&val);
248 		val &= S2MPS_ALARM0_STATUS;
249 		break;
250 	default:
251 		return -EINVAL;
252 	}
253 	if (ret < 0)
254 		return ret;
255 
256 	if (val)
257 		alarm->pending = 1;
258 	else
259 		alarm->pending = 0;
260 
261 	return 0;
262 }
263 
264 static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
265 {
266 	int ret;
267 	unsigned int data;
268 
269 	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
270 	if (ret < 0) {
271 		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
272 		return ret;
273 	}
274 
275 	data |= info->regs->write_time_udr_mask;
276 
277 	ret = regmap_write(info->regmap, info->regs->udr_update, data);
278 	if (ret < 0) {
279 		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
280 		return ret;
281 	}
282 
283 	ret = s5m8767_wait_for_udr_update(info);
284 
285 	return ret;
286 }
287 
288 static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
289 {
290 	int ret;
291 	unsigned int data;
292 
293 	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
294 	if (ret < 0) {
295 		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
296 			__func__, ret);
297 		return ret;
298 	}
299 
300 	data |= info->regs->write_alarm_udr_mask;
301 	switch (info->device_type) {
302 	case S5M8763X:
303 	case S5M8767X:
304 		data &= ~S5M_RTC_TIME_EN_MASK;
305 		break;
306 	case S2MPS15X:
307 	case S2MPS14X:
308 	case S2MPS13X:
309 		/* No exceptions needed */
310 		break;
311 	default:
312 		return -EINVAL;
313 	}
314 
315 	ret = regmap_write(info->regmap, info->regs->udr_update, data);
316 	if (ret < 0) {
317 		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
318 			__func__, ret);
319 		return ret;
320 	}
321 
322 	ret = s5m8767_wait_for_udr_update(info);
323 
324 	/* On S2MPS13 the AUDR is not auto-cleared */
325 	if (info->device_type == S2MPS13X)
326 		regmap_update_bits(info->regmap, info->regs->udr_update,
327 				   S2MPS13_RTC_AUDR_MASK, 0);
328 
329 	return ret;
330 }
331 
332 static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
333 {
334 	tm->tm_sec = bcd2bin(data[RTC_SEC]);
335 	tm->tm_min = bcd2bin(data[RTC_MIN]);
336 
337 	if (data[RTC_HOUR] & HOUR_12) {
338 		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
339 		if (data[RTC_HOUR] & HOUR_PM)
340 			tm->tm_hour += 12;
341 	} else {
342 		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
343 	}
344 
345 	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
346 	tm->tm_mday = bcd2bin(data[RTC_DATE]);
347 	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
348 	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
349 	tm->tm_year -= 1900;
350 }
351 
352 static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
353 {
354 	data[RTC_SEC] = bin2bcd(tm->tm_sec);
355 	data[RTC_MIN] = bin2bcd(tm->tm_min);
356 	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
357 	data[RTC_WEEKDAY] = tm->tm_wday;
358 	data[RTC_DATE] = bin2bcd(tm->tm_mday);
359 	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
360 	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
361 	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
362 }
363 
364 static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
365 {
366 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
367 	u8 data[RTC_MAX_NUM_TIME_REGS];
368 	int ret;
369 
370 	if (info->regs->read_time_udr_mask) {
371 		ret = regmap_update_bits(info->regmap,
372 				info->regs->udr_update,
373 				info->regs->read_time_udr_mask,
374 				info->regs->read_time_udr_mask);
375 		if (ret) {
376 			dev_err(dev,
377 				"Failed to prepare registers for time reading: %d\n",
378 				ret);
379 			return ret;
380 		}
381 	}
382 	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
383 			info->regs->regs_count);
384 	if (ret < 0)
385 		return ret;
386 
387 	switch (info->device_type) {
388 	case S5M8763X:
389 		s5m8763_data_to_tm(data, tm);
390 		break;
391 
392 	case S5M8767X:
393 	case S2MPS15X:
394 	case S2MPS14X:
395 	case S2MPS13X:
396 		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
397 		break;
398 
399 	default:
400 		return -EINVAL;
401 	}
402 
