xref: /openbmc/linux/drivers/rtc/rtc-mxc.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 
5 #include <linux/io.h>
6 #include <linux/rtc.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/platform_device.h>
11 #include <linux/clk.h>
12 #include <linux/of.h>
13 #include <linux/of_device.h>
14 
15 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
16 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
17 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
18 
19 #define RTC_SW_BIT      (1 << 0)
20 #define RTC_ALM_BIT     (1 << 2)
21 #define RTC_1HZ_BIT     (1 << 4)
22 #define RTC_2HZ_BIT     (1 << 7)
23 #define RTC_SAM0_BIT    (1 << 8)
24 #define RTC_SAM1_BIT    (1 << 9)
25 #define RTC_SAM2_BIT    (1 << 10)
26 #define RTC_SAM3_BIT    (1 << 11)
27 #define RTC_SAM4_BIT    (1 << 12)
28 #define RTC_SAM5_BIT    (1 << 13)
29 #define RTC_SAM6_BIT    (1 << 14)
30 #define RTC_SAM7_BIT    (1 << 15)
31 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
32 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
33 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
34 
35 #define RTC_ENABLE_BIT  (1 << 7)
36 
37 #define MAX_PIE_NUM     9
38 #define MAX_PIE_FREQ    512
39 
40 #define MXC_RTC_TIME	0
41 #define MXC_RTC_ALARM	1
42 
43 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
44 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
45 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
46 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
47 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
48 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
49 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
50 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
51 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
52 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
53 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
54 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
55 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
56 
57 enum imx_rtc_type {
58 	IMX1_RTC,
59 	IMX21_RTC,
60 };
61 
62 struct rtc_plat_data {
63 	struct rtc_device *rtc;
64 	void __iomem *ioaddr;
65 	int irq;
66 	struct clk *clk_ref;
67 	struct clk *clk_ipg;
68 	struct rtc_time g_rtc_alarm;
69 	enum imx_rtc_type devtype;
70 };
71 
72 static const struct platform_device_id imx_rtc_devtype[] = {
73 	{
74 		.name = "imx1-rtc",
75 		.driver_data = IMX1_RTC,
76 	}, {
77 		.name = "imx21-rtc",
78 		.driver_data = IMX21_RTC,
79 	}, {
80 		/* sentinel */
81 	}
82 };
83 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
84 
85 #ifdef CONFIG_OF
86 static const struct of_device_id imx_rtc_dt_ids[] = {
87 	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
88 	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
89 	{}
90 };
91 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
92 #endif
93 
94 static inline int is_imx1_rtc(struct rtc_plat_data *data)
95 {
96 	return data->devtype == IMX1_RTC;
97 }
98 
99 /*
100  * This function is used to obtain the RTC time or the alarm value in
101  * second.
102  */
103 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
104 {
105 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
106 	void __iomem *ioaddr = pdata->ioaddr;
107 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
108 
109 	switch (time_alarm) {
110 	case MXC_RTC_TIME:
111 		day = readw(ioaddr + RTC_DAYR);
112 		hr_min = readw(ioaddr + RTC_HOURMIN);
113 		sec = readw(ioaddr + RTC_SECOND);
114 		break;
115 	case MXC_RTC_ALARM:
116 		day = readw(ioaddr + RTC_DAYALARM);
117 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
118 		sec = readw(ioaddr + RTC_ALRM_SEC);
119 		break;
120 	}
121 
122 	hr = hr_min >> 8;
123 	min = hr_min & 0xff;
124 
125 	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
126 }
127 
128 /*
129  * This function sets the RTC alarm value or the time value.
130  */
131 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
132 {
133 	u32 tod, day, hr, min, sec, temp;
134 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
135 	void __iomem *ioaddr = pdata->ioaddr;
136 
137 	day = div_s64_rem(time, 86400, &tod);
138 
139 	/* time is within a day now */
140 	hr = tod / 3600;
141 	tod -= hr * 3600;
142 
143 	/* time is within an hour now */
144 	min = tod / 60;
145 	sec = tod - min * 60;
146 
147 	temp = (hr << 8) + min;
148 
149 	switch (time_alarm) {
150 	case MXC_RTC_TIME:
151 		writew(day, ioaddr + RTC_DAYR);
152 		writew(sec, ioaddr + RTC_SECOND);
153 		writew(temp, ioaddr + RTC_HOURMIN);
154 		break;
155 	case MXC_RTC_ALARM:
156 		writew(day, ioaddr + RTC_DAYALARM);
157 		writew(sec, ioaddr + RTC_ALRM_SEC);
158 		writew(temp, ioaddr + RTC_ALRM_HM);
159 		break;
160 	}
161 }
162 
163 /*
164  * This function updates the RTC alarm registers and then clears all the
165  * interrupt status bits.
