xref: /openbmc/linux/drivers/rtc/rtc-pl031.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/rtc/rtc-pl031.c
4  *
5  * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
6  *
7  * Author: Deepak Saxena <dsaxena@plexity.net>
8  *
9  * Copyright 2006 (c) MontaVista Software, Inc.
10  *
11  * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
12  * Copyright 2010 (c) ST-Ericsson AB
13  */
14 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/amba/bus.h>
19 #include <linux/io.h>
20 #include <linux/bcd.h>
21 #include <linux/delay.h>
22 #include <linux/pm_wakeirq.h>
23 #include <linux/slab.h>
24 
25 /*
26  * Register definitions
27  */
28 #define	RTC_DR		0x00	/* Data read register */
29 #define	RTC_MR		0x04	/* Match register */
30 #define	RTC_LR		0x08	/* Data load register */
31 #define	RTC_CR		0x0c	/* Control register */
32 #define	RTC_IMSC	0x10	/* Interrupt mask and set register */
33 #define	RTC_RIS		0x14	/* Raw interrupt status register */
34 #define	RTC_MIS		0x18	/* Masked interrupt status register */
35 #define	RTC_ICR		0x1c	/* Interrupt clear register */
36 /* ST variants have additional timer functionality */
37 #define RTC_TDR		0x20	/* Timer data read register */
38 #define RTC_TLR		0x24	/* Timer data load register */
39 #define RTC_TCR		0x28	/* Timer control register */
40 #define RTC_YDR		0x30	/* Year data read register */
41 #define RTC_YMR		0x34	/* Year match register */
42 #define RTC_YLR		0x38	/* Year data load register */
43 
44 #define RTC_CR_EN	(1 << 0)	/* counter enable bit */
45 #define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
46 
47 #define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
48 
49 /* Common bit definitions for Interrupt status and control registers */
50 #define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
51 #define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
52 
53 /* Common bit definations for ST v2 for reading/writing time */
54 #define RTC_SEC_SHIFT 0
55 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
56 #define RTC_MIN_SHIFT 6
57 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
58 #define RTC_HOUR_SHIFT 12
59 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
60 #define RTC_WDAY_SHIFT 17
61 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
62 #define RTC_MDAY_SHIFT 20
63 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
64 #define RTC_MON_SHIFT 25
65 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
66 
67 #define RTC_TIMER_FREQ 32768
68 
69 /**
70  * struct pl031_vendor_data - per-vendor variations
71  * @ops: the vendor-specific operations used on this silicon version
72  * @clockwatch: if this is an ST Microelectronics silicon version with a
73  *	clockwatch function
74  * @st_weekday: if this is an ST Microelectronics silicon version that need
75  *	the weekday fix
76  * @irqflags: special IRQ flags per variant
77  */
78 struct pl031_vendor_data {
79 	struct rtc_class_ops ops;
80 	bool clockwatch;
81 	bool st_weekday;
82 	unsigned long irqflags;
83 	time64_t range_min;
84 	timeu64_t range_max;
85 };
86 
87 struct pl031_local {
88 	struct pl031_vendor_data *vendor;
89 	struct rtc_device *rtc;
90 	void __iomem *base;
91 };
92 
93 static int pl031_alarm_irq_enable(struct device *dev,
94 	unsigned int enabled)
95 {
96 	struct pl031_local *ldata = dev_get_drvdata(dev);
97 	unsigned long imsc;
98 
99 	/* Clear any pending alarm interrupts. */
100 	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
101 
102 	imsc = readl(ldata->base + RTC_IMSC);
103 
104 	if (enabled == 1)
105 		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
106 	else
107 		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
108 
109 	return 0;
110 }
111 
112 /*
113  * Convert Gregorian date to ST v2 RTC format.
114  */
115 static int pl031_stv2_tm_to_time(struct device *dev,
116 				 struct rtc_time *tm, unsigned long *st_time,
117 	unsigned long *bcd_year)
118 {
119 	int year = tm->tm_year + 1900;
120 	int wday = tm->tm_wday;
121 
122 	/* wday masking is not working in hardware so wday must be valid */
123 	if (wday < -1 || wday > 6) {
124 		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
125 		return -EINVAL;
126 	} else if (wday == -1) {
127 		/* wday is not provided, calculate it here */
128 		struct rtc_time calc_tm;
129 
130 		rtc_time64_to_tm(rtc_tm_to_time64(tm), &calc_tm);
131 		wday = calc_tm.tm_wday;
132 	}
133 
134 	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
135 
136 	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
137 			|	(tm->tm_mday << RTC_MDAY_SHIFT)
138 			|	((wday + 1) << RTC_WDAY_SHIFT)
139 			|	(tm->tm_hour << RTC_HOUR_SHIFT)
140 			|	(tm->tm_min << RTC_MIN_SHIFT)
141 			|	(tm->tm_sec << RTC_SEC_SHIFT);
142 
143 	return 0;
144 }
145 
146 /*
147  * Convert ST v2 RTC format to Gregorian date.
