1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Micro Crystal RV-3029 / RV-3049 rtc class driver 4 * 5 * Author: Gregory Hermant <gregory.hermant@calao-systems.com> 6 * Michael Buesch <m@bues.ch> 7 * 8 * based on previously existing rtc class drivers 9 */ 10 11 #include <linux/module.h> 12 #include <linux/i2c.h> 13 #include <linux/spi/spi.h> 14 #include <linux/bcd.h> 15 #include <linux/rtc.h> 16 #include <linux/delay.h> 17 #include <linux/of.h> 18 #include <linux/hwmon.h> 19 #include <linux/hwmon-sysfs.h> 20 #include <linux/regmap.h> 21 22 /* Register map */ 23 /* control section */ 24 #define RV3029_ONOFF_CTRL 0x00 25 #define RV3029_ONOFF_CTRL_WE BIT(0) 26 #define RV3029_ONOFF_CTRL_TE BIT(1) 27 #define RV3029_ONOFF_CTRL_TAR BIT(2) 28 #define RV3029_ONOFF_CTRL_EERE BIT(3) 29 #define RV3029_ONOFF_CTRL_SRON BIT(4) 30 #define RV3029_ONOFF_CTRL_TD0 BIT(5) 31 #define RV3029_ONOFF_CTRL_TD1 BIT(6) 32 #define RV3029_ONOFF_CTRL_CLKINT BIT(7) 33 #define RV3029_IRQ_CTRL 0x01 34 #define RV3029_IRQ_CTRL_AIE BIT(0) 35 #define RV3029_IRQ_CTRL_TIE BIT(1) 36 #define RV3029_IRQ_CTRL_V1IE BIT(2) 37 #define RV3029_IRQ_CTRL_V2IE BIT(3) 38 #define RV3029_IRQ_CTRL_SRIE BIT(4) 39 #define RV3029_IRQ_FLAGS 0x02 40 #define RV3029_IRQ_FLAGS_AF BIT(0) 41 #define RV3029_IRQ_FLAGS_TF BIT(1) 42 #define RV3029_IRQ_FLAGS_V1IF BIT(2) 43 #define RV3029_IRQ_FLAGS_V2IF BIT(3) 44 #define RV3029_IRQ_FLAGS_SRF BIT(4) 45 #define RV3029_STATUS 0x03 46 #define RV3029_STATUS_VLOW1 BIT(2) 47 #define RV3029_STATUS_VLOW2 BIT(3) 48 #define RV3029_STATUS_SR BIT(4) 49 #define RV3029_STATUS_PON BIT(5) 50 #define RV3029_STATUS_EEBUSY BIT(7) 51 #define RV3029_RST_CTRL 0x04 52 #define RV3029_RST_CTRL_SYSR BIT(4) 53 #define RV3029_CONTROL_SECTION_LEN 0x05 54 55 /* watch section */ 56 #define RV3029_W_SEC 0x08 57 #define RV3029_W_MINUTES 0x09 58 #define RV3029_W_HOURS 0x0A 59 #define RV3029_REG_HR_12_24 BIT(6) /* 24h/12h mode */ 60 #define RV3029_REG_HR_PM BIT(5) /* PM/AM bit in 12h mode */ 61 #define RV3029_W_DATE 0x0B 62 #define RV3029_W_DAYS 0x0C 63 #define RV3029_W_MONTHS 0x0D 64 #define RV3029_W_YEARS 0x0E 65 #define RV3029_WATCH_SECTION_LEN 0x07 66 67 /* alarm section */ 68 #define RV3029_A_SC 0x10 69 #define RV3029_A_MN 0x11 70 #define RV3029_A_HR 0x12 71 #define RV3029_A_DT 0x13 72 #define RV3029_A_DW 0x14 73 #define RV3029_A_MO 0x15 74 #define RV3029_A_YR 0x16 75 #define RV3029_A_AE_X BIT(7) 76 #define RV3029_ALARM_SECTION_LEN 0x07 77 78 /* timer section */ 79 #define RV3029_TIMER_LOW 0x18 80 #define RV3029_TIMER_HIGH 0x19 81 82 /* temperature section */ 83 #define RV3029_TEMP_PAGE 0x20 84 85 /* eeprom data section */ 86 #define RV3029_E2P_EEDATA1 0x28 87 #define RV3029_E2P_EEDATA2 0x29 88 #define RV3029_E2PDATA_SECTION_LEN 0x02 89 90 /* eeprom control section */ 91 #define RV3029_CONTROL_E2P_EECTRL 0x30 92 #define RV3029_EECTRL_THP BIT(0) /* temp scan interval */ 93 #define RV3029_EECTRL_THE BIT(1) /* thermometer enable */ 94 #define RV3029_EECTRL_FD0 BIT(2) /* CLKOUT */ 95 #define RV3029_EECTRL_FD1 BIT(3) /* CLKOUT */ 96 #define RV3029_TRICKLE_1K BIT(4) /* 1.5K resistance */ 97 #define RV3029_TRICKLE_5K BIT(5) /* 5K resistance */ 98 #define RV3029_TRICKLE_20K BIT(6) /* 20K resistance */ 99 #define RV3029_TRICKLE_80K BIT(7) /* 80K resistance */ 100 #define RV3029_TRICKLE_MASK (RV3029_TRICKLE_1K |\ 101 RV3029_TRICKLE_5K |\ 102 RV3029_TRICKLE_20K |\ 103 RV3029_TRICKLE_80K) 104 #define RV3029_TRICKLE_SHIFT 4 105 #define RV3029_CONTROL_E2P_XOFFS 0x31 /* XTAL offset */ 106 #define RV3029_CONTROL_E2P_XOFFS_SIGN BIT(7) /* Sign: 1->pos, 0->neg */ 107 #define RV3029_CONTROL_E2P_QCOEF 0x32 /* XTAL temp drift coef */ 108 #define RV3029_CONTROL_E2P_TURNOVER 0x33 /* XTAL turnover temp (in *C) */ 109 #define RV3029_CONTROL_E2P_TOV_MASK 0x3F /* XTAL turnover temp mask */ 110 111 /* user ram section */ 112 #define RV3029_USR1_RAM_PAGE 0x38 113 #define RV3029_USR1_SECTION_LEN 0x04 114 #define RV3029_USR2_RAM_PAGE 0x3C 115 #define RV3029_USR2_SECTION_LEN 0x04 116 117 struct rv3029_data { 118 struct device *dev; 119 struct rtc_device *rtc; 120 struct regmap *regmap; 121 int irq; 122 }; 123 124 static int rv3029_read_regs(struct device *dev, u8 reg, u8 *buf, 125 unsigned int len) 126 { 127 struct rv3029_data *rv3029 = dev_get_drvdata(dev); 128 129 if ((reg > RV3029_USR1_RAM_PAGE + 7) || 130 (reg + len > RV3029_USR1_RAM_PAGE + 8)) 131 return -EINVAL; 132 133 return regmap_bulk_read(rv3029->regmap, reg, buf, len); 134 } 135 136 static int rv3029_write_regs(struct device *dev, u8 reg, u8 const buf[], 137 unsigned int len) 138 { 139 struct rv3029_data *rv3029 = dev_get_drvdata(dev); 140 141 if ((reg > RV3029_USR1_RAM_PAGE + 7) || 142 (reg + len > RV3029_USR1_RAM_PAGE + 8)) 143 return -EINVAL; 144 145 return regmap_bulk_write(rv3029->regmap, reg, buf, len); 146 } 147 148 static int rv3029_update_bits(struct device *dev, u8 reg, u8 mask, u8 set) 149 { 150 u8 buf; 151 int ret; 152 153 ret = rv3029_read_regs(dev, reg, &buf, 1); 154 if (ret < 0) 155 return ret; 156 buf &= ~mask; 157 buf |= set & mask; 158 ret = rv3029_write_regs(dev, reg, &buf, 1); 159 if (ret < 0) 160 return ret; 161 162 return 0; 163 } 164 165 static int rv3029_get_sr(struct device *dev, u8 *buf) 166 { 167 int ret = rv3029_read_regs(dev, RV3029_STATUS, buf, 1); 168 169 if (ret < 0) 170 return -EIO; 171 dev_dbg(dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]); 172 return 0; 173 } 174 175 static int rv3029_set_sr(struct device *dev, u8 val) 176 { 177 u8 buf[1]; 178 int sr; 179 180 buf[0] = val; 181 sr = rv3029_write_regs(dev, RV3029_STATUS, buf, 1); 182 dev_dbg(dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]); 183 if (sr < 0) 184 return -EIO; 185 return 0; 186 } 187 188 static int rv3029_eeprom_busywait(struct device *dev) 189 { 190 int i, ret; 191 u8 sr; 192 193 for (i = 100; i > 0; i--) { 194 ret = rv3029_get_sr(dev, &sr); 195 if (ret < 0) 196 break; 197 if (!(sr & RV3029_STATUS_EEBUSY)) 198 break; 199 usleep_range(1000, 10000); 200 } 201 if (i <= 0) { 202 dev_err(dev, "EEPROM busy wait timeout.\n"); 203 return -ETIMEDOUT; 204 } 205 206 return ret; 207 } 208 209 static int rv3029_eeprom_exit(struct device *dev) 210 { 211 /* Re-enable eeprom refresh */ 212 return rv3029_update_bits(dev, RV3029_ONOFF_CTRL, 213 RV3029_ONOFF_CTRL_EERE, 214 RV3029_ONOFF_CTRL_EERE); 215 } 216 217 static int rv3029_eeprom_enter(struct device *dev) 218 { 219 int ret; 220 u8 sr; 221 222 /* Check whether we are in the allowed voltage range. */ 223 ret = rv3029_get_sr(dev, &sr); 224 if (ret < 0) 225 return ret; 226 if (sr & (RV3029_STATUS_VLOW1 | RV3029_STATUS_VLOW2)) { 227 /* We clear the bits and retry once just in case 228 * we had a brown out in early startup. 