xref: /openbmc/linux/drivers/rtc/rtc-pl031.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /*
2  * drivers/rtc/rtc-pl031.c
3  *
4  * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
5  *
6  * Author: Deepak Saxena <dsaxena@plexity.net>
7  *
8  * Copyright 2006 (c) MontaVista Software, Inc.
9  *
10  * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
11  * Copyright 2010 (c) ST-Ericsson AB
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/amba/bus.h>
23 #include <linux/io.h>
24 #include <linux/bcd.h>
25 #include <linux/delay.h>
26 #include <linux/pm_wakeirq.h>
27 #include <linux/slab.h>
28 
29 /*
30  * Register definitions
31  */
32 #define	RTC_DR		0x00	/* Data read register */
33 #define	RTC_MR		0x04	/* Match register */
34 #define	RTC_LR		0x08	/* Data load register */
35 #define	RTC_CR		0x0c	/* Control register */
36 #define	RTC_IMSC	0x10	/* Interrupt mask and set register */
37 #define	RTC_RIS		0x14	/* Raw interrupt status register */
38 #define	RTC_MIS		0x18	/* Masked interrupt status register */
39 #define	RTC_ICR		0x1c	/* Interrupt clear register */
40 /* ST variants have additional timer functionality */
41 #define RTC_TDR		0x20	/* Timer data read register */
42 #define RTC_TLR		0x24	/* Timer data load register */
43 #define RTC_TCR		0x28	/* Timer control register */
44 #define RTC_YDR		0x30	/* Year data read register */
45 #define RTC_YMR		0x34	/* Year match register */
46 #define RTC_YLR		0x38	/* Year data load register */
47 
48 #define RTC_CR_EN	(1 << 0)	/* counter enable bit */
49 #define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
50 
51 #define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
52 
53 /* Common bit definitions for Interrupt status and control registers */
54 #define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
55 #define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
56 
57 /* Common bit definations for ST v2 for reading/writing time */
58 #define RTC_SEC_SHIFT 0
59 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
60 #define RTC_MIN_SHIFT 6
61 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
62 #define RTC_HOUR_SHIFT 12
63 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
64 #define RTC_WDAY_SHIFT 17
65 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
66 #define RTC_MDAY_SHIFT 20
67 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
68 #define RTC_MON_SHIFT 25
69 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
70 
71 #define RTC_TIMER_FREQ 32768
72 
73 /**
74  * struct pl031_vendor_data - per-vendor variations
75  * @ops: the vendor-specific operations used on this silicon version
76  * @clockwatch: if this is an ST Microelectronics silicon version with a
77  *	clockwatch function
78  * @st_weekday: if this is an ST Microelectronics silicon version that need
79  *	the weekday fix
80  * @irqflags: special IRQ flags per variant
81  */
82 struct pl031_vendor_data {
83 	struct rtc_class_ops ops;
84 	bool clockwatch;
85 	bool st_weekday;
86 	unsigned long irqflags;
87 };
88 
89 struct pl031_local {
90 	struct pl031_vendor_data *vendor;
91 	struct rtc_device *rtc;
92 	void __iomem *base;
93 };
94 
95 static int pl031_alarm_irq_enable(struct device *dev,
96 	unsigned int enabled)
97 {
98 	struct pl031_local *ldata = dev_get_drvdata(dev);
99 	unsigned long imsc;
100 
101 	/* Clear any pending alarm interrupts. */
102 	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
103 
104 	imsc = readl(ldata->base + RTC_IMSC);
105 
106 	if (enabled == 1)
107 		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
108 	else
109 		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
110 
111 	return 0;
112 }
113 
114 /*
115  * Convert Gregorian date to ST v2 RTC format.
116  */
117 static int pl031_stv2_tm_to_time(struct device *dev,
118 				 struct rtc_time *tm, unsigned long *st_time,
119 	unsigned long *bcd_year)
120 {
121 	int year = tm->tm_year + 1900;
122 	int wday = tm->tm_wday;
123 
124 	/* wday masking is not working in hardware so wday must be valid */
125 	if (wday < -1 || wday > 6) {
126 		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
127 		return -EINVAL;
128 	} else if (wday == -1) {
129 		/* wday is not provided, calculate it here */
130 		unsigned long time;
131 		struct rtc_time calc_tm;
132 
133 		rtc_tm_to_time(tm, &time);
134 		rtc_time_to_tm(time, &calc_tm);
135 		wday = calc_tm.tm_wday;
136 	}
137 
138 	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
139 
140 	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
141 			|	(tm->tm_mday << RTC_MDAY_SHIFT)
142 			|	((wday + 1) << RTC_WDAY_SHIFT)
143 			|	(tm->tm_hour << RTC_HOUR_SHIFT)
144 			|	(tm->tm_min << RTC_MIN_SHIFT)
145 			|	(tm->tm_sec << RTC_SEC_SHIFT);
146 
147 	return 0;
148 }
149 
150 /*
151  * Convert ST v2 RTC format to Gregorian date.
