xref: /openbmc/linux/drivers/rtc/rtc-mxc.c (revision ca79522c)
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 
20 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
21 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
22 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
23 
24 #define RTC_SW_BIT      (1 << 0)
25 #define RTC_ALM_BIT     (1 << 2)
26 #define RTC_1HZ_BIT     (1 << 4)
27 #define RTC_2HZ_BIT     (1 << 7)
28 #define RTC_SAM0_BIT    (1 << 8)
29 #define RTC_SAM1_BIT    (1 << 9)
30 #define RTC_SAM2_BIT    (1 << 10)
31 #define RTC_SAM3_BIT    (1 << 11)
32 #define RTC_SAM4_BIT    (1 << 12)
33 #define RTC_SAM5_BIT    (1 << 13)
34 #define RTC_SAM6_BIT    (1 << 14)
35 #define RTC_SAM7_BIT    (1 << 15)
36 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
37 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
38 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
39 
40 #define RTC_ENABLE_BIT  (1 << 7)
41 
42 #define MAX_PIE_NUM     9
43 #define MAX_PIE_FREQ    512
44 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
45 	{ 2,		RTC_2HZ_BIT },
46 	{ 4,		RTC_SAM0_BIT },
47 	{ 8,		RTC_SAM1_BIT },
48 	{ 16,		RTC_SAM2_BIT },
49 	{ 32,		RTC_SAM3_BIT },
50 	{ 64,		RTC_SAM4_BIT },
51 	{ 128,		RTC_SAM5_BIT },
52 	{ 256,		RTC_SAM6_BIT },
53 	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
54 };
55 
56 #define MXC_RTC_TIME	0
57 #define MXC_RTC_ALARM	1
58 
59 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
60 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
61 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
62 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
63 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
64 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
65 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
66 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
67 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
68 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
69 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
70 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
71 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
72 
73 enum imx_rtc_type {
74 	IMX1_RTC,
75 	IMX21_RTC,
76 };
77 
78 struct rtc_plat_data {
79 	struct rtc_device *rtc;
80 	void __iomem *ioaddr;
81 	int irq;
82 	struct clk *clk;
83 	struct rtc_time g_rtc_alarm;
84 	enum imx_rtc_type devtype;
85 };
86 
87 static struct platform_device_id imx_rtc_devtype[] = {
88 	{
89 		.name = "imx1-rtc",
90 		.driver_data = IMX1_RTC,
91 	}, {
92 		.name = "imx21-rtc",
93 		.driver_data = IMX21_RTC,
94 	}, {
95 		/* sentinel */
96 	}
97 };
98 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
99 
100 static inline int is_imx1_rtc(struct rtc_plat_data *data)
101 {
102 	return data->devtype == IMX1_RTC;
103 }
104 
105 /*
106  * This function is used to obtain the RTC time or the alarm value in
107  * second.
108  */
109 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
110 {
111 	struct platform_device *pdev = to_platform_device(dev);
112 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
113 	void __iomem *ioaddr = pdata->ioaddr;
114 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
115 
116 	switch (time_alarm) {
117 	case MXC_RTC_TIME:
118 		day = readw(ioaddr + RTC_DAYR);
119 		hr_min = readw(ioaddr + RTC_HOURMIN);
120 		sec = readw(ioaddr + RTC_SECOND);
121 		break;
122 	case MXC_RTC_ALARM:
123 		day = readw(ioaddr + RTC_DAYALARM);
124 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
125 		sec = readw(ioaddr + RTC_ALRM_SEC);
126 		break;
127 	}
128 
129 	hr = hr_min >> 8;
130 	min = hr_min & 0xff;
131 
132 	return (((day * 24 + hr) * 60) + min) * 60 + sec;
133 }
134 
135 /*
136  * This function sets the RTC alarm value or the time value.
137  */
138 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
139 {
140 	u32 day, hr, min, sec, temp;
141 	struct platform_device *pdev = to_platform_device(dev);
142 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
143 	void __iomem *ioaddr = pdata->ioaddr;
144 
145 	day = time / 86400;
146 	time -= day * 86400;
147 
148 	/* time is within a day now */
149 	hr = time / 3600;
150 	time -= hr * 3600;
151 
152 	/* time is within an hour now */
153 	min = time / 60;
154 	sec = time - min * 60;
155 
156 	temp = (hr << 8) + min;
157 
158 	switch (time_alarm) {
159 	case MXC_RTC_TIME:
160 		writew(day, ioaddr + RTC_DAYR);
161 		writew(sec, ioaddr + RTC_SECOND);
162 		writew(temp, ioaddr + RTC_HOURMIN);
163 		break;
164 	case MXC_RTC_ALARM:
165 		writew(day, ioaddr + RTC_DAYALARM);
166 		writew(sec, ioaddr + RTC_ALRM_SEC);
167 		writew(temp, ioaddr + RTC_ALRM_HM);
168 		break;
169 	}
170 }
171 
172 /*
173  * This function updates the RTC alarm registers and then clears all the
174  * interrupt status bits.