229 */ 230 sr &= ~RV3029_STATUS_VLOW1; 231 sr &= ~RV3029_STATUS_VLOW2; 232 ret = rv3029_set_sr(dev, sr); 233 if (ret < 0) 234 return ret; 235 usleep_range(1000, 10000); 236 ret = rv3029_get_sr(dev, &sr); 237 if (ret < 0) 238 return ret; 239 if (sr & (RV3029_STATUS_VLOW1 | RV3029_STATUS_VLOW2)) { 240 dev_err(dev, 241 "Supply voltage is too low to safely access the EEPROM.\n"); 242 return -ENODEV; 243 } 244 } 245 246 /* Disable eeprom refresh. */ 247 ret = rv3029_update_bits(dev, RV3029_ONOFF_CTRL, RV3029_ONOFF_CTRL_EERE, 248 0); 249 if (ret < 0) 250 return ret; 251 252 /* Wait for any previous eeprom accesses to finish. */ 253 ret = rv3029_eeprom_busywait(dev); 254 if (ret < 0) 255 rv3029_eeprom_exit(dev); 256 257 return ret; 258 } 259 260 static int rv3029_eeprom_read(struct device *dev, u8 reg, 261 u8 buf[], size_t len) 262 { 263 int ret, err; 264 265 err = rv3029_eeprom_enter(dev); 266 if (err < 0) 267 return err; 268 269 ret = rv3029_read_regs(dev, reg, buf, len); 270 271 err = rv3029_eeprom_exit(dev); 272 if (err < 0) 273 return err; 274 275 return ret; 276 } 277 278 static int rv3029_eeprom_write(struct device *dev, u8 reg, 279 u8 const buf[], size_t len) 280 { 281 int ret; 282 size_t i; 283 u8 tmp; 284 285 ret = rv3029_eeprom_enter(dev); 286 if (ret < 0) 287 return ret; 288 289 for (i = 0; i < len; i++, reg++) { 290 ret = rv3029_read_regs(dev, reg, &tmp, 1); 291 if (ret < 0) 292 break; 293 if (tmp != buf[i]) { 294 ret = rv3029_write_regs(dev, reg, &buf[i], 1); 295 if (ret < 0) 296 break; 297 } 298 ret = rv3029_eeprom_busywait(dev); 299 if (ret < 0) 300 break; 301 } 302 303 ret = rv3029_eeprom_exit(dev); 304 if (ret < 0) 305 return ret; 306 307 return 0; 308 } 309 310 static int rv3029_eeprom_update_bits(struct device *dev, 311 u8 reg, u8 mask, u8 set) 312 { 313 u8 buf; 314 int ret; 315 316 ret = rv3029_eeprom_read(dev, reg, &buf, 1); 317 if (ret < 0) 318 return ret; 319 buf &= ~mask; 320 buf |= set & mask; 321 ret = rv3029_eeprom_write(dev, reg, &buf, 1); 322 if (ret < 0) 323 return ret; 324 325 return 0; 326 } 327 328 static irqreturn_t rv3029_handle_irq(int irq, void *dev_id) 329 { 330 struct device *dev = dev_id; 331 struct rv3029_data *rv3029 = dev_get_drvdata(dev); 332 struct mutex *lock = &rv3029->rtc->ops_lock; 333 unsigned long events = 0; 334 u8 flags, controls; 335 int ret; 336 337 mutex_lock(lock); 338 339 ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1); 340 if (ret) { 341 dev_warn(dev, "Read IRQ Control Register error %d\n", ret); 342 mutex_unlock(lock); 343 return IRQ_NONE; 344 } 345 346 ret = rv3029_read_regs(dev, RV3029_IRQ_FLAGS, &flags, 1); 347 if (ret) { 348 dev_warn(dev, "Read IRQ Flags Register error %d\n", ret); 349 mutex_unlock(lock); 350 return IRQ_NONE; 351 } 352 353 if (flags & RV3029_IRQ_FLAGS_AF) { 354 flags &= ~RV3029_IRQ_FLAGS_AF; 355 controls &= ~RV3029_IRQ_CTRL_AIE; 356 events |= RTC_AF; 357 } 358 359 if (events) { 360 rtc_update_irq(rv3029->rtc, 1, events); 361 rv3029_write_regs(dev, RV3029_IRQ_FLAGS, &flags, 1); 362 rv3029_write_regs(dev, RV3029_IRQ_CTRL, &controls, 1); 363 } 364 mutex_unlock(lock); 365 366 return IRQ_HANDLED; 367 } 368 369 static int rv3029_read_time(struct device *dev, struct rtc_time *tm) 370 { 371 u8 buf[1]; 372 int ret; 