1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // Copyright (c) 2013-2014 Samsung Electronics Co., Ltd 4 // http://www.samsung.com 5 // 6 // Copyright (C) 2013 Google, Inc 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/module.h> 11 #include <linux/i2c.h> 12 #include <linux/bcd.h> 13 #include <linux/regmap.h> 14 #include <linux/rtc.h> 15 #include <linux/platform_device.h> 16 #include <linux/mfd/samsung/core.h> 17 #include <linux/mfd/samsung/irq.h> 18 #include <linux/mfd/samsung/rtc.h> 19 #include <linux/mfd/samsung/s2mps14.h> 20 21 /* 22 * Maximum number of retries for checking changes in UDR field 23 * of S5M_RTC_UDR_CON register (to limit possible endless loop). 24 * 25 * After writing to RTC registers (setting time or alarm) read the UDR field 26 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have 27 * been transferred. 28 */ 29 #define UDR_READ_RETRY_CNT 5 30 31 enum { 32 RTC_SEC = 0, 33 RTC_MIN, 34 RTC_HOUR, 35 RTC_WEEKDAY, 36 RTC_DATE, 37 RTC_MONTH, 38 RTC_YEAR1, 39 RTC_YEAR2, 40 /* Make sure this is always the last enum name. */ 41 RTC_MAX_NUM_TIME_REGS 42 }; 43 44 /* 45 * Registers used by the driver which are different between chipsets. 46 * 47 * Operations like read time and write alarm/time require updating 48 * specific fields in UDR register. These fields usually are auto-cleared 49 * (with some exceptions). 50 * 51 * Table of operations per device: 52 * 53 * Device | Write time | Read time | Write alarm 54 * ================================================= 55 * S5M8767 | UDR + TIME | | UDR 56 * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR 57 * S2MPS13 | WUDR | RUDR | WUDR + AUDR 58 * S2MPS15 | WUDR | RUDR | AUDR 59 */ 60 struct s5m_rtc_reg_config { 61 /* Number of registers used for setting time/alarm0/alarm1 */ 62 unsigned int regs_count; 63 /* First register for time, seconds */ 64 unsigned int time; 65 /* RTC control register */ 66 unsigned int ctrl; 67 /* First register for alarm 0, seconds */ 68 unsigned int alarm0; 69 /* First register for alarm 1, seconds */ 70 unsigned int alarm1; 71 /* 72 * Register for update flag (UDR). Typically setting UDR field to 1 73 * will enable update of time or alarm register. Then it will be 74 * auto-cleared after successful update. 75 */ 76 unsigned int udr_update; 77 /* Auto-cleared mask in UDR field for writing time and alarm */ 78 unsigned int autoclear_udr_mask; 79 /* 80 * Masks in UDR field for time and alarm operations. 81 * The read time mask can be 0. Rest should not. 82 */ 83 unsigned int read_time_udr_mask; 84 unsigned int write_time_udr_mask; 85 unsigned int write_alarm_udr_mask; 86 }; 87 88 /* Register map for S5M8763 and S5M8767 */ 89 static const struct s5m_rtc_reg_config s5m_rtc_regs = { 90 .regs_count = 8, 91 .time = S5M_RTC_SEC, 92 .ctrl = S5M_ALARM1_CONF, 93 .alarm0 = S5M_ALARM0_SEC, 94 .alarm1 = S5M_ALARM1_SEC, 95 .udr_update = S5M_RTC_UDR_CON, 96 .autoclear_udr_mask = S5M_RTC_UDR_MASK, 97 .read_time_udr_mask = 0, /* Not needed */ 98 .