xref: /openbmc/linux/drivers/rtc/rtc-pcf2123.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * An SPI driver for the Philips PCF2123 RTC
4  * Copyright 2009 Cyber Switching, Inc.
5  *
6  * Author: Chris Verges <chrisv@cyberswitching.com>
7  * Maintainers: http://www.cyberswitching.com
8  *
9  * based on the RS5C348 driver in this same directory.
10  *
11  * Thanks to Christian Pellegrin <chripell@fsfe.org> for
12  * the sysfs contributions to this driver.
13  *
14  * Please note that the CS is active high, so platform data
15  * should look something like:
16  *
17  * static struct spi_board_info ek_spi_devices[] = {
18  *	...
19  *	{
20  *		.modalias		= "rtc-pcf2123",
21  *		.chip_select		= 1,
22  *		.controller_data	= (void *)AT91_PIN_PA10,
23  *		.max_speed_hz		= 1000 * 1000,
24  *		.mode			= SPI_CS_HIGH,
25  *		.bus_num		= 0,
26  *	},
27  *	...
28  *};
29  */
30 
31 #include <linux/bcd.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/kernel.h>
37 #include <linux/of.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/rtc.h>
41 #include <linux/spi/spi.h>
42 #include <linux/module.h>
43 #include <linux/sysfs.h>
44 
45 /* REGISTERS */
46 #define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
47 #define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
48 #define PCF2123_REG_SC		(0x02)	/* datetime */
49 #define PCF2123_REG_MN		(0x03)
50 #define PCF2123_REG_HR		(0x04)
51 #define PCF2123_REG_DM		(0x05)
52 #define PCF2123_REG_DW		(0x06)
53 #define PCF2123_REG_MO		(0x07)
54 #define PCF2123_REG_YR		(0x08)
55 #define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
56 #define PCF2123_REG_ALRM_HR	(0x0a)
57 #define PCF2123_REG_ALRM_DM	(0x0b)
58 #define PCF2123_REG_ALRM_DW	(0x0c)
59 #define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
60 #define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
61 #define PCF2123_REG_CTDWN_TMR	(0x0f)
62 
63 /* PCF2123_REG_CTRL1 BITS */
64 #define CTRL1_CLEAR		(0)	/* Clear */
65 #define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
66 #define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
67 #define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
68 #define CTRL1_STOP		BIT(5)	/* Stop the clock */
69 #define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
70 
71 /* PCF2123_REG_CTRL2 BITS */
72 #define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
73 #define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
74 #define CTRL2_TF		BIT(2)	/* Countdown timer flag */
75 #define CTRL2_AF		BIT(3)	/* Alarm flag */
76 #define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
77 #define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
78 #define CTRL2_SI		BIT(6)	/* Second irq enable */
79 #define CTRL2_MI		BIT(7)	/* Minute irq enable */
80 
81 /* PCF2123_REG_SC BITS */
82 #define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
83 
84 /* PCF2123_REG_ALRM_XX BITS */
85 #define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */
86 
87 /* PCF2123_REG_TMR_CLKOUT BITS */
88 #define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
89 #define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
90 #define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
91 #define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
92 #define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
93 
94 /* PCF2123_REG_OFFSET BITS */
95 #define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
96 #define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
97 #define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
98 
99 /* READ/WRITE ADDRESS BITS */
100 #define PCF2123_WRITE		BIT(4)
101 #define PCF2123_READ		(BIT(4) | BIT(7))
102 
103 
104 static struct spi_driver pcf2123_driver;
105 
106 struct pcf2123_sysfs_reg {
107 	struct device_attribute attr;
108 	char name[2];
109 };
110 
111 struct pcf2123_plat_data {
112 	struct rtc_device *rtc;
113 	struct pcf2123_sysfs_reg regs[16];
114 };
115 
116 /*
117  * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
118  * is released properly after an SPI write.  This function should be
119  * called after EVERY read/write call over SPI.
