xref: /openbmc/linux/drivers/rtc/rtc-s5m.c (revision addee42a)
1 /*
2  * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
3  *	http://www.samsung.com
4  *
5  *  Copyright (C) 2013 Google, Inc
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/bcd.h>
23 #include <linux/regmap.h>
24 #include <linux/rtc.h>
25 #include <linux/platform_device.h>
26 #include <linux/mfd/samsung/core.h>
27 #include <linux/mfd/samsung/irq.h>
28 #include <linux/mfd/samsung/rtc.h>
29 #include <linux/mfd/samsung/s2mps14.h>
30 
31 /*
32  * Maximum number of retries for checking changes in UDR field
33  * of S5M_RTC_UDR_CON register (to limit possible endless loop).
34  *
35  * After writing to RTC registers (setting time or alarm) read the UDR field
36  * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
37  * been transferred.
38  */
39 #define UDR_READ_RETRY_CNT	5
40 
41 enum {
42 	RTC_SEC = 0,
43 	RTC_MIN,
44 	RTC_HOUR,
45 	RTC_WEEKDAY,
46 	RTC_DATE,
47 	RTC_MONTH,
48 	RTC_YEAR1,
49 	RTC_YEAR2,
50 	/* Make sure this is always the last enum name. */
51 	RTC_MAX_NUM_TIME_REGS
52 };
53 
54 /*
55  * Registers used by the driver which are different between chipsets.
56  *
57  * Operations like read time and write alarm/time require updating
58  * specific fields in UDR register. These fields usually are auto-cleared
59  * (with some exceptions).
60  *
61  * Table of operations per device:
62  *
63  * Device     | Write time | Read time | Write alarm
64  * =================================================
65  * S5M8767    | UDR + TIME |           | UDR
66  * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
67  * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
68  * S2MPS15    | WUDR       | RUDR      | AUDR
69  */
70 struct s5m_rtc_reg_config {
71 	/* Number of registers used for setting time/alarm0/alarm1 */
72 	unsigned int regs_count;
73 	/* First register for time, seconds */
74 	unsigned int time;
75 	/* RTC control register */
76 	unsigned int ctrl;
77 	/* First register for alarm 0, seconds */
78 	unsigned int alarm0;
79 	/* First register for alarm 1, seconds */
80 	unsigned int alarm1;
81 	/*
82 	 * Register for update flag (UDR). Typically setting UDR field to 1
83 	 * will enable update of time or alarm register. Then it will be
84 	 * auto-cleared after successful update.
85 	 */
86 	unsigned int udr_update;
87 	/* Auto-cleared mask in UDR field for writing time and alarm */
88 	unsigned int autoclear_udr_mask;
89 	/*
90 	 * Masks in UDR field for time and alarm operations.
91 	 * The read time mask can be 0. Rest should not.
92 	 */
93 	unsigned int read_time_udr_mask;
94 	unsigned int write_time_udr_mask;
95 	unsigned int write_alarm_udr_mask;
96 };
97 
98 /* Register map for S5M8763 and S5M8767 */
99 static const struct s5m_rtc_reg_config s5m_rtc_regs = {
100 	.regs_count		= 8,
101 	.time			= S5M_RTC_SEC,
102 	.ctrl			= S5M_ALARM1_CONF,
103 	.alarm0			= S5M_ALARM0_SEC,
104 	.alarm1			= S5M_ALARM1_SEC,
105 	.udr_update		= S5M_RTC_UDR_CON,
106 	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
107 	.read_time_udr_mask	= 0, /* Not needed */
108 	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
109 	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
110 };
111 
112 /* Register map for S2MPS13 */
113 static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
114 	.regs_count		= 7,
115 	.time			= S2MPS_RTC_SEC,
116 	.ctrl			= S2MPS_RTC_CTRL,
117 	.alarm0			= S2MPS_ALARM0_SEC,
118 	.alarm1			= S2MPS_ALARM1_SEC,
119 	.udr_update		= S2MPS_RTC_UDR_CON,
120 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
121 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
122 	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
123 	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
124 };
125 
126 /* Register map for S2MPS11/14 */
127 static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
128 	.regs_count		= 7,
129 	.time			= S2MPS_RTC_SEC,
130 	.ctrl			= S2MPS_RTC_CTRL,
131 	.alarm0			= S2MPS_ALARM0_SEC,
132 	.alarm1			= S2MPS_ALARM1_SEC,
133 	.udr_update		= S2MPS_RTC_UDR_CON,
134 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
135 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
136 	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
137 	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
138 };
139 
140 /*
141  * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
142  * are swapped.