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK, 99 .write_alarm_udr_mask = S5M_RTC_UDR_MASK, 100 }; 101 102 /* Register map for S2MPS13 */ 103 static const struct s5m_rtc_reg_config s2mps13_rtc_regs = { 104 .regs_count = 7, 105 .time = S2MPS_RTC_SEC, 106 .ctrl = S2MPS_RTC_CTRL, 107 .alarm0 = S2MPS_ALARM0_SEC, 108 .alarm1 = S2MPS_ALARM1_SEC, 109 .udr_update = S2MPS_RTC_UDR_CON, 110 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK, 111 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK, 112 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK, 113 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK, 114 }; 115 116 /* Register map for S2MPS11/14 */ 117 static const struct s5m_rtc_reg_config s2mps14_rtc_regs = { 118 .regs_count = 7, 119 .time = S2MPS_RTC_SEC, 120 .ctrl = S2MPS_RTC_CTRL, 121 .alarm0 = S2MPS_ALARM0_SEC, 122 .alarm1 = S2MPS_ALARM1_SEC, 123 .udr_update = S2MPS_RTC_UDR_CON, 124 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK, 125 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK, 126 .write_time_udr_mask = S2MPS_RTC_WUDR_MASK, 127 .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK, 128 }; 129 130 /* 131 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits 132 * are swapped. 133 */ 134 static const struct s5m_rtc_reg_config s2mps15_rtc_regs = { 135 .regs_count = 7, 136 .time = S2MPS_RTC_SEC, 137 .ctrl = S2MPS_RTC_CTRL, 138 .alarm0 = S2MPS_ALARM0_SEC, 139 .alarm1 = S2MPS_ALARM1_SEC, 140 .udr_update = S2MPS_RTC_UDR_CON, 141 .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK, 142 .read_time_udr_mask = S2MPS_RTC_RUDR_MASK, 143 .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK, 144 .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK, 145 }; 146 147 struct s5m_rtc_info { 148 struct device *dev; 149 struct i2c_client *i2c; 150 struct sec_pmic_dev *s5m87xx; 151 struct regmap *regmap; 152 struct rtc_device *rtc_dev; 153 int irq; 154 enum sec_device_type device_type; 155 int rtc_24hr_mode; 156 const struct s5m_rtc_reg_config *regs; 157 }; 158 159 static const struct regmap_config s5m_rtc_regmap_config = { 160 .reg_bits = 8, 161 .val_bits = 8, 162 163 .max_register = S5M_RTC_REG_MAX, 164 }; 165 166 static const struct regmap_config s2mps14_rtc_regmap_config = { 167 .reg_bits = 8, 168 .val_bits = 8, 169 170 .max_register = S2MPS_RTC_REG_MAX, 171 }; 172 173 static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm, 174 int rtc_24hr_mode) 175 { 176 tm->tm_sec = data[RTC_SEC] & 0x7f; 177 tm->tm_min = data[RTC_MIN] & 0x7f; 178 if (rtc_24hr_mode) { 179 tm->tm_hour = data[RTC_HOUR] & 0x1f; 180 } else { 181 tm->tm_hour = data[RTC_HOUR] & 0x0f; 182 if (data[RTC_HOUR] & HOUR_PM_MASK) 183 tm->tm_hour += 12; 184 } 185 186 tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f); 187 tm->tm_mday = data[RTC_DATE] & 0x1f; 188 tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1; 189 tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100; 190 tm->tm_yday = 0; 191 tm->tm_isdst = 0; 192 } 193 194 static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data) 195 { 196 data[RTC_SEC] = tm->tm_sec; 197 data[RTC_MIN] = tm->tm_min; 198 199 if (tm->tm_hour >= 12) 200 data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK; 201 else 202 data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK; 203 204 data[RTC_WEEKDAY] = 1 << tm->tm_wday; 205 data[RTC_DATE] = tm->tm_mday; 206 data[RTC_MONTH] = tm->tm_mon + 1; 207 data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0; 208 209 if (tm->tm_year < 100) { 210 pr_err("RTC cannot handle the year %d\n", 211 1900 + tm->tm_year); 212 return -EINVAL; 213 } else { 214 return 0; 215 } 216 } 217 218 /* 219 * Read RTC_UDR_CON register and wait till UDR field is cleared. 220 * This indicates that time/alarm update ended. 