xref: /openbmc/linux/drivers/rtc/rtc-pcf2123.c (revision d6e0cbb1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * An SPI driver for the Philips PCF2123 RTC
4  * Copyright 2009 Cyber Switching, Inc.
5  *
6  * Author: Chris Verges <chrisv@cyberswitching.com>
7  * Maintainers: http://www.cyberswitching.com
8  *
9  * based on the RS5C348 driver in this same directory.
10  *
11  * Thanks to Christian Pellegrin <chripell@fsfe.org> for
12  * the sysfs contributions to this driver.
13  *
14  * Please note that the CS is active high, so platform data
15  * should look something like:
16  *
17  * static struct spi_board_info ek_spi_devices[] = {
18  *	...
19  *	{
20  *		.modalias		= "rtc-pcf2123",
21  *		.chip_select		= 1,
22  *		.controller_data	= (void *)AT91_PIN_PA10,
23  *		.max_speed_hz		= 1000 * 1000,
24  *		.mode			= SPI_CS_HIGH,
25  *		.bus_num		= 0,
26  *	},
27  *	...
28  *};
29  */
30 
31 #include <linux/bcd.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/kernel.h>
37 #include <linux/of.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/rtc.h>
41 #include <linux/spi/spi.h>
42 #include <linux/module.h>
43 #include <linux/regmap.h>
44 
45 /* REGISTERS */
46 #define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
47 #define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
48 #define PCF2123_REG_SC		(0x02)	/* datetime */
49 #define PCF2123_REG_MN		(0x03)
50 #define PCF2123_REG_HR		(0x04)
51 #define PCF2123_REG_DM		(0x05)
52 #define PCF2123_REG_DW		(0x06)
53 #define PCF2123_REG_MO		(0x07)
54 #define PCF2123_REG_YR		(0x08)
55 #define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
56 #define PCF2123_REG_ALRM_HR	(0x0a)
57 #define PCF2123_REG_ALRM_DM	(0x0b)
58 #define PCF2123_REG_ALRM_DW	(0x0c)
59 #define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
60 #define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
61 #define PCF2123_REG_CTDWN_TMR	(0x0f)
62 
63 /* PCF2123_REG_CTRL1 BITS */
64 #define CTRL1_CLEAR		(0)	/* Clear */
65 #define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
66 #define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
67 #define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
68 #define CTRL1_STOP		BIT(5)	/* Stop the clock */
69 #define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
70 
71 /* PCF2123_REG_CTRL2 BITS */
72 #define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
73 #define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
74 #define CTRL2_TF		BIT(2)	/* Countdown timer flag */
75 #define CTRL2_AF		BIT(3)	/* Alarm flag */
76 #define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
77 #define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
78 #define CTRL2_SI		BIT(6)	/* Second irq enable */
79 #define CTRL2_MI		BIT(7)	/* Minute irq enable */
80 
81 /* PCF2123_REG_SC BITS */
82 #define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
83 
84 /* PCF2123_REG_ALRM_XX BITS */
85 #define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */
86 
87 /* PCF2123_REG_TMR_CLKOUT BITS */
88 #define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
89 #define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
90 #define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
91 #define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
92 #define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
93 
94 /* PCF2123_REG_OFFSET BITS */
95 #define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
96 #define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
97 #define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
98 #define OFFSET_MASK		GENMASK(6, 0)	/* Offset value */
99 
100 /* READ/WRITE ADDRESS BITS */
101 #define PCF2123_WRITE		BIT(4)
102 #define PCF2123_READ		(BIT(4) | BIT(7))
103 
104 
105 static struct spi_driver pcf2123_driver;
106 
107 struct pcf2123_plat_data {
108 	struct rtc_device *rtc;
109 	struct regmap *map;
110 };
111 
112 static const struct regmap_config pcf2123_regmap_config = {
113 	.reg_bits = 8,
114 	.val_bits = 8,
115 	.read_flag_mask = PCF2123_READ,
116 	.write_flag_mask = PCF2123_WRITE,
117 	.max_register = PCF2123_REG_CTDWN_TMR,
118 };
119 
120 static int pcf2123_read_offset(struct device *dev, long *offset)
121 {
122 	struct pcf2123_plat_data *pdata = dev_get_platdata(dev);
123 	int ret, val;
124 	unsigned int reg;
125 
126 	ret = regmap_read(pdata->map, PCF2123_REG_OFFSET, &reg);
127 	if (ret)
128 		return ret;
129 
130 	val = sign_extend32((reg & OFFSET_MASK), OFFSET_SIGN_BIT);
131 
132 	if (reg & OFFSET_COARSE)
133 		val *= 2;
134 
135 	*offset = ((long)val) * OFFSET_STEP;
136 
137 	return 0;
138 }
139 
140 /*
141  * The offset register is a 7 bit signed value with a coarse bit in bit 7.
