xref: /openbmc/linux/drivers/rtc/rtc-pl031.c (revision 4800cd83)
1 /*
2  * drivers/rtc/rtc-pl031.c
3  *
4  * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
5  *
6  * Author: Deepak Saxena <dsaxena@plexity.net>
7  *
8  * Copyright 2006 (c) MontaVista Software, Inc.
9  *
10  * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
11  * Copyright 2010 (c) ST-Ericsson AB
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/amba/bus.h>
23 #include <linux/io.h>
24 #include <linux/bcd.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 
28 /*
29  * Register definitions
30  */
31 #define	RTC_DR		0x00	/* Data read register */
32 #define	RTC_MR		0x04	/* Match register */
33 #define	RTC_LR		0x08	/* Data load register */
34 #define	RTC_CR		0x0c	/* Control register */
35 #define	RTC_IMSC	0x10	/* Interrupt mask and set register */
36 #define	RTC_RIS		0x14	/* Raw interrupt status register */
37 #define	RTC_MIS		0x18	/* Masked interrupt status register */
38 #define	RTC_ICR		0x1c	/* Interrupt clear register */
39 /* ST variants have additional timer functionality */
40 #define RTC_TDR		0x20	/* Timer data read register */
41 #define RTC_TLR		0x24	/* Timer data load register */
42 #define RTC_TCR		0x28	/* Timer control register */
43 #define RTC_YDR		0x30	/* Year data read register */
44 #define RTC_YMR		0x34	/* Year match register */
45 #define RTC_YLR		0x38	/* Year data load register */
46 
47 #define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
48 
49 #define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
50 
51 /* Common bit definitions for Interrupt status and control registers */
52 #define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
53 #define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
54 
55 /* Common bit definations for ST v2 for reading/writing time */
56 #define RTC_SEC_SHIFT 0
57 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
58 #define RTC_MIN_SHIFT 6
59 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
60 #define RTC_HOUR_SHIFT 12
61 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
62 #define RTC_WDAY_SHIFT 17
63 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
64 #define RTC_MDAY_SHIFT 20
65 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
66 #define RTC_MON_SHIFT 25
67 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
68 
69 #define RTC_TIMER_FREQ 32768
70 
71 struct pl031_local {
72 	struct rtc_device *rtc;
73 	void __iomem *base;
74 	u8 hw_designer;
75 	u8 hw_revision:4;
76 };
77 
78 static int pl031_alarm_irq_enable(struct device *dev,
79 	unsigned int enabled)
80 {
81 	struct pl031_local *ldata = dev_get_drvdata(dev);
82 	unsigned long imsc;
83 
84 	/* Clear any pending alarm interrupts. */
85 	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
86 
87 	imsc = readl(ldata->base + RTC_IMSC);
88 
89 	if (enabled == 1)
90 		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
91 	else
92 		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
93 
94 	return 0;
95 }
96 
97 /*
98  * Convert Gregorian date to ST v2 RTC format.
99  */
100 static int pl031_stv2_tm_to_time(struct device *dev,
101 				 struct rtc_time *tm, unsigned long *st_time,
102 	unsigned long *bcd_year)
103 {
104 	int year = tm->tm_year + 1900;
105 	int wday = tm->tm_wday;
106 
107 	/* wday masking is not working in hardware so wday must be valid */
108 	if (wday < -1 || wday > 6) {
109 		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
110 		return -EINVAL;
111 	} else if (wday == -1) {
112 		/* wday is not provided, calculate it here */
113 		unsigned long time;
114 		struct rtc_time calc_tm;
115 
116 		rtc_tm_to_time(tm, &time);
117 		rtc_time_to_tm(time, &calc_tm);
118 		wday = calc_tm.tm_wday;
119 	}
120 
121 	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
122 
123 	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
124 			|	(tm->tm_mday << RTC_MDAY_SHIFT)
125 			|	((wday + 1) << RTC_WDAY_SHIFT)
126 			|	(tm->tm_hour << RTC_HOUR_SHIFT)
127 			|	(tm->tm_min << RTC_MIN_SHIFT)
128 			|	(tm->tm_sec << RTC_SEC_SHIFT);
129 
130 	return 0;
131 }
132 
133 /*
134  * Convert ST v2 RTC format to Gregorian date.