373 u8 regs[RV3029_WATCH_SECTION_LEN] = { 0, }; 374 375 ret = rv3029_get_sr(dev, buf); 376 if (ret < 0) { 377 dev_err(dev, "%s: reading SR failed\n", __func__); 378 return -EIO; 379 } 380 381 ret = rv3029_read_regs(dev, RV3029_W_SEC, regs, 382 RV3029_WATCH_SECTION_LEN); 383 if (ret < 0) { 384 dev_err(dev, "%s: reading RTC section failed\n", __func__); 385 return ret; 386 } 387 388 tm->tm_sec = bcd2bin(regs[RV3029_W_SEC - RV3029_W_SEC]); 389 tm->tm_min = bcd2bin(regs[RV3029_W_MINUTES - RV3029_W_SEC]); 390 391 /* HR field has a more complex interpretation */ 392 { 393 const u8 _hr = regs[RV3029_W_HOURS - RV3029_W_SEC]; 394 395 if (_hr & RV3029_REG_HR_12_24) { 396 /* 12h format */ 397 tm->tm_hour = bcd2bin(_hr & 0x1f); 398 if (_hr & RV3029_REG_HR_PM) /* PM flag set */ 399 tm->tm_hour += 12; 400 } else /* 24h format */ 401 tm->tm_hour = bcd2bin(_hr & 0x3f); 402 } 403 404 tm->tm_mday = bcd2bin(regs[RV3029_W_DATE - RV3029_W_SEC]); 405 tm->tm_mon = bcd2bin(regs[RV3029_W_MONTHS - RV3029_W_SEC]) - 1; 406 tm->tm_year = bcd2bin(regs[RV3029_W_YEARS - RV3029_W_SEC]) + 100; 407 tm->tm_wday = bcd2bin(regs[RV3029_W_DAYS - RV3029_W_SEC]) - 1; 408 409 return 0; 410 } 411 412 static int rv3029_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) 413 { 414 struct rtc_time *const tm = &alarm->time; 415 int ret; 416 u8 regs[8], controls, flags; 417 418 ret = rv3029_get_sr(dev, regs); 419 if (ret < 0) { 420 dev_err(dev, "%s: reading SR failed\n", __func__); 421 return -EIO; 422 } 423 424 ret = rv3029_read_regs(dev, RV3029_A_SC, regs, 425 RV3029_ALARM_SECTION_LEN); 426 427 if (ret < 0) { 428 dev_err(dev, "%s: reading alarm section failed\n", __func__); 429 return ret; 430 } 431 432 ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1); 433 if (ret) { 434 dev_err(dev, "Read IRQ Control Register error %d\n", ret); 435 return ret; 436 } 437 ret = rv3029_read_regs(dev, RV3029_IRQ_FLAGS, &flags, 1); 438 if (ret < 0) { 439 dev_err(dev, "Read IRQ Flags Register error %d\n", ret); 440 return ret; 441 } 442 443 tm->tm_sec = bcd2bin(regs[RV3029_A_SC - RV3029_A_SC] & 0x7f); 444 tm->tm_min = bcd2bin(regs[RV3029_A_MN - RV3029_A_SC] & 0x7f); 445 tm->tm_hour = bcd2bin(regs[RV3029_A_HR - RV3029_A_SC] & 0x3f); 446 tm->tm_mday = bcd2bin(regs[RV3029_A_DT - RV3029_A_SC] & 0x3f); 447 tm->tm_mon = bcd2bin(regs[RV3029_A_MO - RV3029_A_SC] & 0x1f) - 1; 448 tm->tm_year = bcd2bin(regs[RV3029_A_YR - RV3029_A_SC] & 0x7f) + 100; 449 tm->tm_wday = bcd2bin(regs[RV3029_A_DW - RV3029_A_SC] & 0x07) - 1; 450 451 alarm->enabled = !!(controls & RV3029_IRQ_CTRL_AIE); 452 alarm->pending = (flags & RV3029_IRQ_FLAGS_AF) && alarm->enabled; 453 454 return 0; 455 } 456 457 static int rv3029_alarm_irq_enable(struct device *dev, unsigned int enable) 458 { 459 int ret; 460 u8 controls; 461 462 ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1); 463 if (ret < 0) { 464 dev_warn(dev, "Read IRQ Control Register error %d\n", ret); 465 return ret; 466 } 467 468 /* enable/disable AIE irq */ 469 if (enable) 470 controls |= RV3029_IRQ_CTRL_AIE; 471 else 472 controls &= ~RV3029_IRQ_CTRL_AIE; 473 474 ret = rv3029_write_regs(dev, RV3029_IRQ_CTRL, &controls, 1); 475 if (ret < 0) { 476 dev_err(dev, "can't update INT reg\n"); 477 return ret; 478 } 479 480 return 0; 481 } 482 483 static int rv3029_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 484 { 485 struct rtc_time *const tm = &alarm->time; 486 int ret; 487 u8 regs[8]; 488 489 /* 490 * The clock has an 8 bit wide bcd-coded register (they never learn) 491 * for the year. tm_year is an offset from 1900 and we are interested 492 * in the 2000-2099 range, so any value less than 100 is invalid. 