152  */
153 static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
154 	struct rtc_time *tm)
155 {
156 	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
157 	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
158 	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
159 	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
160 	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
161 	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
162 	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
163 
164 	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
165 	tm->tm_year -= 1900;
166 
167 	return 0;
168 }
169 
170 static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
171 {
172 	struct pl031_local *ldata = dev_get_drvdata(dev);
173 
174 	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
175 			readl(ldata->base + RTC_YDR), tm);
176 
177 	return 0;
178 }
179 
180 static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
181 {
182 	unsigned long time;
183 	unsigned long bcd_year;
184 	struct pl031_local *ldata = dev_get_drvdata(dev);
185 	int ret;
186 
187 	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
188 	if (ret == 0) {
189 		writel(bcd_year, ldata->base + RTC_YLR);
190 		writel(time, ldata->base + RTC_LR);
191 	}
192 
193 	return ret;
194 }
195 
196 static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
197 {
198 	struct pl031_local *ldata = dev_get_drvdata(dev);
199 	int ret;
200 
201 	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
202 			readl(ldata->base + RTC_YMR), &alarm->time);
203 
204 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
205 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
206 
207 	return ret;
208 }
209 
210 static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
211 {
212 	struct pl031_local *ldata = dev_get_drvdata(dev);
213 	unsigned long time;
214 	unsigned long bcd_year;
215 	int ret;
216 
217 	/* At the moment, we can only deal with non-wildcarded alarm times. */
218 	ret = rtc_valid_tm(&alarm->time);
219 	if (ret == 0) {
220 		ret = pl031_stv2_tm_to_time(dev, &alarm->time,
221 					    &time, &bcd_year);
222 		if (ret == 0) {
223 			writel(bcd_year, ldata->base + RTC_YMR);
224 			writel(time, ldata->base + RTC_MR);
225 
226 			pl031_alarm_irq_enable(dev, alarm->enabled);
227 		}
228 	}
229 
230 	return ret;
231 }
232 
233 static irqreturn_t pl031_interrupt(int irq, void *dev_id)
234 {
235 	struct pl031_local *ldata = dev_id;
236 	unsigned long rtcmis;
237 	unsigned long events = 0;
238 
239 	rtcmis = readl(ldata->base + RTC_MIS);
240 	if (rtcmis & RTC_BIT_AI) {
241 		writel(RTC_BIT_AI, ldata->base + RTC_ICR);
242 		events |= (RTC_AF | RTC_IRQF);
243 		rtc_update_irq(ldata->rtc, 1, events);
244 
245 		return IRQ_HANDLED;
246 	}
247 
248 	return IRQ_NONE;
249 }
250 
251 static int pl031_read_time(struct device *dev, struct rtc_time *tm)
252 {
253 	struct pl031_local *ldata = dev_get_drvdata(dev);
254 
255 	rtc_time_to_tm(readl(ldata->base + RTC_DR), tm);
256 
257 	return 0;
258 }
259 
260 static int pl031_set_time(struct device *dev, struct rtc_time *tm)
261 {
262 	unsigned long time;
263 	struct pl031_local *ldata = dev_get_drvdata(dev);
264 	int ret;
265 
266 	ret = rtc_tm_to_time(tm, &time);
267 
268 	if (ret == 0)
269 		writel(time, ldata->base + RTC_LR);
270 
271 	return ret;
272 }
273 
274 static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
275 {
276 	struct pl031_local *ldata = dev_get_drvdata(dev);
277 
278 	rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
279 
280 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
281 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
282 
283 	return 0;
284 }
285 
286 static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
287 {
288 	struct pl031_local *ldata = dev_get_drvdata(dev);
289 	unsigned long time;
290 	int ret;
291 
292 	/* At the moment, we can only deal with non-wildcarded alarm times. */
293 	ret = rtc_valid_tm(&alarm->time);
294 	if (ret == 0) {
295 		ret = rtc_tm_to_time(&alarm->time, &time);
296 		if (ret == 0) {
297 			writel(time, ldata->base + RTC_MR);
298 			pl031_alarm_irq_enable(dev, alarm->enabled);
299 		}
300 	}
301 
302 	return ret;
303 }
304 
305 static int pl031_remove(struct amba_device *adev)
306 {
307 	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
308 
309 	dev_pm_clear_wake_irq(&adev->dev);
310 	device_init_wakeup(&adev->dev, false);
311 	if (adev->irq[0])
312 		free_irq(adev->irq[0], ldata);
313 	amba_release_regions(adev);
314 
315 	return 0;
316 }
317 
318 static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
319 {
320 	int ret;
