xref: /openbmc/linux/drivers/rtc/rtc-pcf2123.c (revision 74ce1896)
1 /*
2  * An SPI driver for the Philips PCF2123 RTC
3  * Copyright 2009 Cyber Switching, Inc.
4  *
5  * Author: Chris Verges <chrisv@cyberswitching.com>
6  * Maintainers: http://www.cyberswitching.com
7  *
8  * based on the RS5C348 driver in this same directory.
9  *
10  * Thanks to Christian Pellegrin <chripell@fsfe.org> for
11  * the sysfs contributions to this driver.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  *
17  * Please note that the CS is active high, so platform data
18  * should look something like:
19  *
20  * static struct spi_board_info ek_spi_devices[] = {
21  *	...
22  *	{
23  *		.modalias		= "rtc-pcf2123",
24  *		.chip_select		= 1,
25  *		.controller_data	= (void *)AT91_PIN_PA10,
26  *		.max_speed_hz		= 1000 * 1000,
27  *		.mode			= SPI_CS_HIGH,
28  *		.bus_num		= 0,
29  *	},
30  *	...
31  *};
32  *
33  */
34 
35 #include <linux/bcd.h>
36 #include <linux/delay.h>
37 #include <linux/device.h>
38 #include <linux/errno.h>
39 #include <linux/init.h>
40 #include <linux/kernel.h>
41 #include <linux/of.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/rtc.h>
45 #include <linux/spi/spi.h>
46 #include <linux/module.h>
47 #include <linux/sysfs.h>
48 
49 /* REGISTERS */
50 #define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
51 #define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
52 #define PCF2123_REG_SC		(0x02)	/* datetime */
53 #define PCF2123_REG_MN		(0x03)
54 #define PCF2123_REG_HR		(0x04)
55 #define PCF2123_REG_DM		(0x05)
56 #define PCF2123_REG_DW		(0x06)
57 #define PCF2123_REG_MO		(0x07)
58 #define PCF2123_REG_YR		(0x08)
59 #define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
60 #define PCF2123_REG_ALRM_HR	(0x0a)
61 #define PCF2123_REG_ALRM_DM	(0x0b)
62 #define PCF2123_REG_ALRM_DW	(0x0c)
63 #define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
64 #define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
65 #define PCF2123_REG_CTDWN_TMR	(0x0f)
66 
67 /* PCF2123_REG_CTRL1 BITS */
68 #define CTRL1_CLEAR		(0)	/* Clear */
69 #define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
70 #define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
71 #define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
72 #define CTRL1_STOP		BIT(5)	/* Stop the clock */
73 #define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
74 
75 /* PCF2123_REG_CTRL2 BITS */
76 #define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
77 #define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
78 #define CTRL2_TF		BIT(2)	/* Countdown timer flag */
79 #define CTRL2_AF		BIT(3)	/* Alarm flag */
80 #define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
81 #define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
82 #define CTRL2_SI		BIT(6)	/* Second irq enable */
83 #define CTRL2_MI		BIT(7)	/* Minute irq enable */
84 
85 /* PCF2123_REG_SC BITS */
86 #define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
87 
88 /* PCF2123_REG_ALRM_XX BITS */
89 #define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */
90 
91 /* PCF2123_REG_TMR_CLKOUT BITS */
92 #define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
93 #define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
94 #define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
95 #define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
96 #define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
97 
98 /* PCF2123_REG_OFFSET BITS */
99 #define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
100 #define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
101 #define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
102 
103 /* READ/WRITE ADDRESS BITS */
104 #define PCF2123_WRITE		BIT(4)
105 #define PCF2123_READ		(BIT(4) | BIT(7))
106 
107 
108 static struct spi_driver pcf2123_driver;
109 
110 struct pcf2123_sysfs_reg {
111 	struct device_attribute attr;
112 	char name[2];
113 };
114 
115 struct pcf2123_plat_data {
116 	struct rtc_device *rtc;
117 	struct pcf2123_sysfs_reg regs[16];
118 };
119 
120 /*
121  * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
122  * is released properly after an SPI write.  This function should be
123  * called after EVERY read/write call over SPI.