148  */
149 static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
150 	struct rtc_time *tm)
151 {
152 	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
153 	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
154 	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
155 	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
156 	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
157 	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
158 	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
159 
160 	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
161 	tm->tm_year -= 1900;
162 
163 	return 0;
164 }
165 
166 static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
167 {
168 	struct pl031_local *ldata = dev_get_drvdata(dev);
169 
170 	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
171 			readl(ldata->base + RTC_YDR), tm);
172 
173 	return 0;
174 }
175 
176 static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
177 {
178 	unsigned long time;
179 	unsigned long bcd_year;
180 	struct pl031_local *ldata = dev_get_drvdata(dev);
181 	int ret;
182 
183 	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
184 	if (ret == 0) {
185 		writel(bcd_year, ldata->base + RTC_YLR);
186 		writel(time, ldata->base + RTC_LR);
187 	}
188 
189 	return ret;
190 }
191 
192 static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
193 {
194 	struct pl031_local *ldata = dev_get_drvdata(dev);
195 	int ret;
196 
197 	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
198 			readl(ldata->base + RTC_YMR), &alarm->time);
199 
200 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
201 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
202 
203 	return ret;
204 }
205 
206 static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
207 {
208 	struct pl031_local *ldata = dev_get_drvdata(dev);
209 	unsigned long time;
210 	unsigned long bcd_year;
211 	int ret;
212 
213 	ret = pl031_stv2_tm_to_time(dev, &alarm->time,
214 				    &time, &bcd_year);
215 	if (ret == 0) {
216 		writel(bcd_year, ldata->base + RTC_YMR);
217 		writel(time, ldata->base + RTC_MR);
218 
219 		pl031_alarm_irq_enable(dev, alarm->enabled);
220 	}
221 
222 	return ret;
223 }
224 
225 static irqreturn_t pl031_interrupt(int irq, void *dev_id)
226 {
227 	struct pl031_local *ldata = dev_id;
228 	unsigned long rtcmis;
229 	unsigned long events = 0;
230 
231 	rtcmis = readl(ldata->base + RTC_MIS);
232 	if (rtcmis & RTC_BIT_AI) {
233 		writel(RTC_BIT_AI, ldata->base + RTC_ICR);
234 		events |= (RTC_AF | RTC_IRQF);
235 		rtc_update_irq(ldata->rtc, 1, events);
236 
237 		return IRQ_HANDLED;
238 	}
239 
240 	return IRQ_NONE;
241 }
242 
243 static int pl031_read_time(struct device *dev, struct rtc_time *tm)
244 {
245 	struct pl031_local *ldata = dev_get_drvdata(dev);
246 
247 	rtc_time64_to_tm(readl(ldata->base + RTC_DR), tm);
248 
249 	return 0;
250 }
251 
252 static int pl031_set_time(struct device *dev, struct rtc_time *tm)
253 {
254 	struct pl031_local *ldata = dev_get_drvdata(dev);
255 
256 	writel(rtc_tm_to_time64(tm), ldata->base + RTC_LR);
257 
258 	return 0;
259 }
260 
261 static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
262 {
263 	struct pl031_local *ldata = dev_get_drvdata(dev);
264 
265 	rtc_time64_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
266 
267 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
268 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
269 
270 	return 0;
271 }
272 
273 static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
274 {
275 	struct pl031_local *ldata = dev_get_drvdata(dev);
276 
277 	writel(rtc_tm_to_time64(&alarm->time), ldata->base + RTC_MR);
278 	pl031_alarm_irq_enable(dev, alarm->enabled);
279 
280 	return 0;
281 }
282 
283 static void pl031_remove(struct amba_device *adev)
284 {
285 	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
286 
287 	dev_pm_clear_wake_irq(&adev->dev);
288 	device_init_wakeup(&adev->dev, false);
289 	if (adev->irq[0])
290 		free_irq(adev->irq[0], ldata);
291 	amba_release_regions(adev);
292 }
293 
294 static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
295 {
296 	int ret;
297 	struct pl031_local *ldata;
298 	struct pl031_vendor_data *vendor = id->data;
299 	struct rtc_class_ops *ops;
300 	unsigned long time, data;
301 
302 	ret = amba_request_regions(adev, NULL);
303 	if (ret)
304 		goto err_req;
305 
306 	ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local),
