xref: /openbmc/linux/drivers/rtc/rtc-omap.c (revision a06c488d)
1 /*
2  * TI OMAP Real Time Clock interface for Linux
3  *
4  * Copyright (C) 2003 MontaVista Software, Inc.
5  * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
6  *
7  * Copyright (C) 2006 David Brownell (new RTC framework)
8  * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/ioport.h>
20 #include <linux/delay.h>
21 #include <linux/rtc.h>
22 #include <linux/bcd.h>
23 #include <linux/platform_device.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/io.h>
28 #include <linux/clk.h>
29 
30 /*
31  * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
32  * with century-range alarm matching, driven by the 32kHz clock.
33  *
34  * The main user-visible ways it differs from PC RTCs are by omitting
35  * "don't care" alarm fields and sub-second periodic IRQs, and having
36  * an autoadjust mechanism to calibrate to the true oscillator rate.
37  *
38  * Board-specific wiring options include using split power mode with
39  * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
40  * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
41  * low power modes) for OMAP1 boards (OMAP-L138 has this built into
42  * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
43  */
44 
45 /* RTC registers */
46 #define OMAP_RTC_SECONDS_REG		0x00
47 #define OMAP_RTC_MINUTES_REG		0x04
48 #define OMAP_RTC_HOURS_REG		0x08
49 #define OMAP_RTC_DAYS_REG		0x0C
50 #define OMAP_RTC_MONTHS_REG		0x10
51 #define OMAP_RTC_YEARS_REG		0x14
52 #define OMAP_RTC_WEEKS_REG		0x18
53 
54 #define OMAP_RTC_ALARM_SECONDS_REG	0x20
55 #define OMAP_RTC_ALARM_MINUTES_REG	0x24
56 #define OMAP_RTC_ALARM_HOURS_REG	0x28
57 #define OMAP_RTC_ALARM_DAYS_REG		0x2c
58 #define OMAP_RTC_ALARM_MONTHS_REG	0x30
59 #define OMAP_RTC_ALARM_YEARS_REG	0x34
60 
61 #define OMAP_RTC_CTRL_REG		0x40
62 #define OMAP_RTC_STATUS_REG		0x44
63 #define OMAP_RTC_INTERRUPTS_REG		0x48
64 
65 #define OMAP_RTC_COMP_LSB_REG		0x4c
66 #define OMAP_RTC_COMP_MSB_REG		0x50
67 #define OMAP_RTC_OSC_REG		0x54
68 
69 #define OMAP_RTC_KICK0_REG		0x6c
70 #define OMAP_RTC_KICK1_REG		0x70
71 
72 #define OMAP_RTC_IRQWAKEEN		0x7c
73 
74 #define OMAP_RTC_ALARM2_SECONDS_REG	0x80
75 #define OMAP_RTC_ALARM2_MINUTES_REG	0x84
76 #define OMAP_RTC_ALARM2_HOURS_REG	0x88
77 #define OMAP_RTC_ALARM2_DAYS_REG	0x8c
78 #define OMAP_RTC_ALARM2_MONTHS_REG	0x90
79 #define OMAP_RTC_ALARM2_YEARS_REG	0x94
80 
81 #define OMAP_RTC_PMIC_REG		0x98
82 
83 /* OMAP_RTC_CTRL_REG bit fields: */
84 #define OMAP_RTC_CTRL_SPLIT		BIT(7)
85 #define OMAP_RTC_CTRL_DISABLE		BIT(6)
86 #define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
87 #define OMAP_RTC_CTRL_TEST		BIT(4)
88 #define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
89 #define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
90 #define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
91 #define OMAP_RTC_CTRL_STOP		BIT(0)
92 
93 /* OMAP_RTC_STATUS_REG bit fields: */
94 #define OMAP_RTC_STATUS_POWER_UP	BIT(7)
95 #define OMAP_RTC_STATUS_ALARM2		BIT(7)
96 #define OMAP_RTC_STATUS_ALARM		BIT(6)
97 #define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
98 #define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
99 #define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
100 #define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
101 #define OMAP_RTC_STATUS_RUN		BIT(1)
102 #define OMAP_RTC_STATUS_BUSY		BIT(0)
103 
104 /* OMAP_RTC_INTERRUPTS_REG bit fields: */
105 #define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
106 #define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
107 #define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
108 
109 /* OMAP_RTC_OSC_REG bit fields: */
110 #define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
111 #define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
112 
113 /* OMAP_RTC_IRQWAKEEN bit fields: */
114 #define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
115 
116 /* OMAP_RTC_PMIC bit fields: */
117 #define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
118 
119 /* OMAP_RTC_KICKER values */
120 #define	KICK0_VALUE			0x83e70b13
121 #define	KICK1_VALUE			0x95a4f1e0
122 
123 struct omap_rtc;
124 
125 struct omap_rtc_device_type {
126 	bool has_32kclk_en;