493 */ 494 if (tm->tm_year < 100) 495 return -EINVAL; 496 497 ret = rv3029_get_sr(dev, regs); 498 if (ret < 0) { 499 dev_err(dev, "%s: reading SR failed\n", __func__); 500 return -EIO; 501 } 502 503 /* Activate all the alarms with AE_x bit */ 504 regs[RV3029_A_SC - RV3029_A_SC] = bin2bcd(tm->tm_sec) | RV3029_A_AE_X; 505 regs[RV3029_A_MN - RV3029_A_SC] = bin2bcd(tm->tm_min) | RV3029_A_AE_X; 506 regs[RV3029_A_HR - RV3029_A_SC] = (bin2bcd(tm->tm_hour) & 0x3f) 507 | RV3029_A_AE_X; 508 regs[RV3029_A_DT - RV3029_A_SC] = (bin2bcd(tm->tm_mday) & 0x3f) 509 | RV3029_A_AE_X; 510 regs[RV3029_A_MO - RV3029_A_SC] = (bin2bcd(tm->tm_mon + 1) & 0x1f) 511 | RV3029_A_AE_X; 512 regs[RV3029_A_DW - RV3029_A_SC] = (bin2bcd(tm->tm_wday + 1) & 0x7) 513 | RV3029_A_AE_X; 514 regs[RV3029_A_YR - RV3029_A_SC] = (bin2bcd(tm->tm_year - 100)) 515 | RV3029_A_AE_X; 516 517 /* Write the alarm */ 518 ret = rv3029_write_regs(dev, RV3029_A_SC, regs, 519 RV3029_ALARM_SECTION_LEN); 520 if (ret < 0) 521 return ret; 522 523 if (alarm->enabled) { 524 /* enable AIE irq */ 525 ret = rv3029_alarm_irq_enable(dev, 1); 526 if (ret) 527 return ret; 528 } else { 529 /* disable AIE irq */ 530 ret = rv3029_alarm_irq_enable(dev, 0); 531 if (ret) 532 return ret; 533 } 534 535 return 0; 536 } 537 538 static int rv3029_set_time(struct device *dev, struct rtc_time *tm) 539 { 540 u8 regs[8]; 541 int ret; 542 543 /* 544 * The clock has an 8 bit wide bcd-coded register (they never learn) 545 * for the year. tm_year is an offset from 1900 and we are interested 546 * in the 2000-2099 range, so any value less than 100 is invalid. 547 */ 548 if (tm->tm_year < 100) 549 return -EINVAL; 550 551 regs[RV3029_W_SEC - RV3029_W_SEC] = bin2bcd(tm->tm_sec); 552 regs[RV3029_W_MINUTES - RV3029_W_SEC] = bin2bcd(tm->tm_min); 553 regs[RV3029_W_HOURS - RV3029_W_SEC] = bin2bcd(tm->tm_hour); 554 regs[RV3029_W_DATE - RV3029_W_SEC] = bin2bcd(tm->tm_mday); 555 regs[RV3029_W_MONTHS - RV3029_W_SEC] = bin2bcd(tm->tm_mon + 1); 556 regs[RV3029_W_DAYS - RV3029_W_SEC] = bin2bcd(tm->tm_wday + 1) & 0x7; 557 regs[RV3029_W_YEARS - RV3029_W_SEC] = bin2bcd(tm->tm_year - 100); 558 559 ret = rv3029_write_regs(dev, RV3029_W_SEC, regs, 560 RV3029_WATCH_SECTION_LEN); 561 if (ret < 0) 562 return ret; 563 564 ret = rv3029_get_sr(dev, regs); 565 if (ret < 0) { 566 dev_err(dev, "%s: reading SR failed\n", __func__); 567 return ret; 568 } 569 /* clear PON bit */ 570 ret = rv3029_set_sr(dev, (regs[0] & ~RV3029_STATUS_PON)); 571 if (ret < 0) { 572 dev_err(dev, "%s: reading SR failed\n", __func__); 573 return ret; 574 } 575 576 return 0; 577 } 578 579 static const struct rv3029_trickle_tab_elem { 580 u32 r; /* resistance in ohms */ 581 u8 conf; /* trickle config bits */ 582 } rv3029_trickle_tab[] = { 583 { 584 .r = 1076, 585 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K | 586 RV3029_TRICKLE_20K | RV3029_TRICKLE_80K, 587 }, { 588 .r = 1091, 589 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K | 590 RV3029_TRICKLE_20K, 