307 			     GFP_KERNEL);
308 	ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops),
309 			   GFP_KERNEL);
310 	if (!ldata || !ops) {
311 		ret = -ENOMEM;
312 		goto out;
313 	}
314 
315 	ldata->vendor = vendor;
316 	ldata->base = devm_ioremap(&adev->dev, adev->res.start,
317 				   resource_size(&adev->res));
318 	if (!ldata->base) {
319 		ret = -ENOMEM;
320 		goto out;
321 	}
322 
323 	amba_set_drvdata(adev, ldata);
324 
325 	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
326 	dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
327 
328 	data = readl(ldata->base + RTC_CR);
329 	/* Enable the clockwatch on ST Variants */
330 	if (vendor->clockwatch)
331 		data |= RTC_CR_CWEN;
332 	else
333 		data |= RTC_CR_EN;
334 	writel(data, ldata->base + RTC_CR);
335 
336 	/*
337 	 * On ST PL031 variants, the RTC reset value does not provide correct
338 	 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
339 	 */
340 	if (vendor->st_weekday) {
341 		if (readl(ldata->base + RTC_YDR) == 0x2000) {
342 			time = readl(ldata->base + RTC_DR);
343 			if ((time &
344 			     (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
345 			    == 0x02120000) {
346 				time = time | (0x7 << RTC_WDAY_SHIFT);
347 				writel(0x2000, ldata->base + RTC_YLR);
348 				writel(time, ldata->base + RTC_LR);
349 			}
350 		}
351 	}
352 
353 	device_init_wakeup(&adev->dev, true);
354 	ldata->rtc = devm_rtc_allocate_device(&adev->dev);
355 	if (IS_ERR(ldata->rtc)) {
356 		ret = PTR_ERR(ldata->rtc);
357 		goto out;
358 	}
359 
360 	if (!adev->irq[0])
361 		clear_bit(RTC_FEATURE_ALARM, ldata->rtc->features);
362 
363 	ldata->rtc->ops = ops;
364 	ldata->rtc->range_min = vendor->range_min;
365 	ldata->rtc->range_max = vendor->range_max;
366 
367 	ret = devm_rtc_register_device(ldata->rtc);
368 	if (ret)
369 		goto out;
370 
371 	if (adev->irq[0]) {
372 		ret = request_irq(adev->irq[0], pl031_interrupt,
373 				  vendor->irqflags, "rtc-pl031", ldata);
374 		if (ret)
375 			goto out;
376 		dev_pm_set_wake_irq(&adev->dev, adev->irq[0]);
377 	}
378 	return 0;
379 
380 out:
381 	amba_release_regions(adev);
382 err_req:
383 
384 	return ret;
385 }
386 
387 /* Operations for the original ARM version */
388 static struct pl031_vendor_data arm_pl031 = {
389 	.ops = {
390 		.read_time = pl031_read_time,
391 		.set_time = pl031_set_time,
392 		.read_alarm = pl031_read_alarm,
393 		.set_alarm = pl031_set_alarm,
394 		.alarm_irq_enable = pl031_alarm_irq_enable,
395 	},
396 	.range_max = U32_MAX,
397 };
398 
399 /* The First ST derivative */
400 static struct pl031_vendor_data stv1_pl031 = {
401 	.ops = {
402 		.read_time = pl031_read_time,
403 		.set_time = pl031_set_time,
404 		.read_alarm = pl031_read_alarm,
405 		.set_alarm = pl031_set_alarm,
406 		.alarm_irq_enable = pl031_alarm_irq_enable,
407 	},
408 	.clockwatch = true,
409 	.st_weekday = true,
410 	.range_max = U32_MAX,
411 };
412 
413 /* And the second ST derivative */
414 static struct pl031_vendor_data stv2_pl031 = {
415 	.ops = {
416 		.read_time = pl031_stv2_read_time,
417 		.set_time = pl031_stv2_set_time,
418 		.read_alarm = pl031_stv2_read_alarm,
419 		.set_alarm = pl031_stv2_set_alarm,
420 		.alarm_irq_enable = pl031_alarm_irq_enable,
421 	},
422 	.clockwatch = true,
423 	.st_weekday = true,
424 	/*
425 	 * This variant shares the IRQ with another block and must not
426 	 * suspend that IRQ line.
427 	 * TODO check if it shares with IRQF_NO_SUSPEND user, else we can
428 	 * remove IRQF_COND_SUSPEND
429 	 */
430 	.irqflags = IRQF_SHARED | IRQF_COND_SUSPEND,
431 	.range_min = RTC_TIMESTAMP_BEGIN_0000,
432 	.range_max = RTC_TIMESTAMP_END_9999,
433 };
434 
435 static const struct amba_id pl031_ids[] = {
436 	{
437 		.id = 0x00041031,
438 		.mask = 0x000fffff,
439 		.data = &arm_pl031,
440 	},
441 	/* ST Micro variants */
442 	{
443 		.id = 0x00180031,
444 		.mask = 0x00ffffff,
445 		.data = &stv1_pl031,
446 	},
447 	{
448 		.id = 0x00280031,
449 		.mask = 0x00ffffff,
450 		.data = &stv2_pl031,
451 	},
452 	{0, 0},
453 };
454 
455 MODULE_DEVICE_TABLE(amba, pl031_ids);
456 
457 static struct amba_driver pl031_driver = {
458 	.drv = {
459 		.name = "rtc-pl031",
460 	},
461 	.id_table = pl031_ids,
462 	.probe = pl031_probe,
463 	.remove = pl031_remove,
464 };
465 
466 module_amba_driver(pl031_driver);
467 
468 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>");
469 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
470 MODULE_LICENSE("GPL");
471