xref: /openbmc/linux/drivers/rtc/rtc-pxa.c (revision a09d2831)
1 /*
2  * Real Time Clock interface for XScale PXA27x and PXA3xx
3  *
4  * Copyright (C) 2008 Robert Jarzmik
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  *
20  */
21 
22 #include <linux/init.h>
23 #include <linux/platform_device.h>
24 #include <linux/module.h>
25 #include <linux/rtc.h>
26 #include <linux/seq_file.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 
30 #include <mach/hardware.h>
31 
32 #define TIMER_FREQ		CLOCK_TICK_RATE
33 #define RTC_DEF_DIVIDER		(32768 - 1)
34 #define RTC_DEF_TRIM		0
35 #define MAXFREQ_PERIODIC	1000
36 
37 /*
38  * PXA Registers and bits definitions
39  */
40 #define RTSR_PICE	(1 << 15)	/* Periodic interrupt count enable */
41 #define RTSR_PIALE	(1 << 14)	/* Periodic interrupt Alarm enable */
42 #define RTSR_PIAL	(1 << 13)	/* Periodic interrupt detected */
43 #define RTSR_SWALE2	(1 << 11)	/* RTC stopwatch alarm2 enable */
44 #define RTSR_SWAL2	(1 << 10)	/* RTC stopwatch alarm2 detected */
45 #define RTSR_SWALE1	(1 << 9)	/* RTC stopwatch alarm1 enable */
46 #define RTSR_SWAL1	(1 << 8)	/* RTC stopwatch alarm1 detected */
47 #define RTSR_RDALE2	(1 << 7)	/* RTC alarm2 enable */
48 #define RTSR_RDAL2	(1 << 6)	/* RTC alarm2 detected */
49 #define RTSR_RDALE1	(1 << 5)	/* RTC alarm1 enable */
50 #define RTSR_RDAL1	(1 << 4)	/* RTC alarm1 detected */
51 #define RTSR_HZE	(1 << 3)	/* HZ interrupt enable */
52 #define RTSR_ALE	(1 << 2)	/* RTC alarm interrupt enable */
53 #define RTSR_HZ		(1 << 1)	/* HZ rising-edge detected */
54 #define RTSR_AL		(1 << 0)	/* RTC alarm detected */
55 #define RTSR_TRIG_MASK	(RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
56 			 | RTSR_SWAL1 | RTSR_SWAL2)
57 #define RYxR_YEAR_S	9
58 #define RYxR_YEAR_MASK	(0xfff << RYxR_YEAR_S)
59 #define RYxR_MONTH_S	5
60 #define RYxR_MONTH_MASK	(0xf << RYxR_MONTH_S)
61 #define RYxR_DAY_MASK	0x1f
62 #define RDxR_HOUR_S	12
63 #define RDxR_HOUR_MASK	(0x1f << RDxR_HOUR_S)
64 #define RDxR_MIN_S	6
65 #define RDxR_MIN_MASK	(0x3f << RDxR_MIN_S)
66 #define RDxR_SEC_MASK	0x3f
67 
68 #define RTSR		0x08
69 #define RTTR		0x0c
70 #define RDCR		0x10
71 #define RYCR		0x14
72 #define RDAR1		0x18
73 #define RYAR1		0x1c
74 #define RTCPICR		0x34
75 #define PIAR		0x38
76 
77 #define rtc_readl(pxa_rtc, reg)	\
78 	__raw_readl((pxa_rtc)->base + (reg))
79 #define rtc_writel(pxa_rtc, reg, value)	\
80 	__raw_writel((value), (pxa_rtc)->base + (reg))
81 
82 struct pxa_rtc {
83 	struct resource	*ress;
84 	void __iomem		*base;
85 	int			irq_1Hz;
86 	int			irq_Alrm;
87 	struct rtc_device	*rtc;
88 	spinlock_t		lock;		/* Protects this structure */
89 	struct rtc_time		rtc_alarm;
90 };
91 
92 static u32 ryxr_calc(struct rtc_time *tm)
93 {
94 	return ((tm->tm_year + 1900) << RYxR_YEAR_S)
95 		| ((tm->tm_mon + 1) << RYxR_MONTH_S)
96 		| tm->tm_mday;
97 }
98 
99 static u32 rdxr_calc(struct rtc_time *tm)
100 {
101 	return (tm->tm_hour << RDxR_HOUR_S) | (tm->tm_min << RDxR_MIN_S)
102 		| tm->tm_sec;
103 }
104 
105 static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
106 {
107 	tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
108 	tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
109 	tm->tm_mday = (rycr & RYxR_DAY_MASK);
110 	tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
111 	tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
112 	tm->tm_sec = rdcr & RDxR_SEC_MASK;
113 }
114 
115 static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
116 {
117 	u32 rtsr;
118 
119 	rtsr = rtc_readl(pxa_rtc, RTSR);
120 	rtsr &= ~RTSR_TRIG_MASK;
121 	rtsr &= ~mask;
122 	rtc_writel(pxa_rtc, RTSR, rtsr);
123 }
124 
125 static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
126 {
127 	u32 rtsr;