175  */
176 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177 {
178 	struct rtc_time alarm_tm, now_tm;
179 	unsigned long now, time;
180 	struct platform_device *pdev = to_platform_device(dev);
181 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
182 	void __iomem *ioaddr = pdata->ioaddr;
183 
184 	now = get_alarm_or_time(dev, MXC_RTC_TIME);
185 	rtc_time_to_tm(now, &now_tm);
186 	alarm_tm.tm_year = now_tm.tm_year;
187 	alarm_tm.tm_mon = now_tm.tm_mon;
188 	alarm_tm.tm_mday = now_tm.tm_mday;
189 	alarm_tm.tm_hour = alrm->tm_hour;
190 	alarm_tm.tm_min = alrm->tm_min;
191 	alarm_tm.tm_sec = alrm->tm_sec;
192 	rtc_tm_to_time(&alarm_tm, &time);
193 
194 	/* clear all the interrupt status bits */
195 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
196 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
197 
198 	return 0;
199 }
200 
201 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202 				unsigned int enabled)
203 {
204 	struct platform_device *pdev = to_platform_device(dev);
205 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206 	void __iomem *ioaddr = pdata->ioaddr;
207 	u32 reg;
208 
209 	spin_lock_irq(&pdata->rtc->irq_lock);
210 	reg = readw(ioaddr + RTC_RTCIENR);
211 
212 	if (enabled)
213 		reg |= bit;
214 	else
215 		reg &= ~bit;
216 
217 	writew(reg, ioaddr + RTC_RTCIENR);
218 	spin_unlock_irq(&pdata->rtc->irq_lock);
219 }
220 
221 /* This function is the RTC interrupt service routine. */
222 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
223 {
224 	struct platform_device *pdev = dev_id;
225 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226 	void __iomem *ioaddr = pdata->ioaddr;
227 	unsigned long flags;
228 	u32 status;
229 	u32 events = 0;
230 
231 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233 	/* clear interrupt sources */
234 	writew(status, ioaddr + RTC_RTCISR);
235 
236 	/* update irq data & counter */
237 	if (status & RTC_ALM_BIT) {
238 		events |= (RTC_AF | RTC_IRQF);
239 		/* RTC alarm should be one-shot */
240 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
241 	}
242 
243 	if (status & RTC_1HZ_BIT)
244 		events |= (RTC_UF | RTC_IRQF);
245 
246 	if (status & PIT_ALL_ON)
247 		events |= (RTC_PF | RTC_IRQF);
248 
249 	rtc_update_irq(pdata->rtc, 1, events);
250 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
251 
252 	return IRQ_HANDLED;
253 }
254 
255 /*
256  * Clear all interrupts and release the IRQ
257  */
258 static void mxc_rtc_release(struct device *dev)
259 {
260 	struct platform_device *pdev = to_platform_device(dev);
261 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
262 	void __iomem *ioaddr = pdata->ioaddr;
263 
264 	spin_lock_irq(&pdata->rtc->irq_lock);
265 
266 	/* Disable all rtc interrupts */
267 	writew(0, ioaddr + RTC_RTCIENR);
268 
269 	/* Clear all interrupt status */
270 	writew(0xffffffff, ioaddr + RTC_RTCISR);
271 
272 	spin_unlock_irq(&pdata->rtc->irq_lock);
273 }
274 
275 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
276 {
277 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
278 	return 0;
279 }
280 
281 /*
282  * This function reads the current RTC time into tm in Gregorian date.
283  */
284 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
285 {
286 	u32 val;
287 
288 	/* Avoid roll-over from reading the different registers */
289 	do {
290 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
291 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
292 
293 	rtc_time_to_tm(val, tm);
294 
295 	return 0;
296 }
297 
298 /*
299  * This function sets the internal RTC time based on tm in Gregorian date.
300  */
301 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
302 {
303 	struct platform_device *pdev = to_platform_device(dev);
304 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
305 
306 	/*
307 	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
308 	 */
309 	if (is_imx1_rtc(pdata)) {
310 		struct rtc_time tm;
311 
312 		rtc_time_to_tm(time, &tm);
313 		tm.tm_year = 70;
314 		rtc_tm_to_time(&tm, &time);
315 	}
316 
317 	/* Avoid roll-over from reading the different registers */
318 	do {
319 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
320 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
321 
322 	return 0;
323 }
324 
325 /*
326  * This function reads the current alarm value into the passed in 'alrm'
327  * argument. It updates the alrm's pending field value based on the whether
328  * an alarm interrupt occurs or not.
329  */
330 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
331 {
332 	struct platform_device *pdev = to_platform_device(dev);
333 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
334 	void __iomem *ioaddr = pdata->ioaddr;
335 
336 	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
337 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
338 
339 	return 0;
340 }
341 
342 /*
343  * This function sets the RTC alarm based on passed in alrm.