321 	struct pl031_local *ldata;
322 	struct pl031_vendor_data *vendor = id->data;
323 	struct rtc_class_ops *ops;
324 	unsigned long time, data;
325 
326 	ret = amba_request_regions(adev, NULL);
327 	if (ret)
328 		goto err_req;
329 
330 	ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local),
331 			     GFP_KERNEL);
332 	ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops),
333 			   GFP_KERNEL);
334 	if (!ldata || !ops) {
335 		ret = -ENOMEM;
336 		goto out;
337 	}
338 
339 	ldata->vendor = vendor;
340 	ldata->base = devm_ioremap(&adev->dev, adev->res.start,
341 				   resource_size(&adev->res));
342 	if (!ldata->base) {
343 		ret = -ENOMEM;
344 		goto out;
345 	}
346 
347 	amba_set_drvdata(adev, ldata);
348 
349 	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
350 	dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
351 
352 	data = readl(ldata->base + RTC_CR);
353 	/* Enable the clockwatch on ST Variants */
354 	if (vendor->clockwatch)
355 		data |= RTC_CR_CWEN;
356 	else
357 		data |= RTC_CR_EN;
358 	writel(data, ldata->base + RTC_CR);
359 
360 	/*
361 	 * On ST PL031 variants, the RTC reset value does not provide correct
362 	 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
363 	 */
364 	if (vendor->st_weekday) {
365 		if (readl(ldata->base + RTC_YDR) == 0x2000) {
366 			time = readl(ldata->base + RTC_DR);
367 			if ((time &
368 			     (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
369 			    == 0x02120000) {
370 				time = time | (0x7 << RTC_WDAY_SHIFT);
371 				writel(0x2000, ldata->base + RTC_YLR);
372 				writel(time, ldata->base + RTC_LR);
373 			}
374 		}
375 	}
376 
377 	if (!adev->irq[0]) {
378 		/* When there's no interrupt, no point in exposing the alarm */
379 		ops->read_alarm = NULL;
380 		ops->set_alarm = NULL;
381 		ops->alarm_irq_enable = NULL;
382 	}
383 
384 	device_init_wakeup(&adev->dev, true);
385 	ldata->rtc = devm_rtc_allocate_device(&adev->dev);
386 	if (IS_ERR(ldata->rtc))
387 		return PTR_ERR(ldata->rtc);
388 
389 	ldata->rtc->ops = ops;
390 
391 	ret = rtc_register_device(ldata->rtc);
392 	if (ret)
393 		goto out;
394 
395 	if (adev->irq[0]) {
396 		ret = request_irq(adev->irq[0], pl031_interrupt,
397 				  vendor->irqflags, "rtc-pl031", ldata);
398 		if (ret)
399 			goto out;
400 		dev_pm_set_wake_irq(&adev->dev, adev->irq[0]);
401 	}
402 	return 0;
403 
404 out:
405 	amba_release_regions(adev);
406 err_req:
407 
408 	return ret;
409 }
410 
411 /* Operations for the original ARM version */
412 static struct pl031_vendor_data arm_pl031 = {
413 	.ops = {
414 		.read_time = pl031_read_time,
415 		.set_time = pl031_set_time,
416 		.read_alarm = pl031_read_alarm,
417 		.set_alarm = pl031_set_alarm,
418 		.alarm_irq_enable = pl031_alarm_irq_enable,
419 	},
420 };
421 
422 /* The First ST derivative */
423 static struct pl031_vendor_data stv1_pl031 = {
424 	.ops = {
425 		.read_time = pl031_read_time,
426 		.set_time = pl031_set_time,
427 		.read_alarm = pl031_read_alarm,
428 		.set_alarm = pl031_set_alarm,
429 		.alarm_irq_enable = pl031_alarm_irq_enable,
430 	},
431 	.clockwatch = true,
432 	.st_weekday = true,
433 };
434 
435 /* And the second ST derivative */
436 static struct pl031_vendor_data stv2_pl031 = {
437 	.ops = {
438 		.read_time = pl031_stv2_read_time,
439 		.set_time = pl031_stv2_set_time,
440 		.read_alarm = pl031_stv2_read_alarm,
441 		.set_alarm = pl031_stv2_set_alarm,
442 		.alarm_irq_enable = pl031_alarm_irq_enable,
443 	},
444 	.clockwatch = true,
445 	.st_weekday = true,
446 	/*
447 	 * This variant shares the IRQ with another block and must not
448 	 * suspend that IRQ line.
449 	 * TODO check if it shares with IRQF_NO_SUSPEND user, else we can
450 	 * remove IRQF_COND_SUSPEND
451 	 */
452 	.irqflags = IRQF_SHARED | IRQF_COND_SUSPEND,
453 };
454 
455 static const struct amba_id pl031_ids[] = {
456 	{
457 		.id = 0x00041031,
458 		.mask = 0x000fffff,
459 		.data = &arm_pl031,
460 	},
461 	/* ST Micro variants */
462 	{
463 		.id = 0x00180031,
464 		.mask = 0x00ffffff,
465 		.data = &stv1_pl031,
466 	},
467 	{
468 		.id = 0x00280031,
469 		.mask = 0x00ffffff,
470 		.data = &stv2_pl031,
471 	},
472 	{0, 0},
473 };
474 
475 MODULE_DEVICE_TABLE(amba, pl031_ids);
476 
477 static struct amba_driver pl031_driver = {
478 	.drv = {
479 		.name = "rtc-pl031",
480 	},
481 	.id_table = pl031_ids,
482 	.probe = pl031_probe,
483 	.remove = pl031_remove,
484 };
485 
486 module_amba_driver(pl031_driver);
487 
488 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>");
489 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
490 MODULE_LICENSE("GPL");
491