127 	bool has_irqwakeen;
128 	bool has_pmic_mode;
129 	bool has_power_up_reset;
130 	void (*lock)(struct omap_rtc *rtc);
131 	void (*unlock)(struct omap_rtc *rtc);
132 };
133 
134 struct omap_rtc {
135 	struct rtc_device *rtc;
136 	void __iomem *base;
137 	struct clk *clk;
138 	int irq_alarm;
139 	int irq_timer;
140 	u8 interrupts_reg;
141 	bool is_pmic_controller;
142 	bool has_ext_clk;
143 	const struct omap_rtc_device_type *type;
144 };
145 
146 static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
147 {
148 	return readb(rtc->base + reg);
149 }
150 
151 static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
152 {
153 	return readl(rtc->base + reg);
154 }
155 
156 static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
157 {
158 	writeb(val, rtc->base + reg);
159 }
160 
161 static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
162 {
163 	writel(val, rtc->base + reg);
164 }
165 
166 static void am3352_rtc_unlock(struct omap_rtc *rtc)
167 {
168 	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
169 	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
170 }
171 
172 static void am3352_rtc_lock(struct omap_rtc *rtc)
173 {
174 	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
175 	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
176 }
177 
178 static void default_rtc_unlock(struct omap_rtc *rtc)
179 {
180 }
181 
182 static void default_rtc_lock(struct omap_rtc *rtc)
183 {
184 }
185 
186 /*
187  * We rely on the rtc framework to handle locking (rtc->ops_lock),
188  * so the only other requirement is that register accesses which
189  * require BUSY to be clear are made with IRQs locally disabled
190  */
191 static void rtc_wait_not_busy(struct omap_rtc *rtc)
192 {
193 	int count;
194 	u8 status;
195 
196 	/* BUSY may stay active for 1/32768 second (~30 usec) */
197 	for (count = 0; count < 50; count++) {
198 		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
199 		if (!(status & OMAP_RTC_STATUS_BUSY))
200 			break;
201 		udelay(1);
202 	}
203 	/* now we have ~15 usec to read/write various registers */
204 }
205 
206 static irqreturn_t rtc_irq(int irq, void *dev_id)
207 {
208 	struct omap_rtc	*rtc = dev_id;
209 	unsigned long events = 0;
210 	u8 irq_data;
211 
212 	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
213 
214 	/* alarm irq? */
215 	if (irq_data & OMAP_RTC_STATUS_ALARM) {
216 		rtc->type->unlock(rtc);
217 		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
218 		rtc->type->lock(rtc);
219 		events |= RTC_IRQF | RTC_AF;
220 	}
221 
222 	/* 1/sec periodic/update irq? */
223 	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
224 		events |= RTC_IRQF | RTC_UF;
225 
226 	rtc_update_irq(rtc->rtc, 1, events);
227 
228 	return IRQ_HANDLED;
229 }
230 
231 static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
232 {
233 	struct omap_rtc *rtc = dev_get_drvdata(dev);
234 	u8 reg, irqwake_reg = 0;
235 
236 	local_irq_disable();
237 	rtc_wait_not_busy(rtc);
238 	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
239 	if (rtc->type->has_irqwakeen)
240 		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
241 
242 	if (enabled) {
243 		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
244 		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
245 	} else {
246 		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
247 		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
248 	}
249 	rtc_wait_not_busy(rtc);
250 	rtc->type->unlock(rtc);
251 	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
252 	if (rtc->type->has_irqwakeen)
253 		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
254 	rtc->type->lock(rtc);
255 	local_irq_enable();
256 
257 	return 0;
258 }
259 
260 /* this hardware doesn't support "don't care" alarm fields */
261 static int tm2bcd(struct rtc_time *tm)
262 {
263 	if (rtc_valid_tm(tm) != 0)
264 		return -EINVAL;
265 
266 	tm->tm_sec = bin2bcd(tm->tm_sec);
267 	tm->tm_min = bin2bcd(tm->tm_min);
268 	tm->tm_hour = bin2bcd(tm->tm_hour);
269 	tm->tm_mday = bin2bcd(tm->tm_mday);
270 
271 	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
272 
273 	/* epoch == 1900 */
274 	if (tm->tm_year < 100 || tm->tm_year > 199)
275 		return -EINVAL;
276 	tm->tm_year = bin2bcd(tm->tm_year - 100);
277 
278 	return 0;