221 */ 222 static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info) 223 { 224 int ret, retry = UDR_READ_RETRY_CNT; 225 unsigned int data; 226 227 do { 228 ret = regmap_read(info->regmap, info->regs->udr_update, &data); 229 } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret); 230 231 if (!retry) 232 dev_err(info->dev, "waiting for UDR update, reached max number of retries\n"); 233 234 return ret; 235 } 236 237 static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info, 238 struct rtc_wkalrm *alarm) 239 { 240 int ret; 241 unsigned int val; 242 243 switch (info->device_type) { 244 case S5M8767X: 245 case S5M8763X: 246 ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val); 247 val &= S5M_ALARM0_STATUS; 248 break; 249 case S2MPS15X: 250 case S2MPS14X: 251 case S2MPS13X: 252 ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2, 253 &val); 254 val &= S2MPS_ALARM0_STATUS; 255 break; 256 default: 257 return -EINVAL; 258 } 259 if (ret < 0) 260 return ret; 261 262 if (val) 263 alarm->pending = 1; 264 else 265 alarm->pending = 0; 266 267 return 0; 268 } 269 270 static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info) 271 { 272 int ret; 273 unsigned int data; 274 275 ret = regmap_read(info->regmap, info->regs->udr_update, &data); 276 if (ret < 0) { 277 dev_err(info->dev, "failed to read update reg(%d)\n", ret); 278 return ret; 279 } 280 281 data |= info->regs->write_time_udr_mask; 282 283 ret = regmap_write(info->regmap, info->regs->udr_update, data); 284 if (ret < 0) { 285 dev_err(info->dev, "failed to write update reg(%d)\n", ret); 286 return ret; 287 } 288 289 ret = s5m8767_wait_for_udr_update(info); 290 291 return ret; 292 } 293 294 static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info) 295 { 296 int ret; 297 unsigned int data; 298 299 ret = regmap_read(info->regmap, info->regs->udr_update, &data); 300 if (ret < 0) { 301 dev_err(info->dev, "%s: fail to read update reg(%d)\n", 302 __func__, ret); 303 return ret; 304 } 305 306 data |= info->regs->write_alarm_udr_mask; 307 switch (info->device_type) { 308 case S5M8763X: 309 case S5M8767X: 310 data &= ~S5M_RTC_TIME_EN_MASK; 311 break; 312 case S2MPS15X: 313 case S2MPS14X: 314 case S2MPS13X: 315 /* No exceptions needed */ 316 break; 317 default: 318 return -EINVAL; 319 } 320 321 ret = regmap_write(info->regmap, info->regs->udr_update, data); 322 if (ret < 0) { 323 dev_err(info->dev, "%s: fail to write update reg(%d)\n", 324 __func__, ret); 325 return ret; 326 } 327 328 ret = s5m8767_wait_for_udr_update(info); 329 330 /* On S2MPS13 the AUDR is not auto-cleared */ 331 if (info->device_type == S2MPS13X) 332 regmap_update_bits(info->regmap, info->regs->udr_update, 333 S2MPS13_RTC_AUDR_MASK, 0); 334 335 return ret; 336 } 337 338 static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm) 339 { 340 tm->tm_sec = bcd2bin(data[RTC_SEC]); 341 tm->tm_min = bcd2bin(data[RTC_MIN]); 342 343 if (data[RTC_HOUR] & HOUR_12) { 344 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f); 345 if (data[RTC_HOUR] & HOUR_PM) 346 tm->tm_hour += 12; 347 } else { 348 tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f); 349 } 350 351 tm->tm_wday = data[RTC_WEEKDAY] & 0x07; 352 tm->tm_mday = bcd2bin(data[RTC_DATE]); 353 tm->tm_mon = bcd2bin(data[RTC_MONTH]); 354 tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100; 355 tm->tm_year -= 1900; 356 } 357 358 static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data) 359 { 360 data[RTC_SEC] = bin2bcd(tm->tm_sec); 361 data[RTC_MIN] = bin2bcd(tm->tm_min); 362 data[RTC_HOUR] = bin2bcd(tm->tm_hour); 363 data[RTC_WEEKDAY] = tm->tm_wday; 