591 }, { 592 .r = 1137, 593 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K | 594 RV3029_TRICKLE_80K, 595 }, { 596 .r = 1154, 597 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K, 598 }, { 599 .r = 1371, 600 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K | 601 RV3029_TRICKLE_80K, 602 }, { 603 .r = 1395, 604 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K, 605 }, { 606 .r = 1472, 607 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_80K, 608 }, { 609 .r = 1500, 610 .conf = RV3029_TRICKLE_1K, 611 }, { 612 .r = 3810, 613 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K | 614 RV3029_TRICKLE_80K, 615 }, { 616 .r = 4000, 617 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K, 618 }, { 619 .r = 4706, 620 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_80K, 621 }, { 622 .r = 5000, 623 .conf = RV3029_TRICKLE_5K, 624 }, { 625 .r = 16000, 626 .conf = RV3029_TRICKLE_20K | RV3029_TRICKLE_80K, 627 }, { 628 .r = 20000, 629 .conf = RV3029_TRICKLE_20K, 630 }, { 631 .r = 80000, 632 .conf = RV3029_TRICKLE_80K, 633 }, 634 }; 635 636 static void rv3029_trickle_config(struct device *dev) 637 { 638 struct device_node *of_node = dev->of_node; 639 const struct rv3029_trickle_tab_elem *elem; 640 int i, err; 641 u32 ohms; 642 u8 trickle_set_bits; 643 644 if (!of_node) 645 return; 646 647 /* Configure the trickle charger. */ 648 err = of_property_read_u32(of_node, "trickle-resistor-ohms", &ohms); 649 if (err) { 650 /* Disable trickle charger. */ 651 trickle_set_bits = 0; 652 } else { 653 /* Enable trickle charger. */ 654 for (i = 0; i < ARRAY_SIZE(rv3029_trickle_tab); i++) { 655 elem = &rv3029_trickle_tab[i]; 656 if (elem->r >= ohms) 657 break; 658 } 659 trickle_set_bits = elem->conf; 660 dev_info(dev, 661 "Trickle charger enabled at %d ohms resistance.\n", 662 elem->r); 663 } 664 err = rv3029_eeprom_update_bits(dev, RV3029_CONTROL_E2P_EECTRL, 665 RV3029_TRICKLE_MASK, 666 trickle_set_bits); 667 if (err < 0) 668 dev_err(dev, "Failed to update trickle charger config\n"); 669 } 670 671 #ifdef CONFIG_RTC_DRV_RV3029_HWMON 672 673 static int rv3029_read_temp(struct device *dev, int *temp_mC) 674 { 675 int ret; 676 u8 temp; 677 678 ret = rv3029_read_regs(dev, RV3029_TEMP_PAGE, &temp, 1); 679 if (ret < 0) 680 return ret; 681 682 *temp_mC = ((int)temp - 60) * 1000; 683 684 return 0; 685 } 686 687 static ssize_t rv3029_hwmon_show_temp(struct device *dev, 688 struct device_attribute *attr, 689 char *buf) 690 { 691 int ret, temp_mC; 692 693 ret = rv3029_read_temp(dev, &temp_mC); 694 if (ret < 0) 695 return ret; 696 697 return sprintf(buf, "%d\n", temp_mC); 698 } 699 700 static ssize_t rv3029_hwmon_set_update_interval(struct device *dev, 701 struct device_attribute *attr, 702 const char *buf, 703 size_t count) 704 { 705 unsigned long interval_ms; 706 int ret; 707 u8 th_set_bits = 0; 708 709 ret = kstrtoul(buf, 10, &interval_ms); 710 if (ret < 0) 711 return ret; 712 713 if (interval_ms != 0) { 714 th_set_bits |= RV3029_EECTRL_THE; 715 if (interval_ms >= 16000) 716 th_set_bits |= RV3029_EECTRL_THP; 717 } 718 ret = rv3029_eeprom_update_bits(dev, RV3029_CONTROL_E2P_EECTRL, 719 RV3029_EECTRL_THE | RV3029_EECTRL_THP, 720 th_set_bits); 721 if (ret < 0) 722 return ret; 723 724 return count; 725 } 726 727 static ssize_t rv3029_hwmon_show_update_interval(struct