124  */
125 static inline void pcf2123_delay_trec(void)
126 {
127 	ndelay(30);
128 }
129 
130 static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
131 {
132 	struct spi_device *spi = to_spi_device(dev);
133 	int ret;
134 
135 	reg |= PCF2123_READ;
136 	ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
137 	pcf2123_delay_trec();
138 
139 	return ret;
140 }
141 
142 static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
143 {
144 	struct spi_device *spi = to_spi_device(dev);
145 	int ret;
146 
147 	txbuf[0] |= PCF2123_WRITE;
148 	ret = spi_write(spi, txbuf, size);
149 	pcf2123_delay_trec();
150 
151 	return ret;
152 }
153 
154 static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
155 {
156 	u8 txbuf[2];
157 
158 	txbuf[0] = reg;
159 	txbuf[1] = val;
160 	return pcf2123_write(dev, txbuf, sizeof(txbuf));
161 }
162 
163 static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
164 			    char *buffer)
165 {
166 	struct pcf2123_sysfs_reg *r;
167 	u8 rxbuf[1];
168 	unsigned long reg;
169 	int ret;
170 
171 	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
172 
173 	ret = kstrtoul(r->name, 16, &reg);
174 	if (ret)
175 		return ret;
176 
177 	ret = pcf2123_read(dev, reg, rxbuf, 1);
178 	if (ret < 0)
179 		return -EIO;
180 
181 	return sprintf(buffer, "0x%x\n", rxbuf[0]);
182 }
183 
184 static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
185 			     const char *buffer, size_t count)
186 {
187 	struct pcf2123_sysfs_reg *r;
188 	unsigned long reg;
189 	unsigned long val;
190 
191 	int ret;
192 
193 	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
194 
195 	ret = kstrtoul(r->name, 16, &reg);
196 	if (ret)
197 		return ret;
198 
199 	ret = kstrtoul(buffer, 10, &val);
200 	if (ret)
201 		return ret;
202 
203 	ret = pcf2123_write_reg(dev, reg, val);
204 	if (ret < 0)
205 		return -EIO;
206 	return count;
207 }
208 
209 static int pcf2123_read_offset(struct device *dev, long *offset)
210 {
211 	int ret;
212 	s8 reg;
213 
214 	ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
215 	if (ret < 0)
216 		return ret;
217 
218 	if (reg & OFFSET_COARSE)
219 		reg <<= 1; /* multiply by 2 and sign extend */
220 	else
221 		reg = sign_extend32(reg, OFFSET_SIGN_BIT);
222 
223 	*offset = ((long)reg) * OFFSET_STEP;
224 
225 	return 0;
226 }
227 
228 /*
229  * The offset register is a 7 bit signed value with a coarse bit in bit 7.
230  * The main difference between the two is normal offset adjusts the first
231  * second of n minutes every other hour, with 61, 62 and 63 being shoved
232  * into the 60th minute.
233  * The coarse adjustment does the same, but every hour.
234  * the two overlap, with every even normal offset value corresponding
235  * to a coarse offset. Based on this algorithm, it seems that despite the
236  * name, coarse offset is a better fit for overlapping values.
237  */
238 static int pcf2123_set_offset(struct device *dev, long offset)
239 {
240 	s8 reg;
241 
242 	if (offset > OFFSET_STEP * 127)
243 		reg = 127;
244 	else if (offset < OFFSET_STEP * -128)
245 		reg = -128;
246 	else
247 		reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
248 
249 	/* choose fine offset only for odd values in the normal range */
250 	if (reg & 1 && reg <= 63 && reg >= -64) {
251 		/* Normal offset. Clear the coarse bit */
252 		reg &= ~OFFSET_COARSE;
253 	} else {
254 		/* Coarse offset. Divide by 2 and set the coarse bit */
255 		reg >>= 1;
256 		reg |= OFFSET_COARSE;
257 	}
258 
259 	return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
260 }
261 
262 static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
263 {
264 	u8 rxbuf[7];
265 	int ret;
266 
267 	ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
268 	if (ret < 0)
269 		return ret;
270 
271 	if (rxbuf[0] & OSC_HAS_STOPPED) {
272 		dev_info(dev, "clock was stopped. Time is not valid\n");
273 		return -EINVAL;
274 	}
275 
276 	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
277 	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
278 	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
279 	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
280 	tm->tm_wday = rxbuf[4] & 0x07;
281 	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
282 	tm->tm_year = bcd2bin(rxbuf[6]);
283 	if (tm->tm_year < 70)
284 		tm->tm_year += 100;	/* assume we are in 1970...2069 */
285 
286 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
287 			"mday=%d, mon=%d, year=%d, wday=%d\n",
288 			__func__,
289 			tm->tm_sec, tm->tm_min, tm->tm_hour,
290 			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
291 
292 	return rtc_valid_tm(tm);
293 }
294 
295 static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
296 {
297 	u8 txbuf[8];
298 	int ret;
299 
300 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
