xref: /openbmc/linux/drivers/rtc/rtc-mxc.c (revision e1a3e724)
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 
22 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
25 
26 #define RTC_SW_BIT      (1 << 0)
27 #define RTC_ALM_BIT     (1 << 2)
28 #define RTC_1HZ_BIT     (1 << 4)
29 #define RTC_2HZ_BIT     (1 << 7)
30 #define RTC_SAM0_BIT    (1 << 8)
31 #define RTC_SAM1_BIT    (1 << 9)
32 #define RTC_SAM2_BIT    (1 << 10)
33 #define RTC_SAM3_BIT    (1 << 11)
34 #define RTC_SAM4_BIT    (1 << 12)
35 #define RTC_SAM5_BIT    (1 << 13)
36 #define RTC_SAM6_BIT    (1 << 14)
37 #define RTC_SAM7_BIT    (1 << 15)
38 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41 
42 #define RTC_ENABLE_BIT  (1 << 7)
43 
44 #define MAX_PIE_NUM     9
45 #define MAX_PIE_FREQ    512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 	{ 2,		RTC_2HZ_BIT },
48 	{ 4,		RTC_SAM0_BIT },
49 	{ 8,		RTC_SAM1_BIT },
50 	{ 16,		RTC_SAM2_BIT },
51 	{ 32,		RTC_SAM3_BIT },
52 	{ 64,		RTC_SAM4_BIT },
53 	{ 128,		RTC_SAM5_BIT },
54 	{ 256,		RTC_SAM6_BIT },
55 	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
56 };
57 
58 #define MXC_RTC_TIME	0
59 #define MXC_RTC_ALARM	1
60 
61 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
62 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
66 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
67 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
68 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
69 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
70 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
71 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
72 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
73 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
74 
75 enum imx_rtc_type {
76 	IMX1_RTC,
77 	IMX21_RTC,
78 };
79 
80 struct rtc_plat_data {
81 	struct rtc_device *rtc;
82 	void __iomem *ioaddr;
83 	int irq;
84 	struct clk *clk_ref;
85 	struct clk *clk_ipg;
86 	struct rtc_time g_rtc_alarm;
87 	enum imx_rtc_type devtype;
88 };
89 
90 static const struct platform_device_id imx_rtc_devtype[] = {
91 	{
92 		.name = "imx1-rtc",
93 		.driver_data = IMX1_RTC,
94 	}, {
95 		.name = "imx21-rtc",
96 		.driver_data = IMX21_RTC,
97 	}, {
98 		/* sentinel */
99 	}
100 };
101 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
102 
103 #ifdef CONFIG_OF
104 static const struct of_device_id imx_rtc_dt_ids[] = {
105 	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
106 	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
107 	{}
108 };
109 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
110 #endif
111 
112 static inline int is_imx1_rtc(struct rtc_plat_data *data)
113 {
114 	return data->devtype == IMX1_RTC;
115 }
116 
117 /*
118  * This function is used to obtain the RTC time or the alarm value in
119  * second.
120  */
121 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
122 {
123 	struct platform_device *pdev = to_platform_device(dev);
124 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
125 	void __iomem *ioaddr = pdata->ioaddr;
126 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
127 
128 	switch (time_alarm) {
129 	case MXC_RTC_TIME:
130 		day = readw(ioaddr + RTC_DAYR);
131 		hr_min = readw(ioaddr + RTC_HOURMIN);
132 		sec = readw(ioaddr + RTC_SECOND);
133 		break;
134 	case MXC_RTC_ALARM:
135 		day = readw(ioaddr + RTC_DAYALARM);
136 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
137 		sec = readw(ioaddr + RTC_ALRM_SEC);
138 		break;
139 	}
140 
141 	hr = hr_min >> 8;
142 	min = hr_min & 0xff;
143 
144 	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
145 }
146 
147 /*
148  * This function sets the RTC alarm value or the time value.
149  */
150 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
151 {
152 	u32 tod, day, hr, min, sec, temp;
153 	struct platform_device *pdev = to_platform_device(dev);
154 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
155 	void __iomem *ioaddr = pdata->ioaddr;
156 
157 	day = div_s64_rem(time, 86400, &tod);
158 
159 	/* time is within a day now */
160 	hr = tod / 3600;
161 	tod -= hr * 3600;
162 
163 	/* time is within an hour now */
164 	min = tod / 60;
165 	sec = tod - min * 60;
166 
167 	temp = (hr << 8) + min;
168 
169 	switch (time_alarm) {
170 	case MXC_RTC_TIME:
171 		writew(day, ioaddr + RTC_DAYR);
172 		writew(sec, ioaddr + RTC_SECOND);
173 		writew(temp, ioaddr + RTC_HOURMIN);
174 		break;
175 	case MXC_RTC_ALARM:
176 		writew(day, ioaddr + RTC_DAYALARM);
177 		writew(sec, ioaddr + RTC_ALRM_SEC);
178 		writew(temp, ioaddr + RTC_ALRM_HM);
179 		break;
180 	}
181 }
182 
183 /*
184  * This function updates the RTC alarm registers and then clears all the
185  * interrupt status bits.