279 }
280 
281 static void bcd2tm(struct rtc_time *tm)
282 {
283 	tm->tm_sec = bcd2bin(tm->tm_sec);
284 	tm->tm_min = bcd2bin(tm->tm_min);
285 	tm->tm_hour = bcd2bin(tm->tm_hour);
286 	tm->tm_mday = bcd2bin(tm->tm_mday);
287 	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
288 	/* epoch == 1900 */
289 	tm->tm_year = bcd2bin(tm->tm_year) + 100;
290 }
291 
292 static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
293 {
294 	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
295 	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
296 	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
297 	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
298 	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
299 	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
300 }
301 
302 static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
303 {
304 	struct omap_rtc *rtc = dev_get_drvdata(dev);
305 
306 	/* we don't report wday/yday/isdst ... */
307 	local_irq_disable();
308 	rtc_wait_not_busy(rtc);
309 	omap_rtc_read_time_raw(rtc, tm);
310 	local_irq_enable();
311 
312 	bcd2tm(tm);
313 
314 	return 0;
315 }
316 
317 static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
318 {
319 	struct omap_rtc *rtc = dev_get_drvdata(dev);
320 
321 	if (tm2bcd(tm) < 0)
322 		return -EINVAL;
323 
324 	local_irq_disable();
325 	rtc_wait_not_busy(rtc);
326 
327 	rtc->type->unlock(rtc);
328 	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
329 	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
330 	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
331 	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
332 	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
333 	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
334 	rtc->type->lock(rtc);
335 
336 	local_irq_enable();
337 
338 	return 0;
339 }
340 
341 static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
342 {
343 	struct omap_rtc *rtc = dev_get_drvdata(dev);
344 	u8 interrupts;
345 
346 	local_irq_disable();
347 	rtc_wait_not_busy(rtc);
348 
349 	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
350 	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
351 	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
352 	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
353 	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
354 	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
355 
356 	local_irq_enable();
357 
358 	bcd2tm(&alm->time);
359 
360 	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
361 	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
362 
363 	return 0;
364 }
365 
366 static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
367 {
368 	struct omap_rtc *rtc = dev_get_drvdata(dev);
369 	u8 reg, irqwake_reg = 0;
370 
371 	if (tm2bcd(&alm->time) < 0)
372 		return -EINVAL;
373 
374 	local_irq_disable();
375 	rtc_wait_not_busy(rtc);
376 
377 	rtc->type->unlock(rtc);
378 	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
379 	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
380 	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
381 	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
382 	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
383 	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
384 
385 	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
386 	if (rtc->type->has_irqwakeen)
387 		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
388 
389 	if (alm->enabled) {
390 		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
391 		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
392 	} else {
393 		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
394 		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
395 	}
396 	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
397 	if (rtc->type->has_irqwakeen)
398 		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
399 	rtc->type->lock(rtc);
400 
401 	local_irq_enable();
402 
403 	return 0;
404 }
405 
406 static struct omap_rtc *omap_rtc_power_off_rtc;
407 
408 /*
409  * omap_rtc_poweroff: RTC-controlled power off
410  *
411  * The RTC can be used to control an external PMIC via the pmic_power_en pin,
412  * which can be configured to transition to OFF on ALARM2 events.