135  */
136 static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
137 	struct rtc_time *tm)
138 {
139 	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
140 	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
141 	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
142 	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
143 	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
144 	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
145 	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
146 
147 	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
148 	tm->tm_year -= 1900;
149 
150 	return 0;
151 }
152 
153 static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
154 {
155 	struct pl031_local *ldata = dev_get_drvdata(dev);
156 
157 	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
158 			readl(ldata->base + RTC_YDR), tm);
159 
160 	return 0;
161 }
162 
163 static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
164 {
165 	unsigned long time;
166 	unsigned long bcd_year;
167 	struct pl031_local *ldata = dev_get_drvdata(dev);
168 	int ret;
169 
170 	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
171 	if (ret == 0) {
172 		writel(bcd_year, ldata->base + RTC_YLR);
173 		writel(time, ldata->base + RTC_LR);
174 	}
175 
176 	return ret;
177 }
178 
179 static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
180 {
181 	struct pl031_local *ldata = dev_get_drvdata(dev);
182 	int ret;
183 
184 	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
185 			readl(ldata->base + RTC_YMR), &alarm->time);
186 
187 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
188 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
189 
190 	return ret;
191 }
192 
193 static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
194 {
195 	struct pl031_local *ldata = dev_get_drvdata(dev);
196 	unsigned long time;
197 	unsigned long bcd_year;
198 	int ret;
199 
200 	/* At the moment, we can only deal with non-wildcarded alarm times. */
201 	ret = rtc_valid_tm(&alarm->time);
202 	if (ret == 0) {
203 		ret = pl031_stv2_tm_to_time(dev, &alarm->time,
204 					    &time, &bcd_year);
205 		if (ret == 0) {
206 			writel(bcd_year, ldata->base + RTC_YMR);
207 			writel(time, ldata->base + RTC_MR);
208 
209 			pl031_alarm_irq_enable(dev, alarm->enabled);
210 		}
211 	}
212 
213 	return ret;
214 }
215 
216 static irqreturn_t pl031_interrupt(int irq, void *dev_id)
217 {
218 	struct pl031_local *ldata = dev_id;
219 	unsigned long rtcmis;
220 	unsigned long events = 0;
221 
222 	rtcmis = readl(ldata->base + RTC_MIS);
223 	if (rtcmis) {
224 		writel(rtcmis, ldata->base + RTC_ICR);
225 
226 		if (rtcmis & RTC_BIT_AI)
227 			events |= (RTC_AF | RTC_IRQF);
228 
229 		/* Timer interrupt is only available in ST variants */
230 		if ((rtcmis & RTC_BIT_PI) &&
231 			(ldata->hw_designer == AMBA_VENDOR_ST))
232 			events |= (RTC_PF | RTC_IRQF);
233 
234 		rtc_update_irq(ldata->rtc, 1, events);
235 
236 		return IRQ_HANDLED;
237 	}
238 
239 	return IRQ_NONE;
240 }
241 
242 static int pl031_read_time(struct device *dev, struct rtc_time *tm)
243 {
244 	struct pl031_local *ldata = dev_get_drvdata(dev);
245 
246 	rtc_time_to_tm(readl(ldata->base + RTC_DR), tm);
247 
248 	return 0;
249 }
250 
251 static int pl031_set_time(struct device *dev, struct rtc_time *tm)
252 {
253 	unsigned long time;