364 data[RTC_DATE] = bin2bcd(tm->tm_mday); 365 data[RTC_MONTH] = bin2bcd(tm->tm_mon); 366 data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100); 367 data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100); 368 } 369 370 static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm) 371 { 372 struct s5m_rtc_info *info = dev_get_drvdata(dev); 373 u8 data[RTC_MAX_NUM_TIME_REGS]; 374 int ret; 375 376 if (info->regs->read_time_udr_mask) { 377 ret = regmap_update_bits(info->regmap, 378 info->regs->udr_update, 379 info->regs->read_time_udr_mask, 380 info->regs->read_time_udr_mask); 381 if (ret) { 382 dev_err(dev, 383 "Failed to prepare registers for time reading: %d\n", 384 ret); 385 return ret; 386 } 387 } 388 ret = regmap_bulk_read(info->regmap, info->regs->time, data, 389 info->regs->regs_count); 390 if (ret < 0) 391 return ret; 392 393 switch (info->device_type) { 394 case S5M8763X: 395 s5m8763_data_to_tm(data, tm); 396 break; 397 398 case S5M8767X: 399 case S2MPS15X: 400 case S2MPS14X: 401 case S2MPS13X: 402 s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode); 403 break; 404 405 default: 406 return -EINVAL; 407 } 408 409 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 410 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday, 411 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday); 412 413 return 0; 414 } 415 416 static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm) 417 { 418 struct s5m_rtc_info *info = dev_get_drvdata(dev); 419 u8 data[RTC_MAX_NUM_TIME_REGS]; 420 int ret = 0; 421 422 switch (info->device_type) { 423 case S5M8763X: 424 s5m8763_tm_to_data(tm, data); 425 break; 426 case S5M8767X: 427 case S2MPS15X: 428 case S2MPS14X: 429 case S2MPS13X: 430 ret = s5m8767_tm_to_data(tm, data); 431 break; 432 default: 433 return -EINVAL; 434 } 435 436 if (ret < 0) 437 return ret; 438 439 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 440 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday, 441 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday); 442 443 ret = regmap_raw_write(info->regmap, info->regs->time, data, 444 info->regs->regs_count); 445 if (ret < 0) 446 return ret; 447 448 ret = s5m8767_rtc_set_time_reg(info); 449 450 return ret; 451 } 452 453 static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 454 { 455 struct s5m_rtc_info *info = dev_get_drvdata(dev); 456 u8 data[RTC_MAX_NUM_TIME_REGS]; 457 unsigned int val; 458 int ret, i; 459 460 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, 461 info->regs->regs_count); 462 if (ret < 0) 463 return ret; 464 465 switch (info->device_type) { 466 case S5M8763X: 467 s5m8763_data_to_tm(data, &alrm->time); 468 ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val); 469 if (ret < 0) 470 return ret; 471 472 alrm->enabled = !!val; 473 break; 474 475 case S5M8767X: 476 case S2MPS15X: 477 case S2MPS14X: 478 case S2MPS13X: 479 s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode); 480 alrm->enabled = 0; 481 for (i = 0; i < info->regs->regs_count; i++) { 482 if (data[i] & ALARM_ENABLE_MASK) { 483 alrm->enabled = 1; 484 break; 485 } 486 } 487 break; 488 489 default: 490 return -EINVAL; 491 } 492 493 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 494 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon, 495 alrm->time.tm_mday, alrm->time.tm_hour, 496 alrm->time.tm_min, alrm->time.tm_sec, 497 alrm->time.tm_wday); 498 499 ret = s5m_check_peding_alarm_interrupt(info, alrm); 