403 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
404 
405 	return 0;
406 }
407 
408 static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
409 {
410 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
411 	u8 data[RTC_MAX_NUM_TIME_REGS];
412 	int ret = 0;
413 
414 	switch (info->device_type) {
415 	case S5M8763X:
416 		s5m8763_tm_to_data(tm, data);
417 		break;
418 	case S5M8767X:
419 	case S2MPS15X:
420 	case S2MPS14X:
421 	case S2MPS13X:
422 		ret = s5m8767_tm_to_data(tm, data);
423 		break;
424 	default:
425 		return -EINVAL;
426 	}
427 
428 	if (ret < 0)
429 		return ret;
430 
431 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
432 
433 	ret = regmap_raw_write(info->regmap, info->regs->time, data,
434 			info->regs->regs_count);
435 	if (ret < 0)
436 		return ret;
437 
438 	ret = s5m8767_rtc_set_time_reg(info);
439 
440 	return ret;
441 }
442 
443 static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
444 {
445 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
446 	u8 data[RTC_MAX_NUM_TIME_REGS];
447 	unsigned int val;
448 	int ret, i;
449 
450 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
451 			info->regs->regs_count);
452 	if (ret < 0)
453 		return ret;
454 
455 	switch (info->device_type) {
456 	case S5M8763X:
457 		s5m8763_data_to_tm(data, &alrm->time);
458 		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
459 		if (ret < 0)
460 			return ret;
461 
462 		alrm->enabled = !!val;
463 		break;
464 
465 	case S5M8767X:
466 	case S2MPS15X:
467 	case S2MPS14X:
468 	case S2MPS13X:
469 		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
470 		alrm->enabled = 0;
471 		for (i = 0; i < info->regs->regs_count; i++) {
472 			if (data[i] & ALARM_ENABLE_MASK) {
473 				alrm->enabled = 1;
474 				break;
475 			}
476 		}
477 		break;
478 
479 	default:
480 		return -EINVAL;
481 	}
482 
483 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
484 
485 	return s5m_check_peding_alarm_interrupt(info, alrm);
486 }
487 
488 static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
489 {
490 	u8 data[RTC_MAX_NUM_TIME_REGS];
491 	int ret, i;
492 	struct rtc_time tm;
493 
494 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
495 			info->regs->regs_count);
496 	if (ret < 0)
497 		return ret;
498 
499 	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
500 	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
501 
502 	switch (info->device_type) {
503 	case S5M8763X:
504 		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
505 		break;
506 
507 	case S5M8767X:
508 	case S2MPS15X:
509 	case S2MPS14X:
510 	case S2MPS13X:
511 		for (i = 0; i < info->regs->regs_count; i++)
512 			data[i] &= ~ALARM_ENABLE_MASK;
513 
514 		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
515 				info->regs->regs_count);
516 		if (ret < 0)
517 			return ret;
518 
519 		ret = s5m8767_rtc_set_alarm_reg(info);
520 
521 		break;
522 
523 	default:
524 		return -EINVAL;
525 	}
526 
527 	return ret;
528 }
529 
530 static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
531 {
532 	int ret;
533 	u8 data[RTC_MAX_NUM_TIME_REGS];
534 	u8 alarm0_conf;
535 	struct rtc_time tm;
536 
537 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
538 			info->regs->regs_count);
539 	if (ret < 0)
540 		return ret;
541 
542 	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
543 	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
544 
545 	switch (info->device_type) {
546 	case S5M8763X:
547 		alarm0_conf = 0x77;
548 		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
549 		break;
550 
551 	case S5M8767X:
552 	case S2MPS15X:
553 	case S2MPS14X:
554 	case S2MPS13X:
555 		data[RTC_SEC] |= ALARM_ENABLE_MASK;
556 		data[RTC_MIN] |= ALARM_ENABLE_MASK;
557 		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
558 		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
559 		if (data[RTC_DATE] & 0x1f)
560 			data[RTC_DATE] |= ALARM_ENABLE_MASK;
561 		if (data[RTC_MONTH] & 0xf)
562 			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
563 		if (data[RTC_YEAR1] & 0x7f)
564 			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