128 
129 	rtsr = rtc_readl(pxa_rtc, RTSR);
130 	rtsr &= ~RTSR_TRIG_MASK;
131 	rtsr |= mask;
132 	rtc_writel(pxa_rtc, RTSR, rtsr);
133 }
134 
135 static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
136 {
137 	struct platform_device *pdev = to_platform_device(dev_id);
138 	struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
139 	u32 rtsr;
140 	unsigned long events = 0;
141 
142 	spin_lock(&pxa_rtc->lock);
143 
144 	/* clear interrupt sources */
145 	rtsr = rtc_readl(pxa_rtc, RTSR);
146 	rtc_writel(pxa_rtc, RTSR, rtsr);
147 
148 	/* temporary disable rtc interrupts */
149 	rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
150 
151 	/* clear alarm interrupt if it has occurred */
152 	if (rtsr & RTSR_RDAL1)
153 		rtsr &= ~RTSR_RDALE1;
154 
155 	/* update irq data & counter */
156 	if (rtsr & RTSR_RDAL1)
157 		events |= RTC_AF | RTC_IRQF;
158 	if (rtsr & RTSR_HZ)
159 		events |= RTC_UF | RTC_IRQF;
160 	if (rtsr & RTSR_PIAL)
161 		events |= RTC_PF | RTC_IRQF;
162 
163 	rtc_update_irq(pxa_rtc->rtc, 1, events);
164 
165 	/* enable back rtc interrupts */
166 	rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
167 
168 	spin_unlock(&pxa_rtc->lock);
169 	return IRQ_HANDLED;
170 }
171 
172 static int pxa_rtc_open(struct device *dev)
173 {
174 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
175 	int ret;
176 
177 	ret = request_irq(pxa_rtc->irq_1Hz, pxa_rtc_irq, IRQF_DISABLED,
178 			  "rtc 1Hz", dev);
179 	if (ret < 0) {
180 		dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_1Hz,
181 			ret);
182 		goto err_irq_1Hz;
183 	}
184 	ret = request_irq(pxa_rtc->irq_Alrm, pxa_rtc_irq, IRQF_DISABLED,
185 			  "rtc Alrm", dev);
186 	if (ret < 0) {
187 		dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_Alrm,
188 			ret);
189 		goto err_irq_Alrm;
190 	}
191 
192 	return 0;
193 
194 err_irq_Alrm:
195 	free_irq(pxa_rtc->irq_1Hz, dev);
196 err_irq_1Hz:
197 	return ret;
198 }
199 
200 static void pxa_rtc_release(struct device *dev)
201 {
202 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
203 
204 	spin_lock_irq(&pxa_rtc->lock);
205 	rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
206 	spin_unlock_irq(&pxa_rtc->lock);
207 
208 	free_irq(pxa_rtc->irq_Alrm, dev);
209 	free_irq(pxa_rtc->irq_1Hz, dev);
210 }
211 
212 static int pxa_periodic_irq_set_freq(struct device *dev, int freq)
213 {
214 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
215 	int period_ms;
216 
217 	if (freq < 1 || freq > MAXFREQ_PERIODIC)
218 		return -EINVAL;
219 
220 	period_ms = 1000 / freq;
221 	rtc_writel(pxa_rtc, PIAR, period_ms);
222 
223 	return 0;
224 }
225 
226 static int pxa_periodic_irq_set_state(struct device *dev, int enabled)
227 {
228 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
229 
230 	if (enabled)
231 		rtsr_set_bits(pxa_rtc, RTSR_PIALE | RTSR_PICE);
232 	else
233 		rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_PICE);
234 
235 	return 0;
236 }
237 
238 static int pxa_rtc_ioctl(struct device *dev, unsigned int cmd,
239 		unsigned long arg)
240 {
241 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
242 	int ret = 0;
243 
244 	spin_lock_irq(&pxa_rtc->lock);
245 	switch (cmd) {
246 	case RTC_AIE_OFF:
247 		rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
248 		break;
249 	case RTC_AIE_ON:
250 		rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
251 		break;
252 	case RTC_UIE_OFF:
253 		rtsr_clear_bits(pxa_rtc, RTSR_HZE);
254 		break;
255 	case RTC_UIE_ON:
256 		rtsr_set_bits(pxa_rtc, RTSR_HZE);
257 		break;
258 	default:
259 		ret = -ENOIOCTLCMD;
260 	}
261 
262 	spin_unlock_irq(&pxa_rtc->lock);
263 	return ret;
264 }
265 
266 static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
