xref: /openbmc/linux/drivers/rtc/rtc-pcf2123.c (revision 56a0eccd)
1 /*
2  * An SPI driver for the Philips PCF2123 RTC
3  * Copyright 2009 Cyber Switching, Inc.
4  *
5  * Author: Chris Verges <chrisv@cyberswitching.com>
6  * Maintainers: http://www.cyberswitching.com
7  *
8  * based on the RS5C348 driver in this same directory.
9  *
10  * Thanks to Christian Pellegrin <chripell@fsfe.org> for
11  * the sysfs contributions to this driver.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  *
17  * Please note that the CS is active high, so platform data
18  * should look something like:
19  *
20  * static struct spi_board_info ek_spi_devices[] = {
21  *	...
22  *	{
23  *		.modalias		= "rtc-pcf2123",
24  *		.chip_select		= 1,
25  *		.controller_data	= (void *)AT91_PIN_PA10,
26  *		.max_speed_hz		= 1000 * 1000,
27  *		.mode			= SPI_CS_HIGH,
28  *		.bus_num		= 0,
29  *	},
30  *	...
31  *};
32  *
33  */
34 
35 #include <linux/bcd.h>
36 #include <linux/delay.h>
37 #include <linux/device.h>
38 #include <linux/errno.h>
39 #include <linux/init.h>
40 #include <linux/kernel.h>
41 #include <linux/of.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/rtc.h>
45 #include <linux/spi/spi.h>
46 #include <linux/module.h>
47 #include <linux/sysfs.h>
48 
49 #define DRV_VERSION "0.6"
50 
51 /* REGISTERS */
52 #define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
53 #define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
54 #define PCF2123_REG_SC		(0x02)	/* datetime */
55 #define PCF2123_REG_MN		(0x03)
56 #define PCF2123_REG_HR		(0x04)
57 #define PCF2123_REG_DM		(0x05)
58 #define PCF2123_REG_DW		(0x06)
59 #define PCF2123_REG_MO		(0x07)
60 #define PCF2123_REG_YR		(0x08)
61 #define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
62 #define PCF2123_REG_ALRM_HR	(0x0a)
63 #define PCF2123_REG_ALRM_DM	(0x0b)
64 #define PCF2123_REG_ALRM_DW	(0x0c)
65 #define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
66 #define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
67 #define PCF2123_REG_CTDWN_TMR	(0x0f)
68 
69 /* PCF2123_REG_CTRL1 BITS */
70 #define CTRL1_CLEAR		(0)	/* Clear */
71 #define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
72 #define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
73 #define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
74 #define CTRL1_STOP		BIT(5)	/* Stop the clock */
75 #define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
76 
77 /* PCF2123_REG_CTRL2 BITS */
78 #define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
79 #define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
80 #define CTRL2_TF		BIT(2)	/* Countdown timer flag */
81 #define CTRL2_AF		BIT(3)	/* Alarm flag */
82 #define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
83 #define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
84 #define CTRL2_SI		BIT(6)	/* Second irq enable */
85 #define CTRL2_MI		BIT(7)	/* Minute irq enable */
86 
87 /* PCF2123_REG_SC BITS */
88 #define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
89 
90 /* PCF2123_REG_ALRM_XX BITS */
91 #define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */
92 
93 /* PCF2123_REG_TMR_CLKOUT BITS */
94 #define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
95 #define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
96 #define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
97 #define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
98 #define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
99 
100 /* PCF2123_REG_OFFSET BITS */
101 #define OFFSET_SIGN_BIT		BIT(6)	/* 2's complement sign bit */
102 #define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
103 #define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
104 
105 /* READ/WRITE ADDRESS BITS */
106 #define PCF2123_WRITE		BIT(4)
107 #define PCF2123_READ		(BIT(4) | BIT(7))
108 
109 
110 static struct spi_driver pcf2123_driver;
111 
112 struct pcf2123_sysfs_reg {
113 	struct device_attribute attr;
114 	char name[2];
115 };
116 
117 struct pcf2123_plat_data {
118 	struct rtc_device *rtc;
119 	struct pcf2123_sysfs_reg regs[16];
120 };
121 
122 /*
123  * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
124  * is released properly after an SPI write.  This function should be
125  * called after EVERY read/write call over SPI.