344  */
345 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
346 {
347 	struct platform_device *pdev = to_platform_device(dev);
348 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
349 	int ret;
350 
351 	ret = rtc_update_alarm(dev, &alrm->time);
352 	if (ret)
353 		return ret;
354 
355 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
356 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
357 
358 	return 0;
359 }
360 
361 /* RTC layer */
362 static struct rtc_class_ops mxc_rtc_ops = {
363 	.release		= mxc_rtc_release,
364 	.read_time		= mxc_rtc_read_time,
365 	.set_mmss		= mxc_rtc_set_mmss,
366 	.read_alarm		= mxc_rtc_read_alarm,
367 	.set_alarm		= mxc_rtc_set_alarm,
368 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
369 };
370 
371 static int mxc_rtc_probe(struct platform_device *pdev)
372 {
373 	struct resource *res;
374 	struct rtc_device *rtc;
375 	struct rtc_plat_data *pdata = NULL;
376 	u32 reg;
377 	unsigned long rate;
378 	int ret;
379 
380 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
381 	if (!res)
382 		return -ENODEV;
383 
384 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
385 	if (!pdata)
386 		return -ENOMEM;
387 
388 	pdata->devtype = pdev->id_entry->driver_data;
389 
390 	if (!devm_request_mem_region(&pdev->dev, res->start,
391 				     resource_size(res), pdev->name))
392 		return -EBUSY;
393 
394 	pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
395 				     resource_size(res));
396 
397 	pdata->clk = devm_clk_get(&pdev->dev, NULL);
398 	if (IS_ERR(pdata->clk)) {
399 		dev_err(&pdev->dev, "unable to get clock!\n");
400 		ret = PTR_ERR(pdata->clk);
401 		goto exit_free_pdata;
402 	}
403 
404 	clk_prepare_enable(pdata->clk);
405 	rate = clk_get_rate(pdata->clk);
406 
407 	if (rate == 32768)
408 		reg = RTC_INPUT_CLK_32768HZ;
409 	else if (rate == 32000)
410 		reg = RTC_INPUT_CLK_32000HZ;
411 	else if (rate == 38400)
412 		reg = RTC_INPUT_CLK_38400HZ;
413 	else {
414 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
415 		ret = -EINVAL;
416 		goto exit_put_clk;
417 	}
418 
419 	reg |= RTC_ENABLE_BIT;
420 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
421 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
422 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
423 		ret = -EIO;
424 		goto exit_put_clk;
425 	}
426 
427 	platform_set_drvdata(pdev, pdata);
428 
429 	/* Configure and enable the RTC */
430 	pdata->irq = platform_get_irq(pdev, 0);
431 
432 	if (pdata->irq >= 0 &&
433 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
434 			     IRQF_SHARED, pdev->name, pdev) < 0) {
435 		dev_warn(&pdev->dev, "interrupt not available.\n");
436 		pdata->irq = -1;
437 	}
438 
439 	if (pdata->irq >=0)
440 		device_init_wakeup(&pdev->dev, 1);
441 
442 	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
443 				  THIS_MODULE);
444 	if (IS_ERR(rtc)) {
445 		ret = PTR_ERR(rtc);
446 		goto exit_clr_drvdata;
447 	}
448 
449 	pdata->rtc = rtc;
450 
451 	return 0;
452 
453 exit_clr_drvdata:
454 	platform_set_drvdata(pdev, NULL);
455 exit_put_clk:
456 	clk_disable_unprepare(pdata->clk);
457 
458 exit_free_pdata:
459 
460 	return ret;
461 }
462 
463 static int mxc_rtc_remove(struct platform_device *pdev)
464 {
465 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
466 
467 	clk_disable_unprepare(pdata->clk);
468 	platform_set_drvdata(pdev, NULL);
469 
470 	return 0;
471 }
472 
473 #ifdef CONFIG_PM_SLEEP
474 static int mxc_rtc_suspend(struct device *dev)
475 {
476 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
477 
478 	if (device_may_wakeup(dev))
479 		enable_irq_wake(pdata->irq);
480 
481 	return 0;
482 }
483 
484 static int mxc_rtc_resume(struct device *dev)
485 {
486 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
487 
488 	if (device_may_wakeup(dev))
489 		disable_irq_wake(pdata->irq);
490 
491 	return 0;
492 }
493 #endif
494 
495 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
496 
497 static struct platform_driver mxc_rtc_driver = {
498 	.driver = {
499 		   .name	= "mxc_rtc",
500 		   .pm		= &mxc_rtc_pm_ops,
501 		   .owner	= THIS_MODULE,
502 	},
503 	.id_table = imx_rtc_devtype,
504 	.probe = mxc_rtc_probe,
505 	.remove = mxc_rtc_remove,
506 };
507 
508 module_platform_driver(mxc_rtc_driver)
509 
510 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
511 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
512 MODULE_LICENSE("GPL");
513 
514