413  *
414  * Notes:
415  * The two-second alarm offset is the shortest offset possible as the alarm
416  * registers must be set before the next timer update and the offset
417  * calculation is too heavy for everything to be done within a single access
418  * period (~15 us).
419  *
420  * Called with local interrupts disabled.
421  */
422 static void omap_rtc_power_off(void)
423 {
424 	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
425 	struct rtc_time tm;
426 	unsigned long now;
427 	u32 val;
428 
429 	rtc->type->unlock(rtc);
430 	/* enable pmic_power_en control */
431 	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
432 	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
433 
434 	/* set alarm two seconds from now */
435 	omap_rtc_read_time_raw(rtc, &tm);
436 	bcd2tm(&tm);
437 	rtc_tm_to_time(&tm, &now);
438 	rtc_time_to_tm(now + 2, &tm);
439 
440 	if (tm2bcd(&tm) < 0) {
441 		dev_err(&rtc->rtc->dev, "power off failed\n");
442 		return;
443 	}
444 
445 	rtc_wait_not_busy(rtc);
446 
447 	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
448 	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
449 	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
450 	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
451 	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
452 	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
453 
454 	/*
455 	 * enable ALARM2 interrupt
456 	 *
457 	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
458 	 */
459 	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
460 	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
461 			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
462 	rtc->type->lock(rtc);
463 
464 	/*
465 	 * Wait for alarm to trigger (within two seconds) and external PMIC to
466 	 * power off the system. Add a 500 ms margin for external latencies
467 	 * (e.g. debounce circuits).
468 	 */
469 	mdelay(2500);
470 }
471 
472 static struct rtc_class_ops omap_rtc_ops = {
473 	.read_time	= omap_rtc_read_time,
474 	.set_time	= omap_rtc_set_time,
475 	.read_alarm	= omap_rtc_read_alarm,
476 	.set_alarm	= omap_rtc_set_alarm,
477 	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
478 };
479 
480 static const struct omap_rtc_device_type omap_rtc_default_type = {
481 	.has_power_up_reset = true,
482 	.lock		= default_rtc_lock,
483 	.unlock		= default_rtc_unlock,
484 };
485 
486 static const struct omap_rtc_device_type omap_rtc_am3352_type = {
487 	.has_32kclk_en	= true,
488 	.has_irqwakeen	= true,
489 	.has_pmic_mode	= true,
490 	.lock		= am3352_rtc_lock,
491 	.unlock		= am3352_rtc_unlock,
492 };
493 
494 static const struct omap_rtc_device_type omap_rtc_da830_type = {
495 	.lock		= am3352_rtc_lock,
496 	.unlock		= am3352_rtc_unlock,
497 };
498 
499 static const struct platform_device_id omap_rtc_id_table[] = {
500 	{
501 		.name	= "omap_rtc",
502 		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
503 	}, {
504 		.name	= "am3352-rtc",
505 		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
506 	}, {
507 		.name	= "da830-rtc",
508 		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
509 	}, {
510 		/* sentinel */
511 	}
512 };
513 MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
514 
515 static const struct of_device_id omap_rtc_of_match[] = {
516 	{
517 		.compatible	= "ti,am3352-rtc",
518 		.data		= &omap_rtc_am3352_type,
519 	}, {
520 		.compatible	= "ti,da830-rtc",
521 		.data		= &omap_rtc_da830_type,
522 	}, {
523 		/* sentinel */
524 	}
525 };
526 MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
527 
528 static int omap_rtc_probe(struct platform_device *pdev)
529 {
530 	struct omap_rtc	*rtc;
531 	struct resource	*res;
532 	u8 reg, mask, new_ctrl;
