xref: /openbmc/linux/drivers/rtc/rtc-mxc.c (revision c7b03852)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 
5 #include <linux/io.h>
6 #include <linux/rtc.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/platform_device.h>
11 #include <linux/pm_wakeirq.h>
12 #include <linux/clk.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 
16 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
17 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
18 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
19 
20 #define RTC_SW_BIT      (1 << 0)
21 #define RTC_ALM_BIT     (1 << 2)
22 #define RTC_1HZ_BIT     (1 << 4)
23 #define RTC_2HZ_BIT     (1 << 7)
24 #define RTC_SAM0_BIT    (1 << 8)
25 #define RTC_SAM1_BIT    (1 << 9)
26 #define RTC_SAM2_BIT    (1 << 10)
27 #define RTC_SAM3_BIT    (1 << 11)
28 #define RTC_SAM4_BIT    (1 << 12)
29 #define RTC_SAM5_BIT    (1 << 13)
30 #define RTC_SAM6_BIT    (1 << 14)
31 #define RTC_SAM7_BIT    (1 << 15)
32 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
33 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
34 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
35 
36 #define RTC_ENABLE_BIT  (1 << 7)
37 
38 #define MAX_PIE_NUM     9
39 #define MAX_PIE_FREQ    512
40 
41 #define MXC_RTC_TIME	0
42 #define MXC_RTC_ALARM	1
43 
44 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
45 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
46 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
47 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
48 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
49 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
50 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
51 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
52 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
53 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
54 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
55 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
56 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
57 
58 enum imx_rtc_type {
59 	IMX1_RTC,
60 	IMX21_RTC,
61 };
62 
63 struct rtc_plat_data {
64 	struct rtc_device *rtc;
65 	void __iomem *ioaddr;
66 	int irq;
67 	struct clk *clk_ref;
68 	struct clk *clk_ipg;
69 	struct rtc_time g_rtc_alarm;
70 	enum imx_rtc_type devtype;
71 };
72 
73 static const struct platform_device_id imx_rtc_devtype[] = {
74 	{
75 		.name = "imx1-rtc",
76 		.driver_data = IMX1_RTC,
77 	}, {
78 		.name = "imx21-rtc",
79 		.driver_data = IMX21_RTC,
80 	}, {
81 		/* sentinel */
82 	}
83 };
84 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
85 
86 #ifdef CONFIG_OF
87 static const struct of_device_id imx_rtc_dt_ids[] = {
88 	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
89 	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
90 	{}
91 };
92 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
93 #endif
94 
95 static inline int is_imx1_rtc(struct rtc_plat_data *data)
96 {
97 	return data->devtype == IMX1_RTC;
98 }
99 
100 /*
101  * This function is used to obtain the RTC time or the alarm value in
102  * second.
103  */
104 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
105 {
106 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
107 	void __iomem *ioaddr = pdata->ioaddr;
108 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
109 
110 	switch (time_alarm) {
111 	case MXC_RTC_TIME:
112 		day = readw(ioaddr + RTC_DAYR);
113 		hr_min = readw(ioaddr + RTC_HOURMIN);
114 		sec = readw(ioaddr + RTC_SECOND);
115 		break;
116 	case MXC_RTC_ALARM:
117 		day = readw(ioaddr + RTC_DAYALARM);
118 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
119 		sec = readw(ioaddr + RTC_ALRM_SEC);
120 		break;
121 	}
122 
123 	hr = hr_min >> 8;
124 	min = hr_min & 0xff;
125 
126 	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
127 }
128 
129 /*
130  * This function sets the RTC alarm value or the time value.
131  */
132 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
133 {
134 	u32 tod, day, hr, min, sec, temp;
135 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
136 	void __iomem *ioaddr = pdata->ioaddr;
137 
138 	day = div_s64_rem(time, 86400, &tod);
139 
140 	/* time is within a day now */
141 	hr = tod / 3600;
142 	tod -= hr * 3600;
143 
144 	/* time is within an hour now */
145 	min = tod / 60;
146 	sec = tod - min * 60;
147 
148 	temp = (hr << 8) + min;
149 
150 	switch (time_alarm) {
151 	case MXC_RTC_TIME:
152 		writew(day, ioaddr + RTC_DAYR);
153 		writew(sec, ioaddr + RTC_SECOND);
154 		writew(temp, ioaddr + RTC_HOURMIN);
155 		break;
156 	case MXC_RTC_ALARM:
157 		writew(day, ioaddr + RTC_DAYALARM);
158 		writew(sec, ioaddr + RTC_ALRM_SEC);
159 		writew(temp, ioaddr + RTC_ALRM_HM);
160 		break;
161 	}
162 }
163 
164 /*
165  * This function updates the RTC alarm registers and then clears all the
166  * interrupt status bits.