143  */
144 static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
145 	.regs_count		= 7,
146 	.time			= S2MPS_RTC_SEC,
147 	.ctrl			= S2MPS_RTC_CTRL,
148 	.alarm0			= S2MPS_ALARM0_SEC,
149 	.alarm1			= S2MPS_ALARM1_SEC,
150 	.udr_update		= S2MPS_RTC_UDR_CON,
151 	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
152 	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
153 	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
154 	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
155 };
156 
157 struct s5m_rtc_info {
158 	struct device *dev;
159 	struct i2c_client *i2c;
160 	struct sec_pmic_dev *s5m87xx;
161 	struct regmap *regmap;
162 	struct rtc_device *rtc_dev;
163 	int irq;
164 	enum sec_device_type device_type;
165 	int rtc_24hr_mode;
166 	const struct s5m_rtc_reg_config	*regs;
167 };
168 
169 static const struct regmap_config s5m_rtc_regmap_config = {
170 	.reg_bits = 8,
171 	.val_bits = 8,
172 
173 	.max_register = S5M_RTC_REG_MAX,
174 };
175 
176 static const struct regmap_config s2mps14_rtc_regmap_config = {
177 	.reg_bits = 8,
178 	.val_bits = 8,
179 
180 	.max_register = S2MPS_RTC_REG_MAX,
181 };
182 
183 static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
184 			       int rtc_24hr_mode)
185 {
186 	tm->tm_sec = data[RTC_SEC] & 0x7f;
187 	tm->tm_min = data[RTC_MIN] & 0x7f;
188 	if (rtc_24hr_mode) {
189 		tm->tm_hour = data[RTC_HOUR] & 0x1f;
190 	} else {
191 		tm->tm_hour = data[RTC_HOUR] & 0x0f;
192 		if (data[RTC_HOUR] & HOUR_PM_MASK)
193 			tm->tm_hour += 12;
194 	}
195 
196 	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
197 	tm->tm_mday = data[RTC_DATE] & 0x1f;
198 	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
199 	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
200 	tm->tm_yday = 0;
201 	tm->tm_isdst = 0;
202 }
203 
204 static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
205 {
206 	data[RTC_SEC] = tm->tm_sec;
207 	data[RTC_MIN] = tm->tm_min;
208 
209 	if (tm->tm_hour >= 12)
210 		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
211 	else
212 		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
213 
214 	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
215 	data[RTC_DATE] = tm->tm_mday;
216 	data[RTC_MONTH] = tm->tm_mon + 1;
217 	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
218 
219 	if (tm->tm_year < 100) {
220 		pr_err("RTC cannot handle the year %d\n",
221 		       1900 + tm->tm_year);
222 		return -EINVAL;
223 	} else {
224 		return 0;
225 	}
226 }
227 
228 /*
229  * Read RTC_UDR_CON register and wait till UDR field is cleared.
230  * This indicates that time/alarm update ended.