301 			"mday=%d, mon=%d, year=%d, wday=%d\n",
302 			__func__,
303 			tm->tm_sec, tm->tm_min, tm->tm_hour,
304 			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
305 
306 	/* Stop the counter first */
307 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
308 	if (ret < 0)
309 		return ret;
310 
311 	/* Set the new time */
312 	txbuf[0] = PCF2123_REG_SC;
313 	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
314 	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
315 	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
316 	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
317 	txbuf[5] = tm->tm_wday & 0x07;
318 	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
319 	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
320 
321 	ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
322 	if (ret < 0)
323 		return ret;
324 
325 	/* Start the counter */
326 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
327 	if (ret < 0)
328 		return ret;
329 
330 	return 0;
331 }
332 
333 static int pcf2123_reset(struct device *dev)
334 {
335 	int ret;
336 	u8  rxbuf[2];
337 
338 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
339 	if (ret < 0)
340 		return ret;
341 
342 	/* Stop the counter */
343 	dev_dbg(dev, "stopping RTC\n");
344 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
345 	if (ret < 0)
346 		return ret;
347 
348 	/* See if the counter was actually stopped */
349 	dev_dbg(dev, "checking for presence of RTC\n");
350 	ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
351 	if (ret < 0)
352 		return ret;
353 
354 	dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
355 		rxbuf[0], rxbuf[1]);
356 	if (!(rxbuf[0] & CTRL1_STOP))
357 		return -ENODEV;
358 
359 	/* Start the counter */
360 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
361 	if (ret < 0)
362 		return ret;
363 
364 	return 0;
365 }
366 
367 static const struct rtc_class_ops pcf2123_rtc_ops = {
368 	.read_time	= pcf2123_rtc_read_time,
369 	.set_time	= pcf2123_rtc_set_time,
370 	.read_offset	= pcf2123_read_offset,
371 	.set_offset	= pcf2123_set_offset,
372 
373 };
374 
375 static int pcf2123_probe(struct spi_device *spi)
376 {
377 	struct rtc_device *rtc;
378 	struct rtc_time tm;
379 	struct pcf2123_plat_data *pdata;
380 	int ret, i;
381 
382 	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
383 				GFP_KERNEL);
384 	if (!pdata)
385 		return -ENOMEM;
386 	spi->dev.platform_data = pdata;
387 
388 	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
389 	if (ret < 0) {
390 		ret = pcf2123_reset(&spi->dev);
391 		if (ret < 0) {
392 			dev_err(&spi->dev, "chip not found\n");
393 			goto kfree_exit;
394 		}
395 	}
396 
397 	dev_info(&spi->dev, "spiclk %u KHz.\n",
398 			(spi->max_speed_hz + 500) / 1000);
399 
400 	/* Finalize the initialization */
401 	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
402 			&pcf2123_rtc_ops, THIS_MODULE);
403 
404 	if (IS_ERR(rtc)) {
405 		dev_err(&spi->dev, "failed to register.\n");
406 		ret = PTR_ERR(rtc);
407 		goto kfree_exit;
408 	}
409 
410 	pdata->rtc = rtc;
411 
412 	for (i = 0; i < 16; i++) {
413 		sysfs_attr_init(&pdata->regs[i].attr.attr);
414 		sprintf(pdata->regs[i].name, "%1x", i);
415 		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
416 		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
417 		pdata->regs[i].attr.show = pcf2123_show;
418 		pdata->regs[i].attr.store = pcf2123_store;
419 		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
420 		if (ret) {
421 			dev_err(&spi->dev, "Unable to create sysfs %s\n",
422 				pdata->regs[i].name);
423 			goto sysfs_exit;
424 		}
425 	}
426 
427 	return 0;
428 
429 sysfs_exit:
430 	for (i--; i >= 0; i--)
431 		device_remove_file(&spi->dev, &pdata->regs[i].attr);
432 
433 kfree_exit:
434 	spi->dev.platform_data = NULL;
435 	return ret;
436 }
437 
438 static int pcf2123_remove(struct spi_device *spi)
439 {
440 	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
441 	int i;
442 
443 	if (pdata) {
444 		for (i = 0; i < 16; i++)
445 			if (pdata->regs[i].name[0])
446 				device_remove_file(&spi->dev,
447 						   &pdata->regs[i].attr);
448 	}
449 
450 	return 0;
451 }
452 
453 #ifdef CONFIG_OF
454 static const struct of_device_id pcf2123_dt_ids[] = {
455 	{ .compatible = "nxp,rtc-pcf2123", },
456 	{ /* sentinel */ }
457 };
458 MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
459 #endif
460 
461 static struct spi_driver pcf2123_driver = {
462 	.driver	= {
463 			.name	= "rtc-pcf2123",
464 			.of_match_table = of_match_ptr(pcf2123_dt_ids),
465 	},
466 	.probe	= pcf2123_probe,
467 	.remove	= pcf2123_remove,
468 };
469 
470 module_spi_driver(pcf2123_driver);
471 
472 MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
473 MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
474 MODULE_LICENSE("GPL");
475