142  * The main difference between the two is normal offset adjusts the first
143  * second of n minutes every other hour, with 61, 62 and 63 being shoved
144  * into the 60th minute.
145  * The coarse adjustment does the same, but every hour.
146  * the two overlap, with every even normal offset value corresponding
147  * to a coarse offset. Based on this algorithm, it seems that despite the
148  * name, coarse offset is a better fit for overlapping values.
149  */
150 static int pcf2123_set_offset(struct device *dev, long offset)
151 {
152 	struct pcf2123_plat_data *pdata = dev_get_platdata(dev);
153 	s8 reg;
154 
155 	if (offset > OFFSET_STEP * 127)
156 		reg = 127;
157 	else if (offset < OFFSET_STEP * -128)
158 		reg = -128;
159 	else
160 		reg = DIV_ROUND_CLOSEST(offset, OFFSET_STEP);
161 
162 	/* choose fine offset only for odd values in the normal range */
163 	if (reg & 1 && reg <= 63 && reg >= -64) {
164 		/* Normal offset. Clear the coarse bit */
165 		reg &= ~OFFSET_COARSE;
166 	} else {
167 		/* Coarse offset. Divide by 2 and set the coarse bit */
168 		reg >>= 1;
169 		reg |= OFFSET_COARSE;
170 	}
171 
172 	return regmap_write(pdata->map, PCF2123_REG_OFFSET, (unsigned int)reg);
173 }
174 
175 static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
176 {
177 	struct pcf2123_plat_data *pdata = dev_get_platdata(dev);
178 	u8 rxbuf[7];
179 	int ret;
180 
181 	ret = regmap_bulk_read(pdata->map, PCF2123_REG_SC, rxbuf,
182 				sizeof(rxbuf));
183 	if (ret)
184 		return ret;
185 
186 	if (rxbuf[0] & OSC_HAS_STOPPED) {
187 		dev_info(dev, "clock was stopped. Time is not valid\n");
188 		return -EINVAL;
189 	}
190 
191 	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
192 	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
193 	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
194 	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
195 	tm->tm_wday = rxbuf[4] & 0x07;
196 	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
197 	tm->tm_year = bcd2bin(rxbuf[6]);
198 	if (tm->tm_year < 70)
199 		tm->tm_year += 100;	/* assume we are in 1970...2069 */
200 
201 	dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
202 
203 	return 0;
204 }
205 
206 static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
207 {
208 	struct pcf2123_plat_data *pdata = dev_get_platdata(dev);
209 	u8 txbuf[7];
210 	int ret;
211 
212 	dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
213 
214 	/* Stop the counter first */
215 	ret = regmap_write(pdata->map, PCF2123_REG_CTRL1, CTRL1_STOP);
216 	if (ret)
217 		return ret;
218 
219 	/* Set the new time */
220 	txbuf[0] = bin2bcd(tm->tm_sec & 0x7F);
221 	txbuf[1] = bin2bcd(tm->tm_min & 0x7F);
222 	txbuf[2] = bin2bcd(tm->tm_hour & 0x3F);
223 	txbuf[3] = bin2bcd(tm->tm_mday & 0x3F);
224 	txbuf[4] = tm->tm_wday & 0x07;
225 	txbuf[5] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
226 	txbuf[6] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
227 
228 	ret = regmap_bulk_write(pdata->map, PCF2123_REG_SC, txbuf,
229 				sizeof(txbuf));
230 	if (ret)
231 		return ret;
232 
233 	/* Start the counter */
234 	ret = regmap_write(pdata->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