231  */
232 static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
233 {
234 	int ret, retry = UDR_READ_RETRY_CNT;
235 	unsigned int data;
236 
237 	do {
238 		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
239 	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
240 
241 	if (!retry)
242 		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
243 
244 	return ret;
245 }
246 
247 static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
248 		struct rtc_wkalrm *alarm)
249 {
250 	int ret;
251 	unsigned int val;
252 
253 	switch (info->device_type) {
254 	case S5M8767X:
255 	case S5M8763X:
256 		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
257 		val &= S5M_ALARM0_STATUS;
258 		break;
259 	case S2MPS15X:
260 	case S2MPS14X:
261 	case S2MPS13X:
262 		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
263 				&val);
264 		val &= S2MPS_ALARM0_STATUS;
265 		break;
266 	default:
267 		return -EINVAL;
268 	}
269 	if (ret < 0)
270 		return ret;
271 
272 	if (val)
273 		alarm->pending = 1;
274 	else
275 		alarm->pending = 0;
276 
277 	return 0;
278 }
279 
280 static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
281 {
282 	int ret;
283 	unsigned int data;
284 
285 	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
286 	if (ret < 0) {
287 		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
288 		return ret;
289 	}
290 
291 	data |= info->regs->write_time_udr_mask;
292 
293 	ret = regmap_write(info->regmap, info->regs->udr_update, data);
294 	if (ret < 0) {
295 		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
296 		return ret;
297 	}
298 
299 	ret = s5m8767_wait_for_udr_update(info);
300 
301 	return ret;
302 }
303 
304 static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
305 {
306 	int ret;
307 	unsigned int data;
308 
309 	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
310 	if (ret < 0) {
311 		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
312 			__func__, ret);
313 		return ret;
314 	}
315 
316 	data |= info->regs->write_alarm_udr_mask;
317 	switch (info->device_type) {
318 	case S5M8763X:
319 	case S5M8767X:
320 		data &= ~S5M_RTC_TIME_EN_MASK;
321 		break;
322 	case S2MPS15X:
323 	case S2MPS14X:
324 	case S2MPS13X:
325 		/* No exceptions needed */
326 		break;
327 	default:
328 		return -EINVAL;
329 	}
330 
331 	ret = regmap_write(info->regmap, info->regs->udr_update, data);
332 	if (ret < 0) {
333 		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
334 			__func__, ret);
335 		return ret;
336 	}
337 
338 	ret = s5m8767_wait_for_udr_update(info);
339 
340 	/* On S2MPS13 the AUDR is not auto-cleared */
341 	if (info->device_type == S2MPS13X)
342 		regmap_update_bits(info->regmap, info->regs->udr_update,
343 				   S2MPS13_RTC_AUDR_MASK, 0);
344 
345 	return ret;
346 }
347 
348 static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
349 {
350 	tm->tm_sec = bcd2bin(data[RTC_SEC]);
351 	tm->tm_min = bcd2bin(data[RTC_MIN]);
352 
353 	if (data[RTC_HOUR] & HOUR_12) {
354 		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
355 		if (data[RTC_HOUR] & HOUR_PM)
356 			tm->tm_hour += 12;
357 	} else {
358 		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
359 	}
360 
361 	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
362 	tm->tm_mday = bcd2bin(data[RTC_DATE]);
363 	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
364 	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
365 	tm->tm_year -= 1900;
366 }
367 
368 static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
369 {
370 	data[RTC_SEC] = bin2bcd(tm->tm_sec);
371 	data[RTC_MIN] = bin2bcd(tm->tm_min);
372 	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
373 	data[RTC_WEEKDAY] = tm->tm_wday;
374 	data[RTC_DATE] = bin2bcd(tm->tm_mday);
375 	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
376 	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
377 	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
378 }
379 
380 static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
381 {
382 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
383 	u8 data[RTC_MAX_NUM_TIME_REGS];
384 	int ret;
385 
386 	if (info->regs->read_time_udr_mask) {
387 		ret = regmap_update_bits(info->regmap,
388 				info->regs->udr_update,
389 				info->regs->read_time_udr_mask,
390 				info->regs->read_time_udr_mask);
391 		if (ret) {
392 			dev_err(dev,
393 				"Failed to prepare registers for time reading: %d\n",
394 				ret);
395 			return ret;
396 		}
397 	}
398 	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