565 
566 		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
567 				info->regs->regs_count);
568 		if (ret < 0)
569 			return ret;
570 		ret = s5m8767_rtc_set_alarm_reg(info);
571 
572 		break;
573 
574 	default:
575 		return -EINVAL;
576 	}
577 
578 	return ret;
579 }
580 
581 static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
582 {
583 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
584 	u8 data[RTC_MAX_NUM_TIME_REGS];
585 	int ret;
586 
587 	switch (info->device_type) {
588 	case S5M8763X:
589 		s5m8763_tm_to_data(&alrm->time, data);
590 		break;
591 
592 	case S5M8767X:
593 	case S2MPS15X:
594 	case S2MPS14X:
595 	case S2MPS13X:
596 		s5m8767_tm_to_data(&alrm->time, data);
597 		break;
598 
599 	default:
600 		return -EINVAL;
601 	}
602 
603 	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
604 
605 	ret = s5m_rtc_stop_alarm(info);
606 	if (ret < 0)
607 		return ret;
608 
609 	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
610 			info->regs->regs_count);
611 	if (ret < 0)
612 		return ret;
613 
614 	ret = s5m8767_rtc_set_alarm_reg(info);
615 	if (ret < 0)
616 		return ret;
617 
618 	if (alrm->enabled)
619 		ret = s5m_rtc_start_alarm(info);
620 
621 	return ret;
622 }
623 
624 static int s5m_rtc_alarm_irq_enable(struct device *dev,
625 				    unsigned int enabled)
626 {
627 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
628 
629 	if (enabled)
630 		return s5m_rtc_start_alarm(info);
631 	else
632 		return s5m_rtc_stop_alarm(info);
633 }
634 
635 static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
636 {
637 	struct s5m_rtc_info *info = data;
638 
639 	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
640 
641 	return IRQ_HANDLED;
642 }
643 
644 static const struct rtc_class_ops s5m_rtc_ops = {
645 	.read_time = s5m_rtc_read_time,
646 	.set_time = s5m_rtc_set_time,
647 	.read_alarm = s5m_rtc_read_alarm,
648 	.set_alarm = s5m_rtc_set_alarm,
649 	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
650 };
651 
652 static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
653 {
654 	u8 data[2];
655 	int ret;
656 
657 	switch (info->device_type) {
658 	case S5M8763X:
659 	case S5M8767X:
660 		/* UDR update time. Default of 7.32 ms is too long. */
661 		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
662 				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
663 		if (ret < 0)
664 			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
665 					__func__, ret);
666 
667 		/* Set RTC control register : Binary mode, 24hour mode */
668 		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
669 		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
670 
671 		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
672 		break;
673 
674 	case S2MPS15X:
675 	case S2MPS14X:
676 	case S2MPS13X:
677 		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
678 		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
679 		if (ret < 0)
680 			break;
681 
682 		/*
683 		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
684 		 * RTC_CTRL register like writing Alarm registers. We can't find
685 		 * the description from datasheet but vendor code does that
686 		 * really.
687 		 */
688 		ret = s5m8767_rtc_set_alarm_reg(info);
689 		break;
690 
691 	default:
692 		return -EINVAL;
693 	}
694 
695 	info->rtc_24hr_mode = 1;
696 	if (ret < 0) {
697 		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
698 			__func__, ret);
699 		return ret;
700 	}
701 
702 	return ret;
703 }
704 
705 static int s5m_rtc_probe(struct platform_device *pdev)
706 {
707 	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
708 	struct s5m_rtc_info *info;
709 	const struct regmap_config *regmap_cfg;
710 	int ret, alarm_irq;
711 
712 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
713 	if (!info)
714 		return -ENOMEM;
715 
716 	switch (platform_get_device_id(pdev)->driver_data) {
717 	case S2MPS15X:
718 		regmap_cfg = &s2mps14_rtc_regmap_config;
719 		info->regs = &s2mps15_rtc_regs;
720 		alarm_irq = S2MPS14_IRQ_RTCA0;
721 		break;
722 	case S2MPS14X:
723 		regmap_cfg = &s2mps14_rtc_regmap_config;
724 		info->regs = &s2mps14_rtc_regs;
725 		alarm_irq = S2MPS14_IRQ_RTCA0;
726 		break;
727 	case S2MPS13X:
728 		regmap_cfg = &s2mps14_rtc_regmap_config;
729 		info->regs = &s2mps13_rtc_regs;
730 		alarm_irq = S2MPS14_IRQ_RTCA0;
731 		break;
732 	case S5M8763X:
733 		regmap_cfg = &s5m_rtc_regmap_config;
734 		info->regs = &s5m_rtc_regs;
735 		alarm_irq = S5M8763_IRQ_ALARM0;
736 		break;
737 	case S5M8767X:
738 		regmap_cfg = &s5m_rtc_regmap_config;
739 		info->regs = &s5m_rtc_regs;
740 		alarm_irq = S5M8767_IRQ_RTCA1;
741 		break;
742 	default:
743 		dev_err(&pdev->dev,
744 				"Device type %lu is not supported by RTC driver\n",
745 				platform_get_device_id(pdev)->driver_data);
746 		return -ENODEV;
747 	}
748 
749 	info->i2c = devm_i2c_new_dummy_device(&pdev->dev, s5m87xx->i2c->adapter,
750 					      RTC_I2C_ADDR);
751 	if (IS_ERR(info->i2c)) {
752 		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
753 		return PTR_ERR(info->i2c);
754 	}
755 
756 	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
757 	if (IS_ERR(info->regmap)) {
758 		ret = PTR_ERR(info->regmap);
759 		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
760 				ret);
761 		return ret;
762 	}
763 
764 	info->dev = &pdev->dev;
765 	info->s5m87xx = s5m87xx;
766 	info->device_type = platform_get_device_id(pdev)->driver_data;
767 
768 	if (s5m87xx->irq_data) {
769 		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
770 		if (info->irq <= 0) {
771 			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
772 				alarm_irq);
773 			return -EINVAL;
774 		}
775 	}
776 
777 	platform_set_drvdata(pdev, info);
778 
779 	ret = s5m8767_rtc_init_reg(info);
780 	if (ret)
781 		return ret;
782 
783 	info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
784 	if (IS_ERR(info->rtc_dev))
785 		return PTR_ERR(info->rtc_dev);
786 
787 	info->rtc_dev->ops = &s5m_rtc_ops;
788 
789 	if (info->device_type == S5M8763X) {
790 		info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_0000;
791 		info->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
792 	} else {
793 		info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
794 		info->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
795 	}
796 
797 	if (!info->irq) {
798 		clear_bit(RTC_FEATURE_ALARM, info->rtc_dev->features);
799 	} else {
800 		ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
801 						s5m_rtc_alarm_irq, 0, "rtc-alarm0",
802 						info);
803 		if (ret < 0) {
804 			dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
805 				info->irq, ret);
806 			return ret;
807 		}
808 		device_init_wakeup(&pdev->dev, 1);
809 	}
810 
811 	return devm_rtc_register_device(info->rtc_dev);
812 }
813 
814 #ifdef CONFIG_PM_SLEEP
815 static int s5m_rtc_resume(struct device *dev)
816 {
817 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
818 	int ret = 0;
819 
820 	if (info->irq && device_may_wakeup(dev))
821 		ret = disable_irq_wake(info->irq);
822 
823 	return ret;
824 }
825 
826 static int s5m_rtc_suspend(struct device *dev)
827 {
828 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
829 	int ret = 0;
830 
831 	if (info->irq && device_may_wakeup(dev))
832 		ret = enable_irq_wake(info->irq);
833 
834 	return ret;
835 }
836 #endif /* CONFIG_PM_SLEEP */
837 
838 static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
839 
840 static const struct platform_device_id s5m_rtc_id[] = {
841 	{ "s5m-rtc",		S5M8767X },
842 	{ "s2mps13-rtc",	S2MPS13X },
843 	{ "s2mps14-rtc",	S2MPS14X },
844 	{ "s2mps15-rtc",	S2MPS15X },
845 	{ },
846 };
847 MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
848 
849 static struct platform_driver s5m_rtc_driver = {
850 	.driver		= {
851 		.name	= "s5m-rtc",
852 		.pm	= &s5m_rtc_pm_ops,
853 	},
854 	.probe		= s5m_rtc_probe,
855 	.id_table	= s5m_rtc_id,
856 };
857 
858 module_platform_driver(s5m_rtc_driver);
859 
860 /* Module information */
861 MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
862 MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
863 MODULE_LICENSE("GPL");
864