device *dev, 728 struct device_attribute *attr, 729 char *buf) 730 { 731 int ret, interval_ms; 732 u8 eectrl; 733 734 ret = rv3029_eeprom_read(dev, RV3029_CONTROL_E2P_EECTRL, 735 &eectrl, 1); 736 if (ret < 0) 737 return ret; 738 739 if (eectrl & RV3029_EECTRL_THE) { 740 if (eectrl & RV3029_EECTRL_THP) 741 interval_ms = 16000; 742 else 743 interval_ms = 1000; 744 } else { 745 interval_ms = 0; 746 } 747 748 return sprintf(buf, "%d\n", interval_ms); 749 } 750 751 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, rv3029_hwmon_show_temp, 752 NULL, 0); 753 static SENSOR_DEVICE_ATTR(update_interval, S_IWUSR | S_IRUGO, 754 rv3029_hwmon_show_update_interval, 755 rv3029_hwmon_set_update_interval, 0); 756 757 static struct attribute *rv3029_hwmon_attrs[] = { 758 &sensor_dev_attr_temp1_input.dev_attr.attr, 759 &sensor_dev_attr_update_interval.dev_attr.attr, 760 NULL, 761 }; 762 ATTRIBUTE_GROUPS(rv3029_hwmon); 763 764 static void rv3029_hwmon_register(struct device *dev, const char *name) 765 { 766 struct rv3029_data *rv3029 = dev_get_drvdata(dev); 767 struct device *hwmon_dev; 768 769 hwmon_dev = devm_hwmon_device_register_with_groups(dev, name, rv3029, 770 rv3029_hwmon_groups); 771 if (IS_ERR(hwmon_dev)) { 772 dev_warn(dev, "unable to register hwmon device %ld\n", 773 PTR_ERR(hwmon_dev)); 774 } 775 } 776 777 #else /* CONFIG_RTC_DRV_RV3029_HWMON */ 778 779 static void rv3029_hwmon_register(struct device *dev, const char *name) 780 { 781 } 782 783 #endif /* CONFIG_RTC_DRV_RV3029_HWMON */ 784 785 static struct rtc_class_ops rv3029_rtc_ops = { 786 .read_time = rv3029_read_time, 787 .set_time = rv3029_set_time, 788 }; 789 790 static int rv3029_probe(struct device *dev, struct regmap *regmap, int irq, 791 const char *name) 792 { 793 struct rv3029_data *rv3029; 794 int rc = 0; 795 u8 buf[1]; 796 797 rv3029 = devm_kzalloc(dev, sizeof(*rv3029), GFP_KERNEL); 798 if (!rv3029) 799 return -ENOMEM; 800 801 rv3029->regmap = regmap; 802 rv3029->irq = irq; 803 rv3029->dev = dev; 804 dev_set_drvdata(dev, rv3029); 805 806 rc = rv3029_get_sr(dev, buf); 807 if (rc < 0) { 808 dev_err(dev, "reading status failed\n"); 809 return rc; 810 } 811 812 rv3029_trickle_config(dev); 813 rv3029_hwmon_register(dev, name); 814 815 rv3029->rtc = devm_rtc_device_register(dev, name, &rv3029_rtc_ops, 816 THIS_MODULE); 817 if (IS_ERR(rv3029->rtc)) { 818 dev_err(dev, "unable to register the class device\n"); 819 return PTR_ERR(rv3029->rtc); 820 } 821 822 if (rv3029->irq > 0) { 823 rc = devm_request_threaded_irq(dev, rv3029->irq, 824 NULL, rv3029_handle_irq, 825 IRQF_TRIGGER_LOW | IRQF_ONESHOT, 826 "rv3029", dev); 827 if (rc) { 828 dev_warn(dev, "unable to request IRQ, alarms disabled\n"); 829 rv3029->irq = 0; 830 } else { 831 rv3029_rtc_ops.read_alarm = rv3029_read_alarm; 832 rv3029_rtc_ops.set_alarm = rv3029_set_alarm; 833 rv3029_rtc_ops.alarm_irq_enable = rv3029_alarm_irq_enable; 834 } 835 } 836 837 return 0; 838 } 839 840 #if IS_ENABLED(CONFIG_I2C) 841 842 static int rv3029_i2c_probe(struct i2c_client *client, 843 const struct i2c_device_id *id) 844 { 845 struct regmap *regmap; 846 static const struct regmap_config config = { 847 .reg_bits = 8, 848 .val_bits = 8, 849 }; 850 851 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK | 852 I2C_FUNC_SMBUS_BYTE)) { 853 dev_err(&client->dev, "Adapter