533 	const struct platform_device_id *id_entry;
534 	const struct of_device_id *of_id;
535 	int ret;
536 
537 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
538 	if (!rtc)
539 		return -ENOMEM;
540 
541 	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
542 	if (of_id) {
543 		rtc->type = of_id->data;
544 		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
545 				of_property_read_bool(pdev->dev.of_node,
546 						"system-power-controller");
547 	} else {
548 		id_entry = platform_get_device_id(pdev);
549 		rtc->type = (void *)id_entry->driver_data;
550 	}
551 
552 	rtc->irq_timer = platform_get_irq(pdev, 0);
553 	if (rtc->irq_timer <= 0)
554 		return -ENOENT;
555 
556 	rtc->irq_alarm = platform_get_irq(pdev, 1);
557 	if (rtc->irq_alarm <= 0)
558 		return -ENOENT;
559 
560 	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
561 	if (!IS_ERR(rtc->clk))
562 		rtc->has_ext_clk = true;
563 	else
564 		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
565 
566 	if (!IS_ERR(rtc->clk))
567 		clk_prepare_enable(rtc->clk);
568 
569 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
570 	rtc->base = devm_ioremap_resource(&pdev->dev, res);
571 	if (IS_ERR(rtc->base))
572 		return PTR_ERR(rtc->base);
573 
574 	platform_set_drvdata(pdev, rtc);
575 
576 	/* Enable the clock/module so that we can access the registers */
577 	pm_runtime_enable(&pdev->dev);
578 	pm_runtime_get_sync(&pdev->dev);
579 
580 	rtc->type->unlock(rtc);
581 
582 	/*
583 	 * disable interrupts
584 	 *
585 	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
586 	 */
587 	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
588 
589 	/* enable RTC functional clock */
590 	if (rtc->type->has_32kclk_en) {
591 		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
592 		rtc_writel(rtc, OMAP_RTC_OSC_REG,
593 				reg | OMAP_RTC_OSC_32KCLK_EN);
594 	}
595 
596 	/* clear old status */
597 	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
598 
599 	mask = OMAP_RTC_STATUS_ALARM;
600 
601 	if (rtc->type->has_pmic_mode)
602 		mask |= OMAP_RTC_STATUS_ALARM2;
603 
604 	if (rtc->type->has_power_up_reset) {
605 		mask |= OMAP_RTC_STATUS_POWER_UP;
606 		if (reg & OMAP_RTC_STATUS_POWER_UP)
607 			dev_info(&pdev->dev, "RTC power up reset detected\n");
608 	}
609 
610 	if (reg & mask)
611 		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
612 
613 	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
614 	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
615 	if (reg & OMAP_RTC_CTRL_STOP)
616 		dev_info(&pdev->dev, "already running\n");
617 
618 	/* force to 24 hour mode */
619 	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
620 	new_ctrl |= OMAP_RTC_CTRL_STOP;
621 
622 	/*
623 	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
624 	 *
625 	 *  - Device wake-up capability setting should come through chip
626 	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
627 	 *    flag in the platform device if the board is wired right for
628 	 *    being woken up by RTC alarm. For OMAP-L138, this capability
629 	 *    is built into the SoC by the "Deep Sleep" capability.
630 	 *
631 	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
632 	 *    rather than nPWRON_RESET, should forcibly enable split
633 	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
634 	 *    is write-only, and always reads as zero...)
635 	 */
636 
637 	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
638 		dev_info(&pdev->dev, "split power mode\n");
639 
640 	if (reg != new_ctrl)
641 		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
642 
643 	/*
644 	 * If we have the external clock then switch to it so we can keep
645 	 * ticking across suspend.