235 	if (ret)
236 		return ret;
237 
238 	return 0;
239 }
240 
241 static int pcf2123_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
242 {
243 	struct pcf2123_plat_data *pdata = dev_get_platdata(dev);
244 	u8 rxbuf[4];
245 	int ret;
246 	unsigned int val = 0;
247 
248 	ret = regmap_bulk_read(pdata->map, PCF2123_REG_ALRM_MN, rxbuf,
249 				sizeof(rxbuf));
250 	if (ret)
251 		return ret;
252 
253 	alm->time.tm_min = bcd2bin(rxbuf[0] & 0x7F);
254 	alm->time.tm_hour = bcd2bin(rxbuf[1] & 0x3F);
255 	alm->time.tm_mday = bcd2bin(rxbuf[2] & 0x3F);
256 	alm->time.tm_wday = bcd2bin(rxbuf[3] & 0x07);
257 
258 	dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
259 
260 	ret = regmap_read(pdata->map, PCF2123_REG_CTRL2, &val);
261 	if (ret)
262 		return ret;
263 
264 	alm->enabled = !!(val & CTRL2_AIE);
265 
266 	return 0;
267 }
268 
269 static int pcf2123_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
270 {
271 	struct pcf2123_plat_data *pdata = dev_get_platdata(dev);
272 	u8 txbuf[4];
273 	int ret;
274 
275 	dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
276 
277 	/* Ensure alarm flag is clear */
278 	ret = regmap_update_bits(pdata->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
279 	if (ret)
280 		return ret;
281 
282 	/* Disable alarm interrupt */
283 	ret = regmap_update_bits(pdata->map, PCF2123_REG_CTRL2, CTRL2_AIE, 0);
284 	if (ret)
285 		return ret;
286 
287 	/* Set new alarm */
288 	txbuf[0] = bin2bcd(alm->time.tm_min & 0x7F);
289 	txbuf[1] = bin2bcd(alm->time.tm_hour & 0x3F);
290 	txbuf[2] = bin2bcd(alm->time.tm_mday & 0x3F);
291 	txbuf[3] = bin2bcd(alm->time.tm_wday & 0x07);
292 
293 	ret = regmap_bulk_write(pdata->map, PCF2123_REG_ALRM_MN, txbuf,
294 				sizeof(txbuf));
295 	if (ret)
296 		return ret;
297 
298 	/* Enable alarm interrupt */
299 	if (alm->enabled)	{
300 		ret = regmap_update_bits(pdata->map, PCF2123_REG_CTRL2,
301 						CTRL2_AIE, CTRL2_AIE);
302 		if (ret)
303 			return ret;
304 	}
305 
306 	return 0;
307 }
308 
309 static irqreturn_t pcf2123_rtc_irq(int irq, void *dev)
310 {
311 	struct pcf2123_plat_data *pdata = dev_get_platdata(dev);
312 	struct mutex *lock = &pdata->rtc->ops_lock;
313 	unsigned int val = 0;
314 	int ret = IRQ_NONE;
315 
316 	mutex_lock(lock);
317 	regmap_read(pdata->map, PCF2123_REG_CTRL2, &val);
318 
319 	/* Alarm? */
320 	if (val & CTRL2_AF) {
321 		ret = IRQ_HANDLED;
322 
323 		/* Clear alarm flag */
324 		regmap_update_bits(pdata->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
325 
326 		rtc_update_irq(pdata->rtc, 1, RTC_IRQF | RTC_AF);
327 	}
328 
329 	mutex_unlock(lock);
330 
331 	return ret;
332 }
333 
334 static int pcf2123_reset(struct device *dev)
335 {
336 	struct pcf2123_plat_data *pdata = dev_get_platdata(dev);
337 	int ret;
338 	unsigned int val = 0;
339 
340 	ret = regmap_write(pdata->map, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
341 	if (ret)
342 		return ret;
343 
344 	/* Stop the counter */
345 	dev_dbg(dev, "stopping RTC\n");
346 	ret = regmap_write(pdata->map, PCF2123_REG_CTRL1, CTRL1_STOP);
347 	if (ret)
348 		return ret;
349 
350 	/* See if the counter was actually stopped */
351 	dev_dbg(dev, "checking for presence of RTC\n");