167  */
168 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
169 {
170 	time64_t time;
171 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
172 	void __iomem *ioaddr = pdata->ioaddr;
173 
174 	time = rtc_tm_to_time64(alrm);
175 
176 	/* clear all the interrupt status bits */
177 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
178 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
179 }
180 
181 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
182 				unsigned int enabled)
183 {
184 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
185 	void __iomem *ioaddr = pdata->ioaddr;
186 	u32 reg;
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
190 	reg = readw(ioaddr + RTC_RTCIENR);
191 
192 	if (enabled)
193 		reg |= bit;
194 	else
195 		reg &= ~bit;
196 
197 	writew(reg, ioaddr + RTC_RTCIENR);
198 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
199 }
200 
201 /* This function is the RTC interrupt service routine. */
202 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
203 {
204 	struct platform_device *pdev = dev_id;
205 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206 	void __iomem *ioaddr = pdata->ioaddr;
207 	unsigned long flags;
208 	u32 status;
209 	u32 events = 0;
210 
211 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
212 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
213 	/* clear interrupt sources */
214 	writew(status, ioaddr + RTC_RTCISR);
215 
216 	/* update irq data & counter */
217 	if (status & RTC_ALM_BIT) {
218 		events |= (RTC_AF | RTC_IRQF);
219 		/* RTC alarm should be one-shot */
220 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
221 	}
222 
223 	if (status & PIT_ALL_ON)
224 		events |= (RTC_PF | RTC_IRQF);
225 
226 	rtc_update_irq(pdata->rtc, 1, events);
227 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
228 
229 	return IRQ_HANDLED;
230 }
231 
232 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
233 {
234 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
235 	return 0;
236 }
237 
238 /*
239  * This function reads the current RTC time into tm in Gregorian date.
240  */
241 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
242 {
243 	time64_t val;
244 
245 	/* Avoid roll-over from reading the different registers */
246 	do {
247 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
248 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
249 
250 	rtc_time64_to_tm(val, tm);
251 
252 	return 0;
253 }
254 
255 /*
256  * This function sets the internal RTC time based on tm in Gregorian date.
257  */
258 static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
259 {
260 	time64_t time = rtc_tm_to_time64(tm);
261 
262 	/* Avoid roll-over from reading the different registers */
263 	do {
264 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
265 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
266 
267 	return 0;
268 }
269 
270 /*
271  * This function reads the current alarm value into the passed in 'alrm'
272  * argument. It updates the alrm's pending field value based on the whether
273  * an alarm interrupt occurs or not.
274  */
275 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
276 {
277 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
278 	void __iomem *ioaddr = pdata->ioaddr;
279 
280 	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
281 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
282 
283 	return 0;
284 }
285 
286 /*
287  * This function sets the RTC alarm based on passed in alrm.
288  */
289 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
290 {
291 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
292 
293 	rtc_update_alarm(dev, &alrm->time);
294 
295 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
296 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
297 
298 	return 0;
299 }
300 
301 /* RTC layer */
302 static const struct rtc_class_ops mxc_rtc_ops = {
303 	.read_time		= mxc_rtc_read_time,
304 	.set_time		= mxc_rtc_set_time,
305 	.read_alarm		= mxc_rtc_read_alarm,
306 	.set_alarm		= mxc_rtc_set_alarm,
307 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
308 };
309 
310 static int mxc_rtc_probe(struct platform_device *pdev)
311 {
312 	struct rtc_device *rtc;
313 	struct rtc_plat_data *pdata = NULL;
314 	u32 reg;
315 	unsigned long rate;
316 	int ret;
317 	const struct of_device_id *of_id;
318 
319 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
320 	if (!pdata)
321 		return -ENOMEM;
322 
323 	of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
324 	if (of_id)
325 		pdata->devtype = (enum imx_rtc_type)of_id->data;
326 	else
327 		pdata->devtype = pdev->id_entry->driver_data;
328 
329 	pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
330 	if (IS_ERR(pdata->ioaddr))
331 		return PTR_ERR(pdata->ioaddr);
332 
333 	rtc = devm_rtc_allocate_device(&pdev->dev);
334 	if (IS_ERR(rtc))
335 		return PTR_ERR(rtc);
336 
337 	pdata->rtc = rtc;
338 	rtc->ops = &mxc_rtc_ops;
339 	if (is_imx1_rtc(pdata)) {
340 		struct rtc_time tm;
341 
342 		/* 9bit days + hours minutes seconds */
343 		rtc->range_max = (1 << 9) * 86400 - 1;
344 
345 		/*
346 		 * Set the start date as beginning of the current year. This can
347 		 * be overridden using device tree.