126  */
127 static inline void pcf2123_delay_trec(void)
128 {
129 	ndelay(30);
130 }
131 
132 static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
133 {
134 	struct spi_device *spi = to_spi_device(dev);
135 	int ret;
136 
137 	reg |= PCF2123_READ;
138 	ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
139 	pcf2123_delay_trec();
140 
141 	return ret;
142 }
143 
144 static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
145 {
146 	struct spi_device *spi = to_spi_device(dev);
147 	int ret;
148 
149 	txbuf[0] |= PCF2123_WRITE;
150 	ret = spi_write(spi, txbuf, size);
151 	pcf2123_delay_trec();
152 
153 	return ret;
154 }
155 
156 static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
157 {
158 	u8 txbuf[2];
159 
160 	txbuf[0] = reg;
161 	txbuf[1] = val;
162 	return pcf2123_write(dev, txbuf, sizeof(txbuf));
163 }
164 
165 static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
166 			    char *buffer)
167 {
168 	struct pcf2123_sysfs_reg *r;
169 	u8 rxbuf[1];
170 	unsigned long reg;
171 	int ret;
172 
173 	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
174 
175 	ret = kstrtoul(r->name, 16, &reg);
176 	if (ret)
177 		return ret;
178 
179 	ret = pcf2123_read(dev, reg, rxbuf, 1);
180 	if (ret < 0)
181 		return -EIO;
182 
183 	return sprintf(buffer, "0x%x\n", rxbuf[0]);
184 }
185 
186 static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
187 			     const char *buffer, size_t count) {
188 	struct pcf2123_sysfs_reg *r;
189 	unsigned long reg;
190 	unsigned long val;
191 
192 	int ret;
193 
194 	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
195 
196 	ret = kstrtoul(r->name, 16, &reg);
197 	if (ret)
198 		return ret;
199 
200 	ret = kstrtoul(buffer, 10, &val);
201 	if (ret)
202 		return ret;
203 
204 	pcf2123_write_reg(dev, reg, val);
205 	if (ret < 0)
206 		return -EIO;
207 	return count;
208 }
209 
210 static int pcf2123_read_offset(struct device *dev, long *offset)
211 {
212 	int ret;
213 	s8 reg;
214 
215 	ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
216 	if (ret < 0)
217 		return ret;
218 
219 	if (reg & OFFSET_COARSE)
220 		reg <<= 1; /* multiply by 2 and sign extend */
221 	else
222 		reg |= (reg & OFFSET_SIGN_BIT) << 1; /* sign extend only */
223 
224 	*offset = ((long)reg) * OFFSET_STEP;
225 
226 	return 0;
227 }
228 
229 /*
230  * The offset register is a 7 bit signed value with a coarse bit in bit 7.
231  * The main difference between the two is normal offset adjusts the first
232  * second of n minutes every other hour, with 61, 62 and 63 being shoved
233  * into the 60th minute.
234  * The coarse adjustment does the same, but every hour.
235  * the two overlap, with every even normal offset value corresponding
236  * to a coarse offset. Based on this algorithm, it seems that despite the
237  * name, coarse offset is a better fit for overlapping values.
238  */
239 static int pcf2123_set_offset(struct device *dev, long offset)
240 {
241 	s8 reg;
242 
243 	if (offset > OFFSET_STEP * 127)
244 		reg = 127;
245 	else if (offset < OFFSET_STEP * -128)
246 		reg = -128;
247 	else
248 		reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
249 
250 	/* choose fine offset only for odd values in the normal range */
251 	if (reg & 1 && reg <= 63 && reg >= -64) {
252 		/* Normal offset. Clear the coarse bit */
253 		reg &= ~OFFSET_COARSE;
254 	} else {
255 		/* Coarse offset. Divide by 2 and set the coarse bit */
256 		reg >>= 1;
257 		reg |= OFFSET_COARSE;
258 	}
259 
260 	return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
261 }
262 
263 static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
264 {
265 	u8 rxbuf[7];
266 	int ret;
267 
268 	ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
269 	if (ret < 0)
270 		return ret;
271 
272 	if (rxbuf[0] & OSC_HAS_STOPPED) {
273 		dev_info(dev, "clock was stopped. Time is not valid\n");
274 		return -EINVAL;
275 	}
276 
277 	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
278 	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
279 	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
280 	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
281 	tm->tm_wday = rxbuf[4] & 0x07;
282 	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
283 	tm->tm_year = bcd2bin(rxbuf[6]);
284 	if (tm->tm_year < 70)
285 		tm->tm_year += 100;	/* assume we are in 1970...2069 */
286 
287 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
288 			"mday=%d, mon=%d, year=%d, wday=%d\n",
289 			__func__,
290 			tm->tm_sec, tm->tm_min, tm->tm_hour,
291 			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
292 
293 	return rtc_valid_tm(tm);
294 }
295 
296 static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
297 {
298 	u8 txbuf[8];
299 	int ret;
300 
301 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
302 			"mday=%d, mon=%d, year=%d, wday=%d\n",
303 			__func__,