254 	struct pl031_local *ldata = dev_get_drvdata(dev);
255 	int ret;
256 
257 	ret = rtc_tm_to_time(tm, &time);
258 
259 	if (ret == 0)
260 		writel(time, ldata->base + RTC_LR);
261 
262 	return ret;
263 }
264 
265 static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
266 {
267 	struct pl031_local *ldata = dev_get_drvdata(dev);
268 
269 	rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
270 
271 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
272 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
273 
274 	return 0;
275 }
276 
277 static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
278 {
279 	struct pl031_local *ldata = dev_get_drvdata(dev);
280 	unsigned long time;
281 	int ret;
282 
283 	/* At the moment, we can only deal with non-wildcarded alarm times. */
284 	ret = rtc_valid_tm(&alarm->time);
285 	if (ret == 0) {
286 		ret = rtc_tm_to_time(&alarm->time, &time);
287 		if (ret == 0) {
288 			writel(time, ldata->base + RTC_MR);
289 			pl031_alarm_irq_enable(dev, alarm->enabled);
290 		}
291 	}
292 
293 	return ret;
294 }
295 
296 /* Periodic interrupt is only available in ST variants. */
297 static int pl031_irq_set_state(struct device *dev, int enabled)
298 {
299 	struct pl031_local *ldata = dev_get_drvdata(dev);
300 
301 	if (enabled == 1) {
302 		/* Clear any pending timer interrupt. */
303 		writel(RTC_BIT_PI, ldata->base + RTC_ICR);
304 
305 		writel(readl(ldata->base + RTC_IMSC) | RTC_BIT_PI,
306 			ldata->base + RTC_IMSC);
307 
308 		/* Now start the timer */
309 		writel(readl(ldata->base + RTC_TCR) | RTC_TCR_EN,
310 			ldata->base + RTC_TCR);
311 
312 	} else {
313 		writel(readl(ldata->base + RTC_IMSC) & (~RTC_BIT_PI),
314 			ldata->base + RTC_IMSC);
315 
316 		/* Also stop the timer */
317 		writel(readl(ldata->base + RTC_TCR) & (~RTC_TCR_EN),
318 			ldata->base + RTC_TCR);
319 	}
320 	/* Wait at least 1 RTC32 clock cycle to ensure next access
321 	 * to RTC_TCR will succeed.
322 	 */
323 	udelay(40);
324 
325 	return 0;
326 }
327 
328 static int pl031_irq_set_freq(struct device *dev, int freq)
329 {
330 	struct pl031_local *ldata = dev_get_drvdata(dev);
331 
332 	/* Cant set timer if it is already enabled */
333 	if (readl(ldata->base + RTC_TCR) & RTC_TCR_EN) {
334 		dev_err(dev, "can't change frequency while timer enabled\n");
335 		return -EINVAL;
336 	}
337 
338 	/* If self start bit in RTC_TCR is set timer will start here,
339 	 * but we never set that bit. Instead we start the timer when
340 	 * set_state is called with enabled == 1.
341 	 */
342 	writel(RTC_TIMER_FREQ / freq, ldata->base + RTC_TLR);
343 
344 	return 0;
345 }
346 
347 static int pl031_remove(struct amba_device *adev)
348 {
349 	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
350 
351 	amba_set_drvdata(adev, NULL);
352 	free_irq(adev->irq[0], ldata->rtc);
353 	rtc_device_unregister(ldata->rtc);
354 	iounmap(ldata->base);
355 	kfree(ldata);
356 	amba_release_regions(adev);
357 
358 	return 0;
359 }
360 
361 static int pl031_probe(struct amba_device *adev, struct amba_id *id)
362 {
363 	int ret;
364 	struct pl031_local *ldata;
365 	struct rtc_class_ops *ops = id->data;
366 
367 	ret = amba_request_regions(adev, NULL);
368 	if (ret)
369 		goto err_req;
370 
371 	ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL);
372 	if (!ldata) {
373 		ret = -ENOMEM;
374 		goto out;
375 	}
376 