348 		 */
349 		rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
350 		rtc->start_secs =  mktime64(tm.tm_year, 1, 1, 0, 0, 0);
351 		rtc->set_start_time = true;
352 	} else {
353 		/* 16bit days + hours minutes seconds */
354 		rtc->range_max = (1 << 16) * 86400ULL - 1;
355 	}
356 
357 	pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
358 	if (IS_ERR(pdata->clk_ipg)) {
359 		dev_err(&pdev->dev, "unable to get ipg clock!\n");
360 		return PTR_ERR(pdata->clk_ipg);
361 	}
362 
363 	ret = clk_prepare_enable(pdata->clk_ipg);
364 	if (ret)
365 		return ret;
366 
367 	pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
368 	if (IS_ERR(pdata->clk_ref)) {
369 		dev_err(&pdev->dev, "unable to get ref clock!\n");
370 		ret = PTR_ERR(pdata->clk_ref);
371 		goto exit_put_clk_ipg;
372 	}
373 
374 	ret = clk_prepare_enable(pdata->clk_ref);
375 	if (ret)
376 		goto exit_put_clk_ipg;
377 
378 	rate = clk_get_rate(pdata->clk_ref);
379 
380 	if (rate == 32768)
381 		reg = RTC_INPUT_CLK_32768HZ;
382 	else if (rate == 32000)
383 		reg = RTC_INPUT_CLK_32000HZ;
384 	else if (rate == 38400)
385 		reg = RTC_INPUT_CLK_38400HZ;
386 	else {
387 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
388 		ret = -EINVAL;
389 		goto exit_put_clk_ref;
390 	}
391 
392 	reg |= RTC_ENABLE_BIT;
393 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
394 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
395 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
396 		ret = -EIO;
397 		goto exit_put_clk_ref;
398 	}
399 
400 	platform_set_drvdata(pdev, pdata);
401 
402 	/* Configure and enable the RTC */
403 	pdata->irq = platform_get_irq(pdev, 0);
404 
405 	if (pdata->irq >= 0 &&
406 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
407 			     IRQF_SHARED, pdev->name, pdev) < 0) {
408 		dev_warn(&pdev->dev, "interrupt not available.\n");
409 		pdata->irq = -1;
410 	}
411 
412 	if (pdata->irq >= 0) {
413 		device_init_wakeup(&pdev->dev, 1);
414 		ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
415 		if (ret)
416 			dev_err(&pdev->dev, "failed to enable irq wake\n");
417 	}
418 
419 	ret = rtc_register_device(rtc);
420 	if (ret)
421 		goto exit_put_clk_ref;
422 
423 	return 0;
424 
425 exit_put_clk_ref:
426 	clk_disable_unprepare(pdata->clk_ref);
427 exit_put_clk_ipg:
428 	clk_disable_unprepare(pdata->clk_ipg);
429 
430 	return ret;
431 }
432 
433 static int mxc_rtc_remove(struct platform_device *pdev)
434 {
435 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
436 
437 	clk_disable_unprepare(pdata->clk_ref);
438 	clk_disable_unprepare(pdata->clk_ipg);
439 
440 	return 0;
441 }
442 
443 static struct platform_driver mxc_rtc_driver = {
444 	.driver = {
445 		   .name	= "mxc_rtc",
446 		   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
447 	},
448 	.id_table = imx_rtc_devtype,
449 	.probe = mxc_rtc_probe,
450 	.remove = mxc_rtc_remove,
451 };
452 
453 module_platform_driver(mxc_rtc_driver)
454 
455 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
456 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
457 MODULE_LICENSE("GPL");
458 
459