267 {
268 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
269 	u32 rycr, rdcr;
270 
271 	rycr = rtc_readl(pxa_rtc, RYCR);
272 	rdcr = rtc_readl(pxa_rtc, RDCR);
273 
274 	tm_calc(rycr, rdcr, tm);
275 	return 0;
276 }
277 
278 static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
279 {
280 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
281 
282 	rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
283 	rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
284 
285 	return 0;
286 }
287 
288 static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
289 {
290 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
291 	u32 rtsr, ryar, rdar;
292 
293 	ryar = rtc_readl(pxa_rtc, RYAR1);
294 	rdar = rtc_readl(pxa_rtc, RDAR1);
295 	tm_calc(ryar, rdar, &alrm->time);
296 
297 	rtsr = rtc_readl(pxa_rtc, RTSR);
298 	alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
299 	alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
300 	return 0;
301 }
302 
303 static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
304 {
305 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
306 	u32 rtsr;
307 
308 	spin_lock_irq(&pxa_rtc->lock);
309 
310 	rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
311 	rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
312 
313 	rtsr = rtc_readl(pxa_rtc, RTSR);
314 	if (alrm->enabled)
315 		rtsr |= RTSR_RDALE1;
316 	else
317 		rtsr &= ~RTSR_RDALE1;
318 	rtc_writel(pxa_rtc, RTSR, rtsr);
319 
320 	spin_unlock_irq(&pxa_rtc->lock);
321 
322 	return 0;
323 }
324 
325 static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
326 {
327 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
328 
329 	seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
330 	seq_printf(seq, "update_IRQ\t: %s\n",
331 		   (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
332 	seq_printf(seq, "periodic_IRQ\t: %s\n",
333 		   (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
334 	seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
335 
336 	return 0;
337 }
338 
339 static const struct rtc_class_ops pxa_rtc_ops = {
340 	.open = pxa_rtc_open,
341 	.release = pxa_rtc_release,
342 	.ioctl = pxa_rtc_ioctl,
343 	.read_time = pxa_rtc_read_time,
344 	.set_time = pxa_rtc_set_time,
345 	.read_alarm = pxa_rtc_read_alarm,
346 	.set_alarm = pxa_rtc_set_alarm,
347 	.proc = pxa_rtc_proc,
348 	.irq_set_state = pxa_periodic_irq_set_state,
349 	.irq_set_freq = pxa_periodic_irq_set_freq,
350 };
351 
352 static int __init pxa_rtc_probe(struct platform_device *pdev)
353 {
354 	struct device *dev = &pdev->dev;
355 	struct pxa_rtc *pxa_rtc;
356 	int ret;
357 	u32 rttr;
358 
359 	pxa_rtc = kzalloc(sizeof(struct pxa_rtc), GFP_KERNEL);
360 	if (!pxa_rtc)
361 		return -ENOMEM;
362 
363 	spin_lock_init(&pxa_rtc->lock);
364 	platform_set_drvdata(pdev, pxa_rtc);
365 
366 	ret = -ENXIO;
367 	pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
368 	if (!pxa_rtc->ress) {
369 		dev_err(dev, "No I/O memory resource defined\n");
370 		goto err_ress;
371 	}
372 
373 	pxa_rtc->irq_1Hz = platform_get_irq(pdev, 0);
374 	if (pxa_rtc->irq_1Hz < 0) {
375 		dev_err(dev, "No 1Hz IRQ resource defined\n");
376 		goto err_ress;
377 	}
378 	pxa_rtc->irq_Alrm = platform_get_irq(pdev, 1);
379 	if (pxa_rtc->irq_Alrm < 0) {
380 		dev_err(dev, "No alarm IRQ resource defined\n");
381 		goto err_ress;
382 	}
383 
384 	ret = -ENOMEM;
385 	pxa_rtc->base = ioremap(pxa_rtc->ress->start,
386 				resource_size(pxa_rtc->ress));
387 	if (!pxa_rtc->base) {
388 		dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
389 		goto err_map;
390 	}
391 
392 	/*
393 	 * If the clock divider is uninitialized then reset it to the
394 	 * default value to get the 1Hz clock.