120  */
121 static inline void pcf2123_delay_trec(void)
122 {
123 	ndelay(30);
124 }
125 
126 static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
127 {
128 	struct spi_device *spi = to_spi_device(dev);
129 	int ret;
130 
131 	reg |= PCF2123_READ;
132 	ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
133 	pcf2123_delay_trec();
134 
135 	return ret;
136 }
137 
138 static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
139 {
140 	struct spi_device *spi = to_spi_device(dev);
141 	int ret;
142 
143 	txbuf[0] |= PCF2123_WRITE;
144 	ret = spi_write(spi, txbuf, size);
145 	pcf2123_delay_trec();
146 
147 	return ret;
148 }
149 
150 static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
151 {
152 	u8 txbuf[2];
153 
154 	txbuf[0] = reg;
155 	txbuf[1] = val;
156 	return pcf2123_write(dev, txbuf, sizeof(txbuf));
157 }
158 
159 static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
160 			    char *buffer)
161 {
162 	struct pcf2123_sysfs_reg *r;
163 	u8 rxbuf[1];
164 	unsigned long reg;
165 	int ret;
166 
167 	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
168 
169 	ret = kstrtoul(r->name, 16, &reg);
170 	if (ret)
171 		return ret;
172 
173 	ret = pcf2123_read(dev, reg, rxbuf, 1);
174 	if (ret < 0)
175 		return -EIO;
176 
177 	return sprintf(buffer, "0x%x\n", rxbuf[0]);
178 }
179 
180 static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
181 			     const char *buffer, size_t count)
182 {
183 	struct pcf2123_sysfs_reg *r;
184 	unsigned long reg;
185 	unsigned long val;
186 
187 	int ret;
188 
189 	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
190 
191 	ret = kstrtoul(r->name, 16, &reg);
192 	if (ret)
193 		return ret;
194 
195 	ret = kstrtoul(buffer, 10, &val);
196 	if (ret)
197 		return ret;
198 
199 	ret = pcf2123_write_reg(dev, reg, val);
200 	if (ret < 0)
201 		return -EIO;
202 	return count;
203 }
204 
205 static int pcf2123_read_offset(struct device *dev, long *offset)
206 {
207 	int ret;
208 	s8 reg;
209 
210 	ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
211 	if (ret < 0)
212 		return ret;
213 
214 	if (reg & OFFSET_COARSE)
215 		reg <<= 1; /* multiply by 2 and sign extend */
216 	else
217 		reg = sign_extend32(reg, OFFSET_SIGN_BIT);
218 
219 	*offset = ((long)reg) * OFFSET_STEP;
220 
221 	return 0;
222 }
223 
224 /*
225  * The offset register is a 7 bit signed value with a coarse bit in bit 7.
226  * The main difference between the two is normal offset adjusts the first
227  * second of n minutes every other hour, with 61, 62 and 63 being shoved
228  * into the 60th minute.
229  * The coarse adjustment does the same, but every hour.
230  * the two overlap, with every even normal offset value corresponding
231  * to a coarse offset. Based on this algorithm, it seems that despite the
232  * name, coarse offset is a better fit for overlapping values.
233  */
234 static int pcf2123_set_offset(struct device *dev, long offset)
235 {
236 	s8 reg;
237 
238 	if (offset > OFFSET_STEP * 127)
239 		reg = 127;
240 	else if (offset < OFFSET_STEP * -128)
241 		reg = -128;
242 	else
243 		reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
244 
245 	/* choose fine offset only for odd values in the normal range */
246 	if (reg & 1 && reg <= 63 && reg >= -64) {
247 		/* Normal offset. Clear the coarse bit */
248 		reg &= ~OFFSET_COARSE;
249 	} else {
250 		/* Coarse offset. Divide by 2 and set the coarse bit */
251 		reg >>= 1;
252 		reg |= OFFSET_COARSE;
253 	}
254 
255 	return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
256 }
257 
258 static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
259 {
260 	u8 rxbuf[7];
261 	int ret;
262 
263 	ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
264 	if (ret < 0)
265 		return ret;
266 
267 	if (rxbuf[0] & OSC_HAS_STOPPED) {
268 		dev_info(dev, "clock was stopped. Time is not valid\n");
269 		return -EINVAL;
270 	}
271 
272 	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
273 	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
274 	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
275 	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
276 	tm->tm_wday = rxbuf[4] & 0x07;
277 	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
278 	tm->tm_year = bcd2bin(rxbuf[6]);
279 	if (tm->tm_year < 70)
280 		tm->tm_year += 100;	/* assume we are in 1970...2069 */
281 
282 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
283 			"mday=%d, mon=%d, year=%d, wday=%d\n",
284 			__func__,
285 			tm->tm_sec, tm->tm_min, tm->tm_hour,
286 			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
287 
288 	return 0;
289 }
290 
291 static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
292 {
293 	u8 txbuf[8];
294 	int ret;
295 
296 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
297 			"mday=%d, mon=%d, year=%d, wday=%d\n",
