1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Real Time Clock interface for XScale PXA27x and PXA3xx 4 * 5 * Copyright (C) 2008 Robert Jarzmik 6 */ 7 8 #include <linux/init.h> 9 #include <linux/platform_device.h> 10 #include <linux/module.h> 11 #include <linux/rtc.h> 12 #include <linux/seq_file.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/slab.h> 16 #include <linux/of.h> 17 18 #include "rtc-sa1100.h" 19 20 #define RTC_DEF_DIVIDER (32768 - 1) 21 #define RTC_DEF_TRIM 0 22 #define MAXFREQ_PERIODIC 1000 23 24 /* 25 * PXA Registers and bits definitions 26 */ 27 #define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */ 28 #define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */ 29 #define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */ 30 #define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */ 31 #define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */ 32 #define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */ 33 #define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */ 34 #define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */ 35 #define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */ 36 #define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */ 37 #define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */ 38 #define RTSR_HZE (1 << 3) /* HZ interrupt enable */ 39 #define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */ 40 #define RTSR_HZ (1 << 1) /* HZ rising-edge detected */ 41 #define RTSR_AL (1 << 0) /* RTC alarm detected */ 42 #define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\ 43 | RTSR_SWAL1 | RTSR_SWAL2) 44 #define RYxR_YEAR_S 9 45 #define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S) 46 #define RYxR_MONTH_S 5 47 #define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S) 48 #define RYxR_DAY_MASK 0x1f 49 #define RDxR_WOM_S 20 50 #define RDxR_WOM_MASK (0x7 << RDxR_WOM_S) 51 #define RDxR_DOW_S 17 52 #define RDxR_DOW_MASK (0x7 << RDxR_DOW_S) 53 #define RDxR_HOUR_S 12 54 #define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S) 55 #define RDxR_MIN_S 6 56 #define RDxR_MIN_MASK (0x3f << RDxR_MIN_S) 57 #define RDxR_SEC_MASK 0x3f 58 59 #define RTSR 0x08 60 #define RTTR 0x0c 61 #define RDCR 0x10 62 #define RYCR 0x14 63 #define RDAR1 0x18 64 #define RYAR1 0x1c 65 #define RTCPICR 0x34 66 #define PIAR 0x38 67 68 #define rtc_readl(pxa_rtc, reg) \ 69 __raw_readl((pxa_rtc)->base + (reg)) 70 #define rtc_writel(pxa_rtc, reg, value) \ 71 __raw_writel((value), (pxa_rtc)->base + (reg)) 72 73 struct pxa_rtc { 74 struct sa1100_rtc sa1100_rtc; 75 struct resource *ress; 76 void __iomem *base; 77 struct rtc_device *rtc; 78 spinlock_t lock; /* Protects this structure */ 79 }; 80 81 82 static u32 ryxr_calc(struct rtc_time *tm) 83 { 84 return ((tm->tm_year + 1900) << RYxR_YEAR_S) 85 | ((tm->tm_mon + 1) << RYxR_MONTH_S) 86 | tm->tm_mday; 87 } 88 89 static u32 rdxr_calc(struct rtc_time *tm) 90 { 91 return ((((tm->tm_mday + 6) / 7) << RDxR_WOM_S) & RDxR_WOM_MASK) 92 | (((tm->tm_wday + 1) << RDxR_DOW_S) & RDxR_DOW_MASK) 93 | (tm->tm_hour << RDxR_HOUR_S) 94 | (tm->tm_min << RDxR_MIN_S) 95 | tm->tm_sec; 96 } 97 98 static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm) 99 { 100 tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900; 101 tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1; 102 tm->tm_mday = (rycr & RYxR_DAY_MASK); 103 tm->tm_wday = ((rycr & RDxR_DOW_MASK) >> RDxR_DOW_S) - 1; 104 tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S; 105 tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S; 106 tm->tm_sec = rdcr & RDxR_SEC_MASK; 107 } 108 109 static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask) 110 { 111 u32 rtsr; 112 113 rtsr = rtc_readl(pxa_rtc, RTSR); 114 rtsr &= ~RTSR_TRIG_MASK; 115 rtsr &= ~mask; 116 rtc_writel(pxa_rtc, RTSR, rtsr); 117 } 118 119 static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask) 120 { 121 u32 rtsr; 122 123 rtsr = rtc_readl(pxa_rtc, RTSR); 124 rtsr &= ~RTSR_TRIG_MASK; 125 rtsr |= mask; 126 rtc_writel(pxa_rtc, RTSR, rtsr); 127 } 128 129 static