377 	ldata->base = ioremap(adev->res.start, resource_size(&adev->res));
378 
379 	if (!ldata->base) {
380 		ret = -ENOMEM;
381 		goto out_no_remap;
382 	}
383 
384 	amba_set_drvdata(adev, ldata);
385 
386 	ldata->hw_designer = amba_manf(adev);
387 	ldata->hw_revision = amba_rev(adev);
388 
389 	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", ldata->hw_designer);
390 	dev_dbg(&adev->dev, "revision = 0x%01x\n", ldata->hw_revision);
391 
392 	/* Enable the clockwatch on ST Variants */
393 	if ((ldata->hw_designer == AMBA_VENDOR_ST) &&
394 	    (ldata->hw_revision > 1))
395 		writel(readl(ldata->base + RTC_CR) | RTC_CR_CWEN,
396 		       ldata->base + RTC_CR);
397 
398 	ldata->rtc = rtc_device_register("pl031", &adev->dev, ops,
399 					THIS_MODULE);
400 	if (IS_ERR(ldata->rtc)) {
401 		ret = PTR_ERR(ldata->rtc);
402 		goto out_no_rtc;
403 	}
404 
405 	if (request_irq(adev->irq[0], pl031_interrupt,
406 			IRQF_DISABLED, "rtc-pl031", ldata)) {
407 		ret = -EIO;
408 		goto out_no_irq;
409 	}
410 
411 	return 0;
412 
413 out_no_irq:
414 	rtc_device_unregister(ldata->rtc);
415 out_no_rtc:
416 	iounmap(ldata->base);
417 	amba_set_drvdata(adev, NULL);
418 out_no_remap:
419 	kfree(ldata);
420 out:
421 	amba_release_regions(adev);
422 err_req:
423 
424 	return ret;
425 }
426 
427 /* Operations for the original ARM version */
428 static struct rtc_class_ops arm_pl031_ops = {
429 	.read_time = pl031_read_time,
430 	.set_time = pl031_set_time,
431 	.read_alarm = pl031_read_alarm,
432 	.set_alarm = pl031_set_alarm,
433 	.alarm_irq_enable = pl031_alarm_irq_enable,
434 };
435 
436 /* The First ST derivative */
437 static struct rtc_class_ops stv1_pl031_ops = {
438 	.read_time = pl031_read_time,
439 	.set_time = pl031_set_time,
440 	.read_alarm = pl031_read_alarm,
441 	.set_alarm = pl031_set_alarm,
442 	.alarm_irq_enable = pl031_alarm_irq_enable,
443 	.irq_set_state = pl031_irq_set_state,
444 	.irq_set_freq = pl031_irq_set_freq,
445 };
446 
447 /* And the second ST derivative */
448 static struct rtc_class_ops stv2_pl031_ops = {
449 	.read_time = pl031_stv2_read_time,
450 	.set_time = pl031_stv2_set_time,
451 	.read_alarm = pl031_stv2_read_alarm,
452 	.set_alarm = pl031_stv2_set_alarm,
453 	.alarm_irq_enable = pl031_alarm_irq_enable,
454 	.irq_set_state = pl031_irq_set_state,
455 	.irq_set_freq = pl031_irq_set_freq,
456 };
457 
458 static struct amba_id pl031_ids[] = {
459 	{
460 		.id = 0x00041031,
461 		.mask = 0x000fffff,
462 		.data = &arm_pl031_ops,
463 	},
464 	/* ST Micro variants */
465 	{
466 		.id = 0x00180031,
467 		.mask = 0x00ffffff,
468 		.data = &stv1_pl031_ops,
469 	},
470 	{
471 		.id = 0x00280031,
472 		.mask = 0x00ffffff,
473 		.data = &stv2_pl031_ops,
474 	},
475 	{0, 0},
476 };
477 
478 static struct amba_driver pl031_driver = {
479 	.drv = {
480 		.name = "rtc-pl031",
481 	},
482 	.id_table = pl031_ids,
483 	.probe = pl031_probe,
484 	.remove = pl031_remove,
485 };
486 
487 static int __init pl031_init(void)
488 {
489 	return amba_driver_register(&pl031_driver);
490 }
491 
492 static void __exit pl031_exit(void)
493 {
494 	amba_driver_unregister(&pl031_driver);
495 }
496 
497 module_init(pl031_init);
498 module_exit(pl031_exit);
499 
500 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net");
501 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
502 MODULE_LICENSE("GPL");
503