186  */
187 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
188 {
189 	time64_t time;
190 	struct platform_device *pdev = to_platform_device(dev);
191 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
192 	void __iomem *ioaddr = pdata->ioaddr;
193 
194 	time = rtc_tm_to_time64(alrm);
195 
196 	/* clear all the interrupt status bits */
197 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
198 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
199 }
200 
201 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202 				unsigned int enabled)
203 {
204 	struct platform_device *pdev = to_platform_device(dev);
205 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206 	void __iomem *ioaddr = pdata->ioaddr;
207 	u32 reg;
208 
209 	spin_lock_irq(&pdata->rtc->irq_lock);
210 	reg = readw(ioaddr + RTC_RTCIENR);
211 
212 	if (enabled)
213 		reg |= bit;
214 	else
215 		reg &= ~bit;
216 
217 	writew(reg, ioaddr + RTC_RTCIENR);
218 	spin_unlock_irq(&pdata->rtc->irq_lock);
219 }
220 
221 /* This function is the RTC interrupt service routine. */
222 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
223 {
224 	struct platform_device *pdev = dev_id;
225 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226 	void __iomem *ioaddr = pdata->ioaddr;
227 	unsigned long flags;
228 	u32 status;
229 	u32 events = 0;
230 
231 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233 	/* clear interrupt sources */
234 	writew(status, ioaddr + RTC_RTCISR);
235 
236 	/* update irq data & counter */
237 	if (status & RTC_ALM_BIT) {
238 		events |= (RTC_AF | RTC_IRQF);
239 		/* RTC alarm should be one-shot */
240 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
241 	}
242 
243 	if (status & RTC_1HZ_BIT)
244 		events |= (RTC_UF | RTC_IRQF);
245 
246 	if (status & PIT_ALL_ON)
247 		events |= (RTC_PF | RTC_IRQF);
248 
249 	rtc_update_irq(pdata->rtc, 1, events);
250 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
251 
252 	return IRQ_HANDLED;
253 }
254 
255 /*
256  * Clear all interrupts and release the IRQ
257  */
258 static void mxc_rtc_release(struct device *dev)
259 {
260 	struct platform_device *pdev = to_platform_device(dev);
261 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
262 	void __iomem *ioaddr = pdata->ioaddr;
263 
264 	spin_lock_irq(&pdata->rtc->irq_lock);
265 
266 	/* Disable all rtc interrupts */
267 	writew(0, ioaddr + RTC_RTCIENR);
268 
269 	/* Clear all interrupt status */
270 	writew(0xffffffff, ioaddr + RTC_RTCISR);
271 
272 	spin_unlock_irq(&pdata->rtc->irq_lock);
273 }
274 
275 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
276 {
277 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
278 	return 0;
279 }
280 
281 /*
282  * This function reads the current RTC time into tm in Gregorian date.
283  */
284 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
285 {
286 	time64_t val;
287 
288 	/* Avoid roll-over from reading the different registers */
289 	do {
290 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
291 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
292 
293 	rtc_time64_to_tm(val, tm);
294 
295 	return 0;
296 }
297 
298 /*
299  * This function sets the internal RTC time based on tm in Gregorian date.
300  */
301 static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
302 {
303 	struct platform_device *pdev = to_platform_device(dev);
304 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
305 
306 	/*
307 	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
308 	 */
309 	if (is_imx1_rtc(pdata)) {
310 		struct rtc_time tm;
311 
312 		rtc_time64_to_tm(time, &tm);
313 		tm.tm_year = 70;
314 		time = rtc_tm_to_time64(&tm);
315 	}
316 
317 	/* Avoid roll-over from reading the different registers */
318 	do {
319 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
320 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
321 
322 	return 0;
323 }
324 
325 /*
326  * This function reads the current alarm value into the passed in 'alrm'
327  * argument. It updates the alrm's pending field value based on the whether
328  * an alarm interrupt occurs or not.
329  */
330 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
331 {
332 	struct platform_device *pdev = to_platform_device(dev);
333 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
334 	void __iomem *ioaddr = pdata->ioaddr;
335 
336 	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
337 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
338 
339 	return 0;
340 }
341 
342 /*
343  * This function sets the RTC alarm based on passed in alrm.