166  */
167 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
168 {
169 	time64_t time;
170 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
171 	void __iomem *ioaddr = pdata->ioaddr;
172 
173 	time = rtc_tm_to_time64(alrm);
174 
175 	/* clear all the interrupt status bits */
176 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
177 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
178 }
179 
180 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
181 				unsigned int enabled)
182 {
183 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
184 	void __iomem *ioaddr = pdata->ioaddr;
185 	u32 reg;
186 
187 	spin_lock_irq(&pdata->rtc->irq_lock);
188 	reg = readw(ioaddr + RTC_RTCIENR);
189 
190 	if (enabled)
191 		reg |= bit;
192 	else
193 		reg &= ~bit;
194 
195 	writew(reg, ioaddr + RTC_RTCIENR);
196 	spin_unlock_irq(&pdata->rtc->irq_lock);
197 }
198 
199 /* This function is the RTC interrupt service routine. */
200 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
201 {
202 	struct platform_device *pdev = dev_id;
203 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
204 	void __iomem *ioaddr = pdata->ioaddr;
205 	unsigned long flags;
206 	u32 status;
207 	u32 events = 0;
208 
209 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
210 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
211 	/* clear interrupt sources */
212 	writew(status, ioaddr + RTC_RTCISR);
213 
214 	/* update irq data & counter */
215 	if (status & RTC_ALM_BIT) {
216 		events |= (RTC_AF | RTC_IRQF);
217 		/* RTC alarm should be one-shot */
218 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
219 	}
220 
221 	if (status & PIT_ALL_ON)
222 		events |= (RTC_PF | RTC_IRQF);
223 
224 	rtc_update_irq(pdata->rtc, 1, events);
225 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
226 
227 	return IRQ_HANDLED;
228 }
229 
230 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
231 {
232 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
233 	return 0;
234 }
235 
236 /*
237  * This function reads the current RTC time into tm in Gregorian date.
238  */
239 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
240 {
241 	time64_t val;
242 
243 	/* Avoid roll-over from reading the different registers */
244 	do {
245 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
246 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
247 
248 	rtc_time64_to_tm(val, tm);
249 
250 	return 0;
251 }
252 
253 /*
254  * This function sets the internal RTC time based on tm in Gregorian date.
255  */
256 static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
257 {
258 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
259 
260 	/*
261 	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
262 	 */
263 	if (is_imx1_rtc(pdata)) {
264 		struct rtc_time tm;
265 
266 		rtc_time64_to_tm(time, &tm);
267 		tm.tm_year = 70;
268 		time = rtc_tm_to_time64(&tm);
269 	}
270 
271 	/* Avoid roll-over from reading the different registers */
272 	do {
273 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
274 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
275 
276 	return 0;
277 }
278 
279 /*
280  * This function reads the current alarm value into the passed in 'alrm'
281  * argument. It updates the alrm's pending field value based on the whether
282  * an alarm interrupt occurs or not.
283  */
284 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
285 {
286 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
287 	void __iomem *ioaddr = pdata->ioaddr;
288 
289 	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
290 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
291 
292 	return 0;
293 }
294 
295 /*
296  * This function sets the RTC alarm based on passed in alrm.