irqreturn_t pxa_rtc_irq(int irq, void *dev_id) 130 { 131 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev_id); 132 u32 rtsr; 133 unsigned long events = 0; 134 135 spin_lock(&pxa_rtc->lock); 136 137 /* clear interrupt sources */ 138 rtsr = rtc_readl(pxa_rtc, RTSR); 139 rtc_writel(pxa_rtc, RTSR, rtsr); 140 141 /* temporary disable rtc interrupts */ 142 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE); 143 144 /* clear alarm interrupt if it has occurred */ 145 if (rtsr & RTSR_RDAL1) 146 rtsr &= ~RTSR_RDALE1; 147 148 /* update irq data & counter */ 149 if (rtsr & RTSR_RDAL1) 150 events |= RTC_AF | RTC_IRQF; 151 if (rtsr & RTSR_HZ) 152 events |= RTC_UF | RTC_IRQF; 153 if (rtsr & RTSR_PIAL) 154 events |= RTC_PF | RTC_IRQF; 155 156 rtc_update_irq(pxa_rtc->rtc, 1, events); 157 158 /* enable back rtc interrupts */ 159 rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK); 160 161 spin_unlock(&pxa_rtc->lock); 162 return IRQ_HANDLED; 163 } 164 165 static int pxa_rtc_open(struct device *dev) 166 { 167 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 168 int ret; 169 170 ret = request_irq(pxa_rtc->sa1100_rtc.irq_1hz, pxa_rtc_irq, 0, 171 "rtc 1Hz", dev); 172 if (ret < 0) { 173 dev_err(dev, "can't get irq %i, err %d\n", 174 pxa_rtc->sa1100_rtc.irq_1hz, ret); 175 goto err_irq_1Hz; 176 } 177 ret = request_irq(pxa_rtc->sa1100_rtc.irq_alarm, pxa_rtc_irq, 0, 178 "rtc Alrm", dev); 179 if (ret < 0) { 180 dev_err(dev, "can't get irq %i, err %d\n", 181 pxa_rtc->sa1100_rtc.irq_alarm, ret); 182 goto err_irq_Alrm; 183 } 184 185 return 0; 186 187 err_irq_Alrm: 188 free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev); 189 err_irq_1Hz: 190 return ret; 191 } 192 193 static void pxa_rtc_release(struct device *dev) 194 { 195 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 196 197 spin_lock_irq(&pxa_rtc->lock); 198 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE); 199 spin_unlock_irq(&pxa_rtc->lock); 200 201 free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev); 202 free_irq(pxa_rtc->sa1100_rtc.irq_alarm, dev); 203 } 204 205 static int pxa_alarm_irq_enable(struct device *dev, unsigned int enabled) 206 { 207 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 208 209 spin_lock_irq(&pxa_rtc->lock); 210 211 if (enabled) 212 rtsr_set_bits(pxa_rtc, RTSR_RDALE1); 213 else 214 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1); 215 216 spin_unlock_irq(&pxa_rtc->lock); 217 return 0; 218 } 219 220 static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm) 221 { 222 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 223 u32 rycr, rdcr; 224 225 rycr = rtc_readl(pxa_rtc, RYCR); 226 rdcr = rtc_readl(pxa_rtc, RDCR); 227 228 tm_calc(rycr, rdcr, tm); 229 return 0; 230 } 231 232 static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm) 233 { 234 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 235 236 rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm)); 237 rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm)); 238 239 return 0; 240 } 241 242 static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 243 { 244 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 245 u32 rtsr, ryar, rdar; 246 247 ryar = rtc_readl(pxa_rtc, RYAR1); 248 rdar = rtc_readl(pxa_rtc, RDAR1); 249 tm_calc(ryar, rdar, &alrm->time); 250 251 rtsr = rtc_readl(pxa_rtc, RTSR); 252 alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0; 253 alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0; 254 return 0; 255 } 256 257 static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 258 { 259 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 260 u32 rtsr; 261 262 spin_lock_irq(&pxa_rtc->lock); 263 264 rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time)); 265 rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time)); 266 267 rtsr = rtc_readl(pxa_rtc, RTSR); 268 if (alrm->enabled) 269 rtsr |= RTSR_RDALE1; 270 else 271 rtsr &= ~RTSR_RDALE1; 272 rtc_writel(pxa_rtc, RTSR, rtsr); 273 274 spin_unlock_irq(&pxa_rtc->lock); 275 276 return 0; 277 } 278 279 static int pxa_rtc_proc(struct device *dev, struct seq_file *seq) 280 { 281 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 282 283 seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR)); 284 seq_printf(seq, "update_IRQ\t: %s\n", 285 (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no"); 286 seq_printf(seq, "periodic_IRQ\t: %s\n", 287 (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no"); 288 seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR)); 289 290 return 0; 291 } 292 293 static const struct rtc_class_ops pxa_rtc_ops = { 294 .read_time = pxa_rtc_read_time, 295 .set_time = pxa_rtc_set_time, 296 .read_alarm = pxa_rtc_read_alarm, 297 .set_alarm = pxa_rtc_set_alarm, 298 .alarm_irq_enable = pxa_alarm_irq_enable, 299 .proc = pxa_rtc_proc, 300 }; 301 302 static int __init pxa_rtc_probe(struct platform_device *pdev) 303 { 304 struct device *dev = &pdev->dev; 305 struct pxa_rtc *pxa_rtc; 306 struct sa1100_rtc *sa1100_rtc; 307 int ret; 308 309 pxa_rtc = devm_kzalloc(dev, sizeof(*pxa_rtc), GFP_KERNEL); 310 if (!pxa_rtc) 311 return -ENOMEM; 312 sa1100_rtc = &pxa_rtc->sa1100_rtc; 313 314 spin_lock_init(&pxa_rtc->lock); 315 platform_set_drvdata(pdev, pxa_rtc); 316 317 pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 318 if (!pxa_rtc->ress) { 319 dev_err(dev, "No I/O memory resource defined\n"); 320 return -ENXIO; 321 } 322 323 sa1100_rtc->irq_1hz = platform_get_irq(pdev, 0); 324 if (sa1100_rtc->irq_1hz < 0) 325 return -ENXIO; 326 sa1100_rtc->irq_alarm = platform_get_irq(pdev, 1); 327 if (sa1100_rtc->irq_alarm < 0) 328 return -ENXIO; 329 330 sa1100_rtc->rtc = devm_rtc_allocate_device(&pdev->dev); 331 if (IS_ERR(sa1100_rtc->rtc)) 332 return PTR_ERR(sa1100_rtc->rtc); 333 334 pxa_rtc->base = devm_ioremap(dev, pxa_rtc->ress->start, 335 resource_size(pxa_rtc->ress)); 336 if (!pxa_rtc->base) { 337 dev_err(dev, "Unable to map pxa RTC I/O memory\n"); 338 return -ENOMEM; 339 } 340 341 pxa_rtc_open(dev); 342 343 sa1100_rtc->rcnr = pxa_rtc->base + 0x0; 344 sa1100_rtc->rtsr = pxa_rtc->base + 0x8; 345 sa1100_rtc->rtar = pxa_rtc->base + 0x4; 346 sa1100_rtc->rttr = pxa_rtc->base + 0xc; 347 ret = sa1100_rtc_init(pdev, sa1100_rtc); 348 if (ret) { 349 dev_err(dev, "Unable to init SA1100 RTC sub-device\n"); 350 return ret; 351 } 352 353 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE); 354 355 pxa_rtc->rtc = devm_rtc_device_register(&pdev->dev, "pxa-rtc", 356 &pxa_rtc_ops, THIS_MODULE); 357 if (IS_ERR(pxa_rtc->rtc)) { 358 ret = PTR_ERR(pxa_rtc->rtc); 359 dev_err(dev, "Failed to register RTC device -> %d\n", ret); 360 return ret; 361 } 362 363 device_init_wakeup(dev, 1); 364 365 return 0; 366 } 367 368 static int __exit pxa_rtc_remove(struct platform_device *pdev) 369 { 370 struct device *dev = &pdev->dev; 371 372 pxa_rtc_release(dev); 373 return 0; 374 } 375 376 #ifdef CONFIG_OF 377 static const struct of_device_id pxa_rtc_dt_ids[] = { 378 { .compatible = "marvell,pxa-rtc" }, 379 {} 380 }; 381 MODULE_DEVICE_TABLE(of, pxa_rtc_dt_ids); 382 #endif 383 384 #ifdef CONFIG_PM_SLEEP 385 static int pxa_rtc_suspend(struct device *dev) 386 { 387 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 388 389 if (device_may_wakeup(dev)) 390 enable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm); 391 return 0; 392 } 393 394 static int pxa_rtc_resume(struct device *dev) 395 { 396 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); 397 398 if (device_may_wakeup(dev)) 399 disable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm); 400 return 0; 401 } 402 #endif 403 404 static SIMPLE_DEV_PM_OPS(pxa_rtc_pm_ops, pxa_rtc_suspend, pxa_rtc_resume); 405 406 static struct platform_driver pxa_rtc_driver = { 407 .remove = __exit_p(pxa_rtc_remove), 408 .driver = { 409 .name = "pxa-rtc", 410 .of_match_table = of_match_ptr(pxa_rtc_dt_ids), 411 .pm = &pxa_rtc_pm_ops, 412 }, 413 }; 414 415 module_platform_driver_probe(pxa_rtc_driver, pxa_rtc_probe); 416 417 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); 418 MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)"); 419 MODULE_LICENSE("GPL"); 420 MODULE_ALIAS("platform:pxa-rtc"); 421