646 	 */
647 	if (rtc->has_ext_clk) {
648 		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
649 		rtc_write(rtc, OMAP_RTC_OSC_REG,
650 			  reg | OMAP_RTC_OSC_SEL_32KCLK_SRC);
651 	}
652 
653 	rtc->type->lock(rtc);
654 
655 	device_init_wakeup(&pdev->dev, true);
656 
657 	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
658 			&omap_rtc_ops, THIS_MODULE);
659 	if (IS_ERR(rtc->rtc)) {
660 		ret = PTR_ERR(rtc->rtc);
661 		goto err;
662 	}
663 
664 	/* handle periodic and alarm irqs */
665 	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
666 			dev_name(&rtc->rtc->dev), rtc);
667 	if (ret)
668 		goto err;
669 
670 	if (rtc->irq_timer != rtc->irq_alarm) {
671 		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
672 				dev_name(&rtc->rtc->dev), rtc);
673 		if (ret)
674 			goto err;
675 	}
676 
677 	if (rtc->is_pmic_controller) {
678 		if (!pm_power_off) {
679 			omap_rtc_power_off_rtc = rtc;
680 			pm_power_off = omap_rtc_power_off;
681 		}
682 	}
683 
684 	return 0;
685 
686 err:
687 	device_init_wakeup(&pdev->dev, false);
688 	rtc->type->lock(rtc);
689 	pm_runtime_put_sync(&pdev->dev);
690 	pm_runtime_disable(&pdev->dev);
691 
692 	return ret;
693 }
694 
695 static int __exit omap_rtc_remove(struct platform_device *pdev)
696 {
697 	struct omap_rtc *rtc = platform_get_drvdata(pdev);
698 	u8 reg;
699 
700 	if (pm_power_off == omap_rtc_power_off &&
701 			omap_rtc_power_off_rtc == rtc) {
702 		pm_power_off = NULL;
703 		omap_rtc_power_off_rtc = NULL;
704 	}
705 
706 	device_init_wakeup(&pdev->dev, 0);
707 
708 	if (!IS_ERR(rtc->clk))
709 		clk_disable_unprepare(rtc->clk);
710 
711 	rtc->type->unlock(rtc);
712 	/* leave rtc running, but disable irqs */
713 	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
714 
715 	if (rtc->has_ext_clk) {
716 		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
717 		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
718 		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
719 	}
720 
721 	rtc->type->lock(rtc);
722 
723 	/* Disable the clock/module */
724 	pm_runtime_put_sync(&pdev->dev);
725 	pm_runtime_disable(&pdev->dev);
726 
727 	return 0;
728 }
729 
730 #ifdef CONFIG_PM_SLEEP
731 static int omap_rtc_suspend(struct device *dev)
732 {
733 	struct omap_rtc *rtc = dev_get_drvdata(dev);
734 
735 	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
736 
737 	rtc->type->unlock(rtc);
738 	/*
739 	 * FIXME: the RTC alarm is not currently acting as a wakeup event
740 	 * source on some platforms, and in fact this enable() call is just
741 	 * saving a flag that's never used...
742 	 */
743 	if (device_may_wakeup(dev))
744 		enable_irq_wake(rtc->irq_alarm);
745 	else
746 		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
747 	rtc->type->lock(rtc);
748 
749 	/* Disable the clock/module */
750 	pm_runtime_put_sync(dev);
751 
752 	return 0;
753 }
754 
755 static int omap_rtc_resume(struct device *dev)
756 {
757 	struct omap_rtc *rtc = dev_get_drvdata(dev);
758 
759 	/* Enable the clock/module so that we can access the registers */
760 	pm_runtime_get_sync(dev);
761 
762 	rtc->type->unlock(rtc);
763 	if (device_may_wakeup(dev))
764 		disable_irq_wake(rtc->irq_alarm);
765 	else
766 		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
767 	rtc->type->lock(rtc);
768 
769 	return 0;
770 }
771 #endif
772 
773 static SIMPLE_DEV_PM_OPS(omap_rtc_pm_ops, omap_rtc_suspend, omap_rtc_resume);
774 
775 static void omap_rtc_shutdown(struct platform_device *pdev)
776 {
777 	struct omap_rtc *rtc = platform_get_drvdata(pdev);
778 	u8 mask;
779 
780 	/*
781 	 * Keep the ALARM interrupt enabled to allow the system to power up on
782 	 * alarm events.
783 	 */
784 	rtc->type->unlock(rtc);
785 	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
786 	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
787 	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
788 	rtc->type->lock(rtc);
789 }
790 
791 static struct platform_driver omap_rtc_driver = {
792 	.probe		= omap_rtc_probe,
793 	.remove		= __exit_p(omap_rtc_remove),
794 	.shutdown	= omap_rtc_shutdown,
795 	.driver		= {
796 		.name	= "omap_rtc",
797 		.pm	= &omap_rtc_pm_ops,
798 		.of_match_table = omap_rtc_of_match,
799 	},
800 	.id_table	= omap_rtc_id_table,
801 };
802 
803 module_platform_driver(omap_rtc_driver);
804 
805 MODULE_ALIAS("platform:omap_rtc");
806 MODULE_AUTHOR("George G. Davis (and others)");
807 MODULE_LICENSE("GPL");
808