399 			info->regs->regs_count);
400 	if (ret < 0)
401 		return ret;
402 
403 	switch (info->device_type) {
404 	case S5M8763X:
405 		s5m8763_data_to_tm(data, tm);
406 		break;
407 
408 	case S5M8767X:
409 	case S2MPS15X:
410 	case S2MPS14X:
411 	case S2MPS13X:
412 		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
413 		break;
414 
415 	default:
416 		return -EINVAL;
417 	}
418 
419 	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
420 		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
421 		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
422 
423 	return 0;
424 }
425 
426 static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
427 {
428 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
429 	u8 data[RTC_MAX_NUM_TIME_REGS];
430 	int ret = 0;
431 
432 	switch (info->device_type) {
433 	case S5M8763X:
434 		s5m8763_tm_to_data(tm, data);
435 		break;
436 	case S5M8767X:
437 	case S2MPS15X:
438 	case S2MPS14X:
439 	case S2MPS13X:
440 		ret = s5m8767_tm_to_data(tm, data);
441 		break;
442 	default:
443 		return -EINVAL;
444 	}
445 
446 	if (ret < 0)
447 		return ret;
448 
449 	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
450 		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
451 		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
452 
453 	ret = regmap_raw_write(info->regmap, info->regs->time, data,
454 			info->regs->regs_count);
455 	if (ret < 0)
456 		return ret;
457 
458 	ret = s5m8767_rtc_set_time_reg(info);
459 
460 	return ret;
461 }
462 
463 static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
464 {
465 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
466 	u8 data[RTC_MAX_NUM_TIME_REGS];
467 	unsigned int val;
468 	int ret, i;
469 
470 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
471 			info->regs->regs_count);
472 	if (ret < 0)
473 		return ret;
474 
475 	switch (info->device_type) {
476 	case S5M8763X:
477 		s5m8763_data_to_tm(data, &alrm->time);
478 		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
479 		if (ret < 0)
480 			return ret;
481 
482 		alrm->enabled = !!val;
483 		break;
484 
485 	case S5M8767X:
486 	case S2MPS15X:
487 	case S2MPS14X:
488 	case S2MPS13X:
489 		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
490 		alrm->enabled = 0;
491 		for (i = 0; i < info->regs->regs_count; i++) {
492 			if (data[i] & ALARM_ENABLE_MASK) {
493 				alrm->enabled = 1;
494 				break;
495 			}
496 		}
497 		break;
498 
499 	default:
500 		return -EINVAL;
501 	}
502 
503 	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
504 		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
505 		alrm->time.tm_mday, alrm->time.tm_hour,
506 		alrm->time.tm_min, alrm->time.tm_sec,
507 		alrm->time.tm_wday);
508 
509 	ret = s5m_check_peding_alarm_interrupt(info, alrm);
510 
511 	return 0;
512 }
513 
514 static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
515 {
516 	u8 data[RTC_MAX_NUM_TIME_REGS];
517 	int ret, i;
518 	struct rtc_time tm;
519 
520 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
521 			info->regs->regs_count);
522 	if (ret < 0)
523 		return ret;
524 
525 	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
526 	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
527 		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
528 		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
529 
530 	switch (info->device_type) {
531 	case S5M8763X:
532 		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
533 		break;
534 
535 	case S5M8767X:
536 	case S2MPS15X:
537 	case S2MPS14X:
538 	case S2MPS13X:
539 		for (i = 0; i < info->regs->regs_count; i++)
540 			data[i] &= ~ALARM_ENABLE_MASK;
541 
542 		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
543 				info->regs->regs_count);
544 		if (ret < 0)
545 			return ret;
546 
547 		ret = s5m8767_rtc_set_alarm_reg(info);
548 
549 		break;
550 
551 	default:
552 		return -EINVAL;
553 	}
554 
555 	return ret;
556 }
557 
558 static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
559 {
560 	int ret;
561 	u8 data[RTC_MAX_NUM_TIME_REGS];
562 	u8 alarm0_conf;
563 	struct rtc_time tm;
564 
565 	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
566 			info->regs->regs_count);
567 	if (ret < 0)
568 		return ret;
569 
570 	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
571 	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
572 		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
573 		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
574 
575 	switch (info->device_type) {
576 	case S5M8763X:
577 		alarm0_conf = 0x77;
578 		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
579 		break;
580 
581 	case S5M8767X:
582 	case S2MPS15X:
583 	case S2MPS14X:
584 	case S2MPS13X:
585 		data[RTC_SEC] |= ALARM_ENABLE_MASK;
586 		data[RTC_MIN] |= ALARM_ENABLE_MASK;
587 		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
588 		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
589 		if (data[RTC_DATE] & 0x1f)
590 			data[RTC_DATE] |= ALARM_ENABLE_MASK;
591 		if (data[RTC_MONTH] & 0xf)
592 			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
593 		if (data[RTC_YEAR1] & 0x7f)
594 			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
595 
596 		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
597 				info->regs->regs_count);
598 		if (ret < 0)
599 			return ret;
600 		ret = s5m8767_rtc_set_alarm_reg(info);
601 
602 		break;
603 
604 	default:
605 		return -EINVAL;
606 	}
607 
608 	return ret;
609 }
610 
611 static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
612 {
613 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
614 	u8 data[RTC_MAX_NUM_TIME_REGS];
615 	int ret;
616 
617 	switch (info->device_type) {
618 	case S5M8763X:
619 		s5m8763_tm_to_data(&alrm->time, data);
620 		break;
621 
622 	case S5M8767X:
623 	case S2MPS15X:
624 	case S2MPS14X:
625 	case S2MPS13X:
626 		s5m8767_tm_to_data(&alrm->time, data);
627 		break;
628 
629 	default:
630 		return -EINVAL;
631 	}
632 
633 	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
634 		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
635 		alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
636 		alrm->time.tm_sec, alrm->time.tm_wday);
637 
638 	ret = s5m_rtc_stop_alarm(info);
639 	if (ret < 0)
640 		return ret;
641 
642 	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
643 			info->regs->regs_count);
644 	if (ret < 0)
645 		return ret;
646 
647 	ret = s5m8767_rtc_set_alarm_reg(info);
648 	if (ret < 0)
649 		return ret;
650 
651 	if (alrm->enabled)
652 		ret = s5m_rtc_start_alarm(info);
653 
654 	return ret;
655 }
656 
657 static int s5m_rtc_alarm_irq_enable(struct device *dev,
658 				    unsigned int enabled)
659 {
660 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
661 
662 	if (enabled)
663 		return s5m_rtc_start_alarm(info);
664 	else
665 		return s5m_rtc_stop_alarm(info);
666 }
667 
668 static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
669 {
670 	struct s5m_rtc_info *info = data;
671 
672 	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
673 
674 	return IRQ_HANDLED;
675 }
676 
677 static const struct rtc_class_ops s5m_rtc_ops = {
678 	.read_time = s5m_rtc_read_time,
679 	.set_time = s5m_rtc_set_time,
680 	.read_alarm = s5m_rtc_read_alarm,
681 	.set_alarm = s5m_rtc_set_alarm,
682 	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
683 };
684 
685 static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
686 {
687 	u8 data[2];
688 	int ret;
689 
690 	switch (info->device_type) {
691 	case S5M8763X:
692 	case S5M8767X:
693 		/* UDR update time. Default of 7.32 ms is too long. */
694 		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
695 				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
696 		if (ret < 0)
697 			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
698 					__func__, ret);
699 
700 		/* Set RTC control register : Binary mode, 24hour mode */
701 		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
702 		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
703 
704 		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
705 		break;
706 
707 	case S2MPS15X:
708 	case S2MPS14X:
709 	case S2MPS13X:
710 		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
711 		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
712 		if (ret < 0)
713 			break;
714 
715 		/*
716 		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
717 		 * RTC_CTRL register like writing Alarm registers. We can't find
718 		 * the description from datasheet but vendor code does that
719 		 * really.
720 		 */
721 		ret = s5m8767_rtc_set_alarm_reg(info);
722 		break;
723 
724 	default:
725 		return -EINVAL;
726 	}
727 
728 	info->rtc_24hr_mode = 1;
729 	if (ret < 0) {
730 		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
731 			__func__, ret);
732 		return ret;
733 	}
734 
735 	return ret;
736 }
737 
738 static int s5m_rtc_probe(struct platform_device *pdev)
739 {
740 	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
741 	struct sec_platform_data *pdata = s5m87xx->pdata;
742 	struct s5m_rtc_info *info;