395 	 */
396 	if (rtc_readl(pxa_rtc, RTTR) == 0) {
397 		rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
398 		rtc_writel(pxa_rtc, RTTR, rttr);
399 		dev_warn(dev, "warning: initializing default clock"
400 			 " divider/trim value\n");
401 	}
402 
403 	rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
404 
405 	pxa_rtc->rtc = rtc_device_register("pxa-rtc", &pdev->dev, &pxa_rtc_ops,
406 					   THIS_MODULE);
407 	ret = PTR_ERR(pxa_rtc->rtc);
408 	if (IS_ERR(pxa_rtc->rtc)) {
409 		dev_err(dev, "Failed to register RTC device -> %d\n", ret);
410 		goto err_rtc_reg;
411 	}
412 
413 	device_init_wakeup(dev, 1);
414 
415 	return 0;
416 
417 err_rtc_reg:
418 	 iounmap(pxa_rtc->base);
419 err_ress:
420 err_map:
421 	kfree(pxa_rtc);
422 	return ret;
423 }
424 
425 static int __exit pxa_rtc_remove(struct platform_device *pdev)
426 {
427 	struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
428 
429 	rtc_device_unregister(pxa_rtc->rtc);
430 
431 	spin_lock_irq(&pxa_rtc->lock);
432 	iounmap(pxa_rtc->base);
433 	spin_unlock_irq(&pxa_rtc->lock);
434 
435 	kfree(pxa_rtc);
436 
437 	return 0;
438 }
439 
440 #ifdef CONFIG_PM
441 static int pxa_rtc_suspend(struct device *dev)
442 {
443 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
444 
445 	if (device_may_wakeup(dev))
446 		enable_irq_wake(pxa_rtc->irq_Alrm);
447 	return 0;
448 }
449 
450 static int pxa_rtc_resume(struct device *dev)
451 {
452 	struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
453 
454 	if (device_may_wakeup(dev))
455 		disable_irq_wake(pxa_rtc->irq_Alrm);
456 	return 0;
457 }
458 
459 static const struct dev_pm_ops pxa_rtc_pm_ops = {
460 	.suspend	= pxa_rtc_suspend,
461 	.resume		= pxa_rtc_resume,
462 };
463 #endif
464 
465 static struct platform_driver pxa_rtc_driver = {
466 	.remove		= __exit_p(pxa_rtc_remove),
467 	.driver		= {
468 		.name	= "pxa-rtc",
469 #ifdef CONFIG_PM
470 		.pm	= &pxa_rtc_pm_ops,
471 #endif
472 	},
473 };
474 
475 static int __init pxa_rtc_init(void)
476 {
477 	if (cpu_is_pxa27x() || cpu_is_pxa3xx())
478 		return platform_driver_probe(&pxa_rtc_driver, pxa_rtc_probe);
479 
480 	return -ENODEV;
481 }
482 
483 static void __exit pxa_rtc_exit(void)
484 {
485 	platform_driver_unregister(&pxa_rtc_driver);
486 }
487 
488 module_init(pxa_rtc_init);
489 module_exit(pxa_rtc_exit);
490 
491 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
492 MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
493 MODULE_LICENSE("GPL");
494 MODULE_ALIAS("platform:pxa-rtc");
495