344  */
345 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
346 {
347 	struct platform_device *pdev = to_platform_device(dev);
348 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
349 
350 	rtc_update_alarm(dev, &alrm->time);
351 
352 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
353 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
354 
355 	return 0;
356 }
357 
358 /* RTC layer */
359 static struct rtc_class_ops mxc_rtc_ops = {
360 	.release		= mxc_rtc_release,
361 	.read_time		= mxc_rtc_read_time,
362 	.set_mmss64		= mxc_rtc_set_mmss,
363 	.read_alarm		= mxc_rtc_read_alarm,
364 	.set_alarm		= mxc_rtc_set_alarm,
365 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
366 };
367 
368 static int mxc_rtc_probe(struct platform_device *pdev)
369 {
370 	struct resource *res;
371 	struct rtc_device *rtc;
372 	struct rtc_plat_data *pdata = NULL;
373 	u32 reg;
374 	unsigned long rate;
375 	int ret;
376 	const struct of_device_id *of_id;
377 
378 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
379 	if (!pdata)
380 		return -ENOMEM;
381 
382 	of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
383 	if (of_id)
384 		pdata->devtype = (enum imx_rtc_type)of_id->data;
385 	else
386 		pdata->devtype = pdev->id_entry->driver_data;
387 
388 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
389 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
390 	if (IS_ERR(pdata->ioaddr))
391 		return PTR_ERR(pdata->ioaddr);
392 
393 	pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
394 	if (IS_ERR(pdata->clk_ipg)) {
395 		dev_err(&pdev->dev, "unable to get ipg clock!\n");
396 		return PTR_ERR(pdata->clk_ipg);
397 	}
398 
399 	ret = clk_prepare_enable(pdata->clk_ipg);
400 	if (ret)
401 		return ret;
402 
403 	pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
404 	if (IS_ERR(pdata->clk_ref)) {
405 		dev_err(&pdev->dev, "unable to get ref clock!\n");
406 		ret = PTR_ERR(pdata->clk_ref);
407 		goto exit_put_clk_ipg;
408 	}
409 
410 	ret = clk_prepare_enable(pdata->clk_ref);
411 	if (ret)
412 		goto exit_put_clk_ipg;
413 
414 	rate = clk_get_rate(pdata->clk_ref);
415 
416 	if (rate == 32768)
417 		reg = RTC_INPUT_CLK_32768HZ;
418 	else if (rate == 32000)
419 		reg = RTC_INPUT_CLK_32000HZ;
420 	else if (rate == 38400)
421 		reg = RTC_INPUT_CLK_38400HZ;
422 	else {
423 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
424 		ret = -EINVAL;
425 		goto exit_put_clk_ref;
426 	}
427 
428 	reg |= RTC_ENABLE_BIT;
429 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
430 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
431 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
432 		ret = -EIO;
433 		goto exit_put_clk_ref;
434 	}
435 
436 	platform_set_drvdata(pdev, pdata);
437 
438 	/* Configure and enable the RTC */
439 	pdata->irq = platform_get_irq(pdev, 0);
440 
441 	if (pdata->irq >= 0 &&
442 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
443 			     IRQF_SHARED, pdev->name, pdev) < 0) {
444 		dev_warn(&pdev->dev, "interrupt not available.\n");
445 		pdata->irq = -1;
446 	}
447 
448 	if (pdata->irq >= 0)
449 		device_init_wakeup(&pdev->dev, 1);
450 
451 	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
452 				  THIS_MODULE);
453 	if (IS_ERR(rtc)) {
454 		ret = PTR_ERR(rtc);
455 		goto exit_put_clk_ref;
456 	}
457 
458 	pdata->rtc = rtc;
459 
460 	return 0;
461 
462 exit_put_clk_ref:
463 	clk_disable_unprepare(pdata->clk_ref);
464 exit_put_clk_ipg:
465 	clk_disable_unprepare(pdata->clk_ipg);
466 
467 	return ret;
468 }
469 
470 static int mxc_rtc_remove(struct platform_device *pdev)
471 {
472 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
473 
474 	clk_disable_unprepare(pdata->clk_ref);
475 	clk_disable_unprepare(pdata->clk_ipg);
476 
477 	return 0;
478 }
479 
480 #ifdef CONFIG_PM_SLEEP
481 static int mxc_rtc_suspend(struct device *dev)
482 {
483 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
484 
485 	if (device_may_wakeup(dev))
486 		enable_irq_wake(pdata->irq);
487 
488 	return 0;
489 }
490 
491 static int mxc_rtc_resume(struct device *dev)
492 {
493 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
494 
495 	if (device_may_wakeup(dev))
496 		disable_irq_wake(pdata->irq);
497 
498 	return 0;
499 }
500 #endif
501 
502 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
503 
504 static struct platform_driver mxc_rtc_driver = {
505 	.driver = {
506 		   .name	= "mxc_rtc",
507 		   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
508 		   .pm		= &mxc_rtc_pm_ops,
509 	},
510 	.id_table = imx_rtc_devtype,
511 	.probe = mxc_rtc_probe,
512 	.remove = mxc_rtc_remove,
513 };
514 
515 module_platform_driver(mxc_rtc_driver)
516 
517 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
518 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
519 MODULE_LICENSE("GPL");
520 
521