297  */
298 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
299 {
300 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
301 
302 	rtc_update_alarm(dev, &alrm->time);
303 
304 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
305 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
306 
307 	return 0;
308 }
309 
310 /* RTC layer */
311 static const struct rtc_class_ops mxc_rtc_ops = {
312 	.read_time		= mxc_rtc_read_time,
313 	.set_mmss64		= mxc_rtc_set_mmss,
314 	.read_alarm		= mxc_rtc_read_alarm,
315 	.set_alarm		= mxc_rtc_set_alarm,
316 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
317 };
318 
319 static int mxc_rtc_probe(struct platform_device *pdev)
320 {
321 	struct resource *res;
322 	struct rtc_device *rtc;
323 	struct rtc_plat_data *pdata = NULL;
324 	u32 reg;
325 	unsigned long rate;
326 	int ret;
327 	const struct of_device_id *of_id;
328 
329 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
330 	if (!pdata)
331 		return -ENOMEM;
332 
333 	of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
334 	if (of_id)
335 		pdata->devtype = (enum imx_rtc_type)of_id->data;
336 	else
337 		pdata->devtype = pdev->id_entry->driver_data;
338 
339 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
340 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
341 	if (IS_ERR(pdata->ioaddr))
342 		return PTR_ERR(pdata->ioaddr);
343 
344 	pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
345 	if (IS_ERR(pdata->clk_ipg)) {
346 		dev_err(&pdev->dev, "unable to get ipg clock!\n");
347 		return PTR_ERR(pdata->clk_ipg);
348 	}
349 
350 	ret = clk_prepare_enable(pdata->clk_ipg);
351 	if (ret)
352 		return ret;
353 
354 	pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
355 	if (IS_ERR(pdata->clk_ref)) {
356 		dev_err(&pdev->dev, "unable to get ref clock!\n");
357 		ret = PTR_ERR(pdata->clk_ref);
358 		goto exit_put_clk_ipg;
359 	}
360 
361 	ret = clk_prepare_enable(pdata->clk_ref);
362 	if (ret)
363 		goto exit_put_clk_ipg;
364 
365 	rate = clk_get_rate(pdata->clk_ref);
366 
367 	if (rate == 32768)
368 		reg = RTC_INPUT_CLK_32768HZ;
369 	else if (rate == 32000)
370 		reg = RTC_INPUT_CLK_32000HZ;
371 	else if (rate == 38400)
372 		reg = RTC_INPUT_CLK_38400HZ;
373 	else {
374 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
375 		ret = -EINVAL;
376 		goto exit_put_clk_ref;
377 	}
378 
379 	reg |= RTC_ENABLE_BIT;
380 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
381 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
382 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
383 		ret = -EIO;
384 		goto exit_put_clk_ref;
385 	}
386 
387 	platform_set_drvdata(pdev, pdata);
388 
389 	/* Configure and enable the RTC */
390 	pdata->irq = platform_get_irq(pdev, 0);
391 
392 	if (pdata->irq >= 0 &&
393 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
394 			     IRQF_SHARED, pdev->name, pdev) < 0) {
395 		dev_warn(&pdev->dev, "interrupt not available.\n");
396 		pdata->irq = -1;
397 	}
398 
399 	if (pdata->irq >= 0)
400 		device_init_wakeup(&pdev->dev, 1);
401 
402 	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
403 				  THIS_MODULE);
404 	if (IS_ERR(rtc)) {
405 		ret = PTR_ERR(rtc);
406 		goto exit_put_clk_ref;
407 	}
408 
409 	pdata->rtc = rtc;
410 
411 	return 0;
412 
413 exit_put_clk_ref:
414 	clk_disable_unprepare(pdata->clk_ref);
415 exit_put_clk_ipg:
416 	clk_disable_unprepare(pdata->clk_ipg);
417 
418 	return ret;
419 }
420 
421 static int mxc_rtc_remove(struct platform_device *pdev)
422 {
423 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
424 
425 	clk_disable_unprepare(pdata->clk_ref);
426 	clk_disable_unprepare(pdata->clk_ipg);
427 
428 	return 0;
429 }
430 
431 #ifdef CONFIG_PM_SLEEP
432 static int mxc_rtc_suspend(struct device *dev)
433 {
434 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
435 
436 	if (device_may_wakeup(dev))
437 		enable_irq_wake(pdata->irq);
438 
439 	return 0;
440 }
441 
442 static int mxc_rtc_resume(struct device *dev)
443 {
444 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
445 
446 	if (device_may_wakeup(dev))
447 		disable_irq_wake(pdata->irq);
448 
449 	return 0;
450 }
451 #endif
452 
453 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
454 
455 static struct platform_driver mxc_rtc_driver = {
456 	.driver = {
457 		   .name	= "mxc_rtc",
458 		   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
459 		   .pm		= &mxc_rtc_pm_ops,
460 	},
461 	.id_table = imx_rtc_devtype,
462 	.probe = mxc_rtc_probe,
463 	.remove = mxc_rtc_remove,
464 };
465 
466 module_platform_driver(mxc_rtc_driver)
467 
468 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
469 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
470 MODULE_LICENSE("GPL");
471 
472