500 501 return 0; 502 } 503 504 static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info) 505 { 506 u8 data[RTC_MAX_NUM_TIME_REGS]; 507 int ret, i; 508 struct rtc_time tm; 509 510 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, 511 info->regs->regs_count); 512 if (ret < 0) 513 return ret; 514 515 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode); 516 dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 517 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday, 518 tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday); 519 520 switch (info->device_type) { 521 case S5M8763X: 522 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0); 523 break; 524 525 case S5M8767X: 526 case S2MPS15X: 527 case S2MPS14X: 528 case S2MPS13X: 529 for (i = 0; i < info->regs->regs_count; i++) 530 data[i] &= ~ALARM_ENABLE_MASK; 531 532 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, 533 info->regs->regs_count); 534 if (ret < 0) 535 return ret; 536 537 ret = s5m8767_rtc_set_alarm_reg(info); 538 539 break; 540 541 default: 542 return -EINVAL; 543 } 544 545 return ret; 546 } 547 548 static int s5m_rtc_start_alarm(struct s5m_rtc_info *info) 549 { 550 int ret; 551 u8 data[RTC_MAX_NUM_TIME_REGS]; 552 u8 alarm0_conf; 553 struct rtc_time tm; 554 555 ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, 556 info->regs->regs_count); 557 if (ret < 0) 558 return ret; 559 560 s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode); 561 dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 562 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday, 563 tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday); 564 565 switch (info->device_type) { 566 case S5M8763X: 567 alarm0_conf = 0x77; 568 ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf); 569 break; 570 571 case S5M8767X: 572 case S2MPS15X: 573 case S2MPS14X: 574 case S2MPS13X: 575 data[RTC_SEC] |= ALARM_ENABLE_MASK; 576 data[RTC_MIN] |= ALARM_ENABLE_MASK; 577 data[RTC_HOUR] |= ALARM_ENABLE_MASK; 578 data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK; 579 if (data[RTC_DATE] & 0x1f) 580 data[RTC_DATE] |= ALARM_ENABLE_MASK; 581 if (data[RTC_MONTH] & 0xf) 582 data[RTC_MONTH] |= ALARM_ENABLE_MASK; 583 if (data[RTC_YEAR1] & 0x7f) 584 data[RTC_YEAR1] |= ALARM_ENABLE_MASK; 585 586 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, 587 info->regs->regs_count); 588 if (ret < 0) 589 return ret; 590 ret = s5m8767_rtc_set_alarm_reg(info); 591 592 break; 593 594 default: 595 return -EINVAL; 596 } 597 598 return ret; 599 } 600 601 static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 602 { 603 struct s5m_rtc_info *info = dev_get_drvdata(dev); 604 u8 data[RTC_MAX_NUM_TIME_REGS]; 605 int ret; 606 607 switch (info->device_type) { 608 case S5M8763X: 609 s5m8763_tm_to_data(&alrm->time, data); 610 break; 611 612 case S5M8767X: 613 case S2MPS15X: 614 case S2MPS14X: 615 case S2MPS13X: 616 s5m8767_tm_to_data(&alrm->time, data); 617 break; 618 619 default: 620 return -EINVAL; 621 } 622 623 dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 624 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon, 625 alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min, 626 alrm->time.tm_sec, alrm->time.tm_wday); 627 628 ret = s5m_rtc_stop_alarm(info); 629 if (ret < 0) 630 return ret; 631 632 ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, 633 info->regs->regs_count); 634 if (ret < 0) 635 return ret; 636 637 