does not support SMBUS_I2C_BLOCK or SMBUS_I2C_BYTE\n"); 854 return -ENODEV; 855 } 856 857 regmap = devm_regmap_init_i2c(client, &config); 858 if (IS_ERR(regmap)) { 859 dev_err(&client->dev, "%s: regmap allocation failed: %ld\n", 860 __func__, PTR_ERR(regmap)); 861 return PTR_ERR(regmap); 862 } 863 864 return rv3029_probe(&client->dev, regmap, client->irq, client->name); 865 } 866 867 static const struct i2c_device_id rv3029_id[] = { 868 { "rv3029", 0 }, 869 { "rv3029c2", 0 }, 870 { } 871 }; 872 MODULE_DEVICE_TABLE(i2c, rv3029_id); 873 874 static const struct of_device_id rv3029_of_match[] = { 875 { .compatible = "microcrystal,rv3029" }, 876 /* Backward compatibility only, do not use compatibles below: */ 877 { .compatible = "rv3029" }, 878 { .compatible = "rv3029c2" }, 879 { .compatible = "mc,rv3029c2" }, 880 { } 881 }; 882 MODULE_DEVICE_TABLE(of, rv3029_of_match); 883 884 static struct i2c_driver rv3029_driver = { 885 .driver = { 886 .name = "rtc-rv3029c2", 887 .of_match_table = of_match_ptr(rv3029_of_match), 888 }, 889 .probe = rv3029_i2c_probe, 890 .id_table = rv3029_id, 891 }; 892 893 static int rv3029_register_driver(void) 894 { 895 return i2c_add_driver(&rv3029_driver); 896 } 897 898 static void rv3029_unregister_driver(void) 899 { 900 i2c_del_driver(&rv3029_driver); 901 } 902 903 #else 904 905 static int rv3029_register_driver(void) 906 { 907 return 0; 908 } 909 910 static void rv3029_unregister_driver(void) 911 { 912 } 913 914 #endif 915 916 #if IS_ENABLED(CONFIG_SPI_MASTER) 917 918 static int rv3049_probe(struct spi_device *spi) 919 { 920 static const struct regmap_config config = { 921 .reg_bits = 8, 922 .val_bits = 8, 923 }; 924 struct regmap *regmap; 925 926 regmap = devm_regmap_init_spi(spi, &config); 927 if (IS_ERR(regmap)) { 928 dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n", 929 __func__, PTR_ERR(regmap)); 930 return PTR_ERR(regmap); 931 } 932 933 return rv3029_probe(&spi->dev, regmap, spi->irq, "rv3049"); 934 } 935 936 static struct spi_driver rv3049_driver = { 937 .driver = { 938 .name = "rv3049", 939 }, 940 .probe = rv3049_probe, 941 }; 942 943 static int rv3049_register_driver(void) 944 { 945 return spi_register_driver(&rv3049_driver); 946 } 947 948 static void rv3049_unregister_driver(void) 949 { 950 spi_unregister_driver(&rv3049_driver); 951 } 952 953 #else 954 955 static int rv3049_register_driver(void) 956 { 957 return 0; 958 } 959 960 static void rv3049_unregister_driver(void) 961 { 962 } 963 964 #endif 965 966 static int __init rv30x9_init(void) 967 { 968 int ret; 969 970 ret = rv3029_register_driver(); 971 if (ret) { 972 pr_err("Failed to register rv3029 driver: %d\n", ret); 973 return ret; 974 } 975 976 ret = rv3049_register_driver(); 977 if (ret) { 978 pr_err("Failed to register rv3049 driver: %d\n", ret); 979 rv3029_unregister_driver(); 980 } 981 982 return ret; 983 } 984 module_init(rv30x9_init) 985 986 static void __exit rv30x9_exit(void) 987 { 988 rv3049_unregister_driver(); 989 rv3029_unregister_driver(); 990 } 991 module_exit(rv30x9_exit) 992 993 MODULE_AUTHOR("Gregory Hermant <gregory.hermant@calao-systems.com>"); 994 MODULE_AUTHOR("Michael Buesch <m@bues.ch>"); 995 MODULE_DESCRIPTION("Micro Crystal RV3029/RV3049 RTC driver"); 996 MODULE_LICENSE("GPL"); 997 MODULE_ALIAS("spi:rv3049"); 998