352 	ret = regmap_read(pdata->map, PCF2123_REG_CTRL1, &val);
353 	if (ret)
354 		return ret;
355 
356 	dev_dbg(dev, "received data from RTC (0x%08X)\n", val);
357 	if (!(val & CTRL1_STOP))
358 		return -ENODEV;
359 
360 	/* Start the counter */
361 	ret = regmap_write(pdata->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
362 	if (ret)
363 		return ret;
364 
365 	return 0;
366 }
367 
368 static const struct rtc_class_ops pcf2123_rtc_ops = {
369 	.read_time	= pcf2123_rtc_read_time,
370 	.set_time	= pcf2123_rtc_set_time,
371 	.read_offset	= pcf2123_read_offset,
372 	.set_offset	= pcf2123_set_offset,
373 	.read_alarm	= pcf2123_rtc_read_alarm,
374 	.set_alarm	= pcf2123_rtc_set_alarm,
375 };
376 
377 static int pcf2123_probe(struct spi_device *spi)
378 {
379 	struct rtc_device *rtc;
380 	struct rtc_time tm;
381 	struct pcf2123_plat_data *pdata;
382 	int ret = 0;
383 
384 	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
385 				GFP_KERNEL);
386 	if (!pdata)
387 		return -ENOMEM;
388 	spi->dev.platform_data = pdata;
389 
390 	pdata->map = devm_regmap_init_spi(spi, &pcf2123_regmap_config);
391 
392 	if (IS_ERR(pdata->map)) {
393 		dev_err(&spi->dev, "regmap init failed.\n");
394 		goto kfree_exit;
395 	}
396 
397 	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
398 	if (ret < 0) {
399 		ret = pcf2123_reset(&spi->dev);
400 		if (ret < 0) {
401 			dev_err(&spi->dev, "chip not found\n");
402 			goto kfree_exit;
403 		}
404 	}
405 
406 	dev_info(&spi->dev, "spiclk %u KHz.\n",
407 			(spi->max_speed_hz + 500) / 1000);
408 
409 	/* Finalize the initialization */
410 	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
411 			&pcf2123_rtc_ops, THIS_MODULE);
412 
413 	if (IS_ERR(rtc)) {
414 		dev_err(&spi->dev, "failed to register.\n");
415 		ret = PTR_ERR(rtc);
416 		goto kfree_exit;
417 	}
418 
419 	pdata->rtc = rtc;
420 
421 	/* Register alarm irq */
422 	if (spi->irq > 0) {
423 		ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
424 				pcf2123_rtc_irq,
425 				IRQF_TRIGGER_LOW | IRQF_ONESHOT,
426 				pcf2123_driver.driver.name, &spi->dev);
427 		if (!ret)
428 			device_init_wakeup(&spi->dev, true);
429 		else
430 			dev_err(&spi->dev, "could not request irq.\n");
431 	}
432 
433 	/* The PCF2123's alarm only has minute accuracy. Must add timer
434 	 * support to this driver to generate interrupts more than once
435 	 * per minute.
436 	 */
437 	pdata->rtc->uie_unsupported = 1;
438 
439 	return 0;
440 
441 kfree_exit:
442 	spi->dev.platform_data = NULL;
443 	return ret;
444 }
445 
446 #ifdef CONFIG_OF
447 static const struct of_device_id pcf2123_dt_ids[] = {
448 	{ .compatible = "nxp,rtc-pcf2123", },
449 	{ .compatible = "microcrystal,rv2123", },
450 	{ /* sentinel */ }
451 };
452 MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
453 #endif
454 
455 static struct spi_driver pcf2123_driver = {
456 	.driver	= {
457 			.name	= "rtc-pcf2123",
458 			.of_match_table = of_match_ptr(pcf2123_dt_ids),
459 	},
460 	.probe	= pcf2123_probe,
461 };
462 
463 module_spi_driver(pcf2123_driver);
464 
465 MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
466 MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
467 MODULE_LICENSE("GPL");
468