ret = s5m8767_rtc_set_alarm_reg(info); 638 if (ret < 0) 639 return ret; 640 641 if (alrm->enabled) 642 ret = s5m_rtc_start_alarm(info); 643 644 return ret; 645 } 646 647 static int s5m_rtc_alarm_irq_enable(struct device *dev, 648 unsigned int enabled) 649 { 650 struct s5m_rtc_info *info = dev_get_drvdata(dev); 651 652 if (enabled) 653 return s5m_rtc_start_alarm(info); 654 else 655 return s5m_rtc_stop_alarm(info); 656 } 657 658 static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data) 659 { 660 struct s5m_rtc_info *info = data; 661 662 rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF); 663 664 return IRQ_HANDLED; 665 } 666 667 static const struct rtc_class_ops s5m_rtc_ops = { 668 .read_time = s5m_rtc_read_time, 669 .set_time = s5m_rtc_set_time, 670 .read_alarm = s5m_rtc_read_alarm, 671 .set_alarm = s5m_rtc_set_alarm, 672 .alarm_irq_enable = s5m_rtc_alarm_irq_enable, 673 }; 674 675 static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info) 676 { 677 u8 data[2]; 678 int ret; 679 680 switch (info->device_type) { 681 case S5M8763X: 682 case S5M8767X: 683 /* UDR update time. Default of 7.32 ms is too long. */ 684 ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON, 685 S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US); 686 if (ret < 0) 687 dev_err(info->dev, "%s: fail to change UDR time: %d\n", 688 __func__, ret); 689 690 /* Set RTC control register : Binary mode, 24hour mode */ 691 data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); 692 data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); 693 694 ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2); 695 break; 696 697 case S2MPS15X: 698 case S2MPS14X: 699 case S2MPS13X: 700 data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); 701 ret = regmap_write(info->regmap, info->regs->ctrl, data[0]); 702 if (ret < 0) 703 break; 704 705 /* 706 * Should set WUDR & (RUDR or AUDR) bits to high after writing 707 * RTC_CTRL register like writing Alarm registers. We can't find 708 * the description from datasheet but vendor code does that 709 * really. 710 */ 711 ret = s5m8767_rtc_set_alarm_reg(info); 712 break; 713 714 default: 715 return -EINVAL; 716 } 717 718 info->rtc_24hr_mode = 1; 719 if (ret < 0) { 720 dev_err(info->dev, "%s: fail to write controlm reg(%d)\n", 721 __func__, ret); 722 return ret; 723 } 724 725 return ret; 726 } 727 728 static int s5m_rtc_probe(struct platform_device *pdev) 729 { 730 struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent); 731 struct sec_platform_data *pdata = s5m87xx->pdata; 732 struct s5m_rtc_info *info; 733 const struct regmap_config *regmap_cfg; 734 int ret, alarm_irq; 735 736 if (!pdata) { 737 dev_err(pdev->dev.parent, "Platform data not supplied\n"); 738 return -ENODEV; 739 } 740 741 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); 742 if (!info) 743 return -ENOMEM; 744 745 switch (platform_get_device_id(pdev)->driver_data) { 746 case S2MPS15X: 747 regmap_cfg = &s2mps14_rtc_regmap_config; 748 info->regs = &s2mps15_rtc_regs; 749 alarm_irq = S2MPS14_IRQ_RTCA0; 750 break; 751 case S2MPS14X: 752 regmap_cfg = &s2mps14_rtc_regmap_config; 753 info->regs = &s2mps14_rtc_regs; 754 alarm_irq = S2MPS14_IRQ_RTCA0; 755 break; 756 case S2MPS13X: 757 regmap_cfg = &s2mps14_rtc_regmap_config; 758 info->regs = &s2mps13_rtc_regs; 759 alarm_irq = S2MPS14_IRQ_RTCA0; 760 break; 761 case S5M8763X: 762 regmap_cfg = &s5m_rtc_regmap_config; 763 info->regs = &s5m_rtc_regs; 764 