743 	const struct regmap_config *regmap_cfg;
744 	int ret, alarm_irq;
745 
746 	if (!pdata) {
747 		dev_err(pdev->dev.parent, "Platform data not supplied\n");
748 		return -ENODEV;
749 	}
750 
751 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
752 	if (!info)
753 		return -ENOMEM;
754 
755 	switch (platform_get_device_id(pdev)->driver_data) {
756 	case S2MPS15X:
757 		regmap_cfg = &s2mps14_rtc_regmap_config;
758 		info->regs = &s2mps15_rtc_regs;
759 		alarm_irq = S2MPS14_IRQ_RTCA0;
760 		break;
761 	case S2MPS14X:
762 		regmap_cfg = &s2mps14_rtc_regmap_config;
763 		info->regs = &s2mps14_rtc_regs;
764 		alarm_irq = S2MPS14_IRQ_RTCA0;
765 		break;
766 	case S2MPS13X:
767 		regmap_cfg = &s2mps14_rtc_regmap_config;
768 		info->regs = &s2mps13_rtc_regs;
769 		alarm_irq = S2MPS14_IRQ_RTCA0;
770 		break;
771 	case S5M8763X:
772 		regmap_cfg = &s5m_rtc_regmap_config;
773 		info->regs = &s5m_rtc_regs;
774 		alarm_irq = S5M8763_IRQ_ALARM0;
775 		break;
776 	case S5M8767X:
777 		regmap_cfg = &s5m_rtc_regmap_config;
778 		info->regs = &s5m_rtc_regs;
779 		alarm_irq = S5M8767_IRQ_RTCA1;
780 		break;
781 	default:
782 		dev_err(&pdev->dev,
783 				"Device type %lu is not supported by RTC driver\n",
784 				platform_get_device_id(pdev)->driver_data);
785 		return -ENODEV;
786 	}
787 
788 	info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
789 	if (!info->i2c) {
790 		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
791 		return -ENODEV;
792 	}
793 
794 	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
795 	if (IS_ERR(info->regmap)) {
796 		ret = PTR_ERR(info->regmap);
797 		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
798 				ret);
799 		goto err;
800 	}
801 
802 	info->dev = &pdev->dev;
803 	info->s5m87xx = s5m87xx;
804 	info->device_type = platform_get_device_id(pdev)->driver_data;
805 
806 	if (s5m87xx->irq_data) {
807 		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
808 		if (info->irq <= 0) {
809 			ret = -EINVAL;
810 			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
811 				alarm_irq);
812 			goto err;
813 		}
814 	}
815 
816 	platform_set_drvdata(pdev, info);
817 
818 	ret = s5m8767_rtc_init_reg(info);
819 
820 	device_init_wakeup(&pdev->dev, 1);
821 
822 	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
823 						 &s5m_rtc_ops, THIS_MODULE);
824 
825 	if (IS_ERR(info->rtc_dev)) {
826 		ret = PTR_ERR(info->rtc_dev);
827 		goto err;
828 	}
829 
830 	if (!info->irq) {
831 		dev_info(&pdev->dev, "Alarm IRQ not available\n");
832 		return 0;
833 	}
834 
835 	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
836 					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
837 					info);
838 	if (ret < 0) {
839 		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
840 			info->irq, ret);
841 		goto err;
842 	}
843 
844 	return 0;
845 
846 err:
847 	i2c_unregister_device(info->i2c);
848 
849 	return ret;
850 }
851 
852 static int s5m_rtc_remove(struct platform_device *pdev)
853 {
854 	struct s5m_rtc_info *info = platform_get_drvdata(pdev);
855 
856 	i2c_unregister_device(info->i2c);
857 
858 	return 0;
859 }
860 
861 #ifdef CONFIG_PM_SLEEP
862 static int s5m_rtc_resume(struct device *dev)
863 {
864 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
865 	int ret = 0;
866 
867 	if (info->irq && device_may_wakeup(dev))
868 		ret = disable_irq_wake(info->irq);
869 
870 	return ret;
871 }
872 
873 static int s5m_rtc_suspend(struct device *dev)
874 {
875 	struct s5m_rtc_info *info = dev_get_drvdata(dev);
876 	int ret = 0;
877 
878 	if (info->irq && device_may_wakeup(dev))
879 		ret = enable_irq_wake(info->irq);
880 
881 	return ret;
882 }
883 #endif /* CONFIG_PM_SLEEP */
884 
885 static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
886 
887 static const struct platform_device_id s5m_rtc_id[] = {
888 	{ "s5m-rtc",		S5M8767X },
889 	{ "s2mps13-rtc",	S2MPS13X },
890 	{ "s2mps14-rtc",	S2MPS14X },
891 	{ "s2mps15-rtc",	S2MPS15X },
892 	{ },
893 };
894 MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
895 
896 static struct platform_driver s5m_rtc_driver = {
897 	.driver		= {
898 		.name	= "s5m-rtc",
899 		.pm	= &s5m_rtc_pm_ops,
900 	},
901 	.probe		= s5m_rtc_probe,
902 	.remove		= s5m_rtc_remove,
903 	.id_table	= s5m_rtc_id,
904 };
905 
906 module_platform_driver(s5m_rtc_driver);
907 
908 /* Module information */
909 MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
910 MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
911 MODULE_LICENSE("GPL");
912 MODULE_ALIAS("platform:s5m-rtc");
913