298 			__func__,
299 			tm->tm_sec, tm->tm_min, tm->tm_hour,
300 			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
301 
302 	/* Stop the counter first */
303 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
304 	if (ret < 0)
305 		return ret;
306 
307 	/* Set the new time */
308 	txbuf[0] = PCF2123_REG_SC;
309 	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
310 	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
311 	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
312 	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
313 	txbuf[5] = tm->tm_wday & 0x07;
314 	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
315 	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
316 
317 	ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
318 	if (ret < 0)
319 		return ret;
320 
321 	/* Start the counter */
322 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
323 	if (ret < 0)
324 		return ret;
325 
326 	return 0;
327 }
328 
329 static int pcf2123_reset(struct device *dev)
330 {
331 	int ret;
332 	u8  rxbuf[2];
333 
334 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
335 	if (ret < 0)
336 		return ret;
337 
338 	/* Stop the counter */
339 	dev_dbg(dev, "stopping RTC\n");
340 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
341 	if (ret < 0)
342 		return ret;
343 
344 	/* See if the counter was actually stopped */
345 	dev_dbg(dev, "checking for presence of RTC\n");
346 	ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
347 	if (ret < 0)
348 		return ret;
349 
350 	dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
351 		rxbuf[0], rxbuf[1]);
352 	if (!(rxbuf[0] & CTRL1_STOP))
353 		return -ENODEV;
354 
355 	/* Start the counter */
356 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
357 	if (ret < 0)
358 		return ret;
359 
360 	return 0;
361 }
362 
363 static const struct rtc_class_ops pcf2123_rtc_ops = {
364 	.read_time	= pcf2123_rtc_read_time,
365 	.set_time	= pcf2123_rtc_set_time,
366 	.read_offset	= pcf2123_read_offset,
367 	.set_offset	= pcf2123_set_offset,
368 
369 };
370 
371 static int pcf2123_probe(struct spi_device *spi)
372 {
373 	struct rtc_device *rtc;
374 	struct rtc_time tm;
375 	struct pcf2123_plat_data *pdata;
376 	int ret, i;
377 
378 	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
379 				GFP_KERNEL);
380 	if (!pdata)
381 		return -ENOMEM;
382 	spi->dev.platform_data = pdata;
383 
384 	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
385 	if (ret < 0) {
386 		ret = pcf2123_reset(&spi->dev);
387 		if (ret < 0) {
388 			dev_err(&spi->dev, "chip not found\n");
389 			goto kfree_exit;
390 		}
391 	}
392 
393 	dev_info(&spi->dev, "spiclk %u KHz.\n",
394 			(spi->max_speed_hz + 500) / 1000);
395 
396 	/* Finalize the initialization */
397 	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
398 			&pcf2123_rtc_ops, THIS_MODULE);
399 
400 	if (IS_ERR(rtc)) {
401 		dev_err(&spi->dev, "failed to register.\n");
402 		ret = PTR_ERR(rtc);
403 		goto kfree_exit;
404 	}
405 
406 	pdata->rtc = rtc;
407 
408 	for (i = 0; i < 16; i++) {
409 		sysfs_attr_init(&pdata->regs[i].attr.attr);
410 		sprintf(pdata->regs[i].name, "%1x", i);
411 		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
412 		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
413 		pdata->regs[i].attr.show = pcf2123_show;
414 		pdata->regs[i].attr.store = pcf2123_store;
415 		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
416 		if (ret) {
417 			dev_err(&spi->dev, "Unable to create sysfs %s\n",
418 				pdata->regs[i].name);
419 			goto sysfs_exit;
420 		}
421 	}
422 
423 	return 0;
424 
425 sysfs_exit:
426 	for (i--; i >= 0; i--)
427 		device_remove_file(&spi->dev, &pdata->regs[i].attr);
428 
429 kfree_exit:
430 	spi->dev.platform_data = NULL;
431 	return ret;
432 }
433 
434 static int pcf2123_remove(struct spi_device *spi)
435 {
436 	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
437 	int i;
438 
439 	if (pdata) {
440 		for (i = 0; i < 16; i++)
441 			if (pdata->regs[i].name[0])
442 				device_remove_file(&spi->dev,
443 						   &pdata->regs[i].attr);
444 	}
445 
446 	return 0;
447 }
448 
449 #ifdef CONFIG_OF
450 static const struct of_device_id pcf2123_dt_ids[] = {
451 	{ .compatible = "nxp,rtc-pcf2123", },
452 	{ .compatible = "microcrystal,rv2123", },
453 	{ /* sentinel */ }
454 };
455 MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
456 #endif
457 
458 static struct spi_driver pcf2123_driver = {
459 	.driver	= {
460 			.name	= "rtc-pcf2123",
461 			.of_match_table = of_match_ptr(pcf2123_dt_ids),
462 	},
463 	.probe	= pcf2123_probe,
464 	.remove	= pcf2123_remove,
465 };
466 
467 module_spi_driver(pcf2123_driver);
468 
469 MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
470 MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
471 MODULE_LICENSE("GPL");
472