alarm_irq = S5M8763_IRQ_ALARM0; 765 break; 766 case S5M8767X: 767 regmap_cfg = &s5m_rtc_regmap_config; 768 info->regs = &s5m_rtc_regs; 769 alarm_irq = S5M8767_IRQ_RTCA1; 770 break; 771 default: 772 dev_err(&pdev->dev, 773 "Device type %lu is not supported by RTC driver\n", 774 platform_get_device_id(pdev)->driver_data); 775 return -ENODEV; 776 } 777 778 info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR); 779 if (!info->i2c) { 780 dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n"); 781 return -ENODEV; 782 } 783 784 info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg); 785 if (IS_ERR(info->regmap)) { 786 ret = PTR_ERR(info->regmap); 787 dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n", 788 ret); 789 goto err; 790 } 791 792 info->dev = &pdev->dev; 793 info->s5m87xx = s5m87xx; 794 info->device_type = platform_get_device_id(pdev)->driver_data; 795 796 if (s5m87xx->irq_data) { 797 info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq); 798 if (info->irq <= 0) { 799 ret = -EINVAL; 800 dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n", 801 alarm_irq); 802 goto err; 803 } 804 } 805 806 platform_set_drvdata(pdev, info); 807 808 ret = s5m8767_rtc_init_reg(info); 809 810 device_init_wakeup(&pdev->dev, 1); 811 812 info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc", 813 &s5m_rtc_ops, THIS_MODULE); 814 815 if (IS_ERR(info->rtc_dev)) { 816 ret = PTR_ERR(info->rtc_dev); 817 goto err; 818 } 819 820 if (!info->irq) { 821 dev_info(&pdev->dev, "Alarm IRQ not available\n"); 822 return 0; 823 } 824 825 ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL, 826 s5m_rtc_alarm_irq, 0, "rtc-alarm0", 827 info); 828 if (ret < 0) { 829 dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n", 830 info->irq, ret); 831 goto err; 832 } 833 834 return 0; 835 836 err: 837 i2c_unregister_device(info->i2c); 838 839 return ret; 840 } 841 842 static int s5m_rtc_remove(struct platform_device *pdev) 843 { 844 struct s5m_rtc_info *info = platform_get_drvdata(pdev); 845 846 i2c_unregister_device(info->i2c); 847 848 return 0; 849 } 850 851 #ifdef CONFIG_PM_SLEEP 852 static int s5m_rtc_resume(struct device *dev) 853 { 854 struct s5m_rtc_info *info = dev_get_drvdata(dev); 855 int ret = 0; 856 857 if (info->irq && device_may_wakeup(dev)) 858 ret = disable_irq_wake(info->irq); 859 860 return ret; 861 } 862 863 static int s5m_rtc_suspend(struct device *dev) 864 { 865 struct s5m_rtc_info *info = dev_get_drvdata(dev); 866 int ret = 0; 867 868 if (info->irq && device_may_wakeup(dev)) 869 ret = enable_irq_wake(info->irq); 870 871 return ret; 872 } 873 #endif /* CONFIG_PM_SLEEP */ 874 875 static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume); 876 877 static const struct platform_device_id s5m_rtc_id[] = { 878 { "s5m-rtc", S5M8767X }, 879 { "s2mps13-rtc", S2MPS13X }, 880 { "s2mps14-rtc", S2MPS14X }, 881 { "s2mps15-rtc", S2MPS15X }, 882 { }, 883 }; 884 MODULE_DEVICE_TABLE(platform, s5m_rtc_id); 885 886 static struct platform_driver s5m_rtc_driver = { 887 .driver = { 888 .name = "s5m-rtc", 889 .pm = &s5m_rtc_pm_ops, 890 }, 891 .probe = s5m_rtc_probe, 892 .remove = s5m_rtc_remove, 893 .id_table = s5m_rtc_id, 894 }; 895 896 module_platform_driver(s5m_rtc_driver); 897 898 /* Module information */ 899 MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>"); 900 MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver"); 901 MODULE_LICENSE("GPL"); 902 MODULE_ALIAS("platform:s5m-rtc"); 903