304 			tm->tm_sec, tm->tm_min, tm->tm_hour,
305 			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
306 
307 	/* Stop the counter first */
308 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
309 	if (ret < 0)
310 		return ret;
311 
312 	/* Set the new time */
313 	txbuf[0] = PCF2123_REG_SC;
314 	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
315 	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
316 	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
317 	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
318 	txbuf[5] = tm->tm_wday & 0x07;
319 	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
320 	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
321 
322 	ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
323 	if (ret < 0)
324 		return ret;
325 
326 	/* Start the counter */
327 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
328 	if (ret < 0)
329 		return ret;
330 
331 	return 0;
332 }
333 
334 static int pcf2123_reset(struct device *dev)
335 {
336 	int ret;
337 	u8  rxbuf[2];
338 
339 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
340 	if (ret < 0)
341 		return ret;
342 
343 	/* Stop the counter */
344 	dev_dbg(dev, "stopping RTC\n");
345 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
346 	if (ret < 0)
347 		return ret;
348 
349 	/* See if the counter was actually stopped */
350 	dev_dbg(dev, "checking for presence of RTC\n");
351 	ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
352 	if (ret < 0)
353 		return ret;
354 
355 	dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
356 		rxbuf[0], rxbuf[1]);
357 	if (!(rxbuf[0] & CTRL1_STOP))
358 		return -ENODEV;
359 
360 	/* Start the counter */
361 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
362 	if (ret < 0)
363 		return ret;
364 
365 	return 0;
366 }
367 
368 static const struct rtc_class_ops pcf2123_rtc_ops = {
369 	.read_time	= pcf2123_rtc_read_time,
370 	.set_time	= pcf2123_rtc_set_time,
371 	.read_offset	= pcf2123_read_offset,
372 	.set_offset	= pcf2123_set_offset,
373 
374 };
375 
376 static int pcf2123_probe(struct spi_device *spi)
377 {
378 	struct rtc_device *rtc;
379 	struct rtc_time tm;
380 	struct pcf2123_plat_data *pdata;
381 	int ret, i;
382 
383 	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
384 				GFP_KERNEL);
385 	if (!pdata)
386 		return -ENOMEM;
387 	spi->dev.platform_data = pdata;
388 
389 	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
390 	if (ret < 0) {
391 		ret = pcf2123_reset(&spi->dev);
392 		if (ret < 0) {
393 			dev_err(&spi->dev, "chip not found\n");
394 			goto kfree_exit;
395 		}
396 	}
397 
398 	dev_info(&spi->dev, "chip found, driver version " DRV_VERSION "\n");
399 	dev_info(&spi->dev, "spiclk %u KHz.\n",
400 			(spi->max_speed_hz + 500) / 1000);
401 
402 	/* Finalize the initialization */
403 	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
404 			&pcf2123_rtc_ops, THIS_MODULE);
405 
406 	if (IS_ERR(rtc)) {
407 		dev_err(&spi->dev, "failed to register.\n");
408 		ret = PTR_ERR(rtc);
409 		goto kfree_exit;
410 	}
411 
412 	pdata->rtc = rtc;
413 
414 	for (i = 0; i < 16; i++) {
415 		sysfs_attr_init(&pdata->regs[i].attr.attr);
416 		sprintf(pdata->regs[i].name, "%1x", i);
417 		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
418 		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
419 		pdata->regs[i].attr.show = pcf2123_show;
420 		pdata->regs[i].attr.store = pcf2123_store;
421 		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
422 		if (ret) {
423 			dev_err(&spi->dev, "Unable to create sysfs %s\n",
424 				pdata->regs[i].name);
425 			goto sysfs_exit;
426 		}
427 	}
428 
429 	return 0;
430 
431 sysfs_exit:
432 	for (i--; i >= 0; i--)
433 		device_remove_file(&spi->dev, &pdata->regs[i].attr);
434 
435 kfree_exit:
436 	spi->dev.platform_data = NULL;
437 	return ret;
438 }
439 
440 static int pcf2123_remove(struct spi_device *spi)
441 {
442 	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
443 	int i;
444 
445 	if (pdata) {
446 		for (i = 0; i < 16; i++)
447 			if (pdata->regs[i].name[0])
448 				device_remove_file(&spi->dev,
449 						   &pdata->regs[i].attr);
450 	}
451 
452 	return 0;
453 }
454 
455 #ifdef CONFIG_OF
456 static const struct of_device_id pcf2123_dt_ids[] = {
457 	{ .compatible = "nxp,rtc-pcf2123", },
458 	{ /* sentinel */ }
459 };
460 MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
461 #endif
462 
463 static struct spi_driver pcf2123_driver = {
464 	.driver	= {
465 			.name	= "rtc-pcf2123",
466 			.of_match_table = of_match_ptr(pcf2123_dt_ids),
467 	},
468 	.probe	= pcf2123_probe,
469 	.remove	= pcf2123_remove,
470 };
471 
472 module_spi_driver(pcf2123_driver);
473 
474 MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
475 MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
476 MODULE_LICENSE("GPL");
477 MODULE_VERSION(DRV_VERSION);
478