xref: /openbmc/linux/drivers/rtc/rtc-mxc.c (revision a2cab953)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 
5 #include <linux/io.h>
6 #include <linux/rtc.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/platform_device.h>
11 #include <linux/pm_wakeirq.h>
12 #include <linux/clk.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 
16 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
17 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
18 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
19 
20 #define RTC_SW_BIT      (1 << 0)
21 #define RTC_ALM_BIT     (1 << 2)
22 #define RTC_1HZ_BIT     (1 << 4)
23 #define RTC_2HZ_BIT     (1 << 7)
24 #define RTC_SAM0_BIT    (1 << 8)
25 #define RTC_SAM1_BIT    (1 << 9)
26 #define RTC_SAM2_BIT    (1 << 10)
27 #define RTC_SAM3_BIT    (1 << 11)
28 #define RTC_SAM4_BIT    (1 << 12)
29 #define RTC_SAM5_BIT    (1 << 13)
30 #define RTC_SAM6_BIT    (1 << 14)
31 #define RTC_SAM7_BIT    (1 << 15)
32 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
33 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
34 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
35 
36 #define RTC_ENABLE_BIT  (1 << 7)
37 
38 #define MAX_PIE_NUM     9
39 #define MAX_PIE_FREQ    512
40 
41 #define MXC_RTC_TIME	0
42 #define MXC_RTC_ALARM	1
43 
44 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
45 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
46 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
47 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
48 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
49 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
50 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
51 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
52 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
53 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
54 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
55 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
56 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
57 
58 enum imx_rtc_type {
59 	IMX1_RTC,
60 	IMX21_RTC,
61 };
62 
63 struct rtc_plat_data {
64 	struct rtc_device *rtc;
65 	void __iomem *ioaddr;
66 	int irq;
67 	struct clk *clk_ref;
68 	struct clk *clk_ipg;
69 	struct rtc_time g_rtc_alarm;
70 	enum imx_rtc_type devtype;
71 };
72 
73 static const struct of_device_id imx_rtc_dt_ids[] = {
74 	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
75 	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
76 	{}
77 };
78 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
79 
80 static inline int is_imx1_rtc(struct rtc_plat_data *data)
81 {
82 	return data->devtype == IMX1_RTC;
83 }
84 
85 /*
86  * This function is used to obtain the RTC time or the alarm value in
87  * second.
88  */
89 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
90 {
91 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
92 	void __iomem *ioaddr = pdata->ioaddr;
93 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
94 
95 	switch (time_alarm) {
96 	case MXC_RTC_TIME:
97 		day = readw(ioaddr + RTC_DAYR);
98 		hr_min = readw(ioaddr + RTC_HOURMIN);
99 		sec = readw(ioaddr + RTC_SECOND);
100 		break;
101 	case MXC_RTC_ALARM:
102 		day = readw(ioaddr + RTC_DAYALARM);
103 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
104 		sec = readw(ioaddr + RTC_ALRM_SEC);
105 		break;
106 	}
107 
108 	hr = hr_min >> 8;
109 	min = hr_min & 0xff;
110 
111 	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
112 }
113 
114 /*
115  * This function sets the RTC alarm value or the time value.
116  */
117 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
118 {
119 	u32 tod, day, hr, min, sec, temp;
120 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
121 	void __iomem *ioaddr = pdata->ioaddr;
122 
123 	day = div_s64_rem(time, 86400, &tod);
124 
125 	/* time is within a day now */
126 	hr = tod / 3600;
127 	tod -= hr * 3600;
128 
129 	/* time is within an hour now */
130 	min = tod / 60;
131 	sec = tod - min * 60;
132 
133 	temp = (hr << 8) + min;
134 
135 	switch (time_alarm) {
136 	case MXC_RTC_TIME:
137 		writew(day, ioaddr + RTC_DAYR);
138 		writew(sec, ioaddr + RTC_SECOND);
139 		writew(temp, ioaddr + RTC_HOURMIN);
140 		break;
141 	case MXC_RTC_ALARM:
142 		writew(day, ioaddr + RTC_DAYALARM);
143 		writew(sec, ioaddr + RTC_ALRM_SEC);
144 		writew(temp, ioaddr + RTC_ALRM_HM);
145 		break;
146 	}
147 }
148 
149 /*
150  * This function updates the RTC alarm registers and then clears all the
151  * interrupt status bits.
152  */
153 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
154 {
155 	time64_t time;
156 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
157 	void __iomem *ioaddr = pdata->ioaddr;
158 
159 	time = rtc_tm_to_time64(alrm);
160 
161 	/* clear all the interrupt status bits */
162 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
163 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
164 }
165 
166 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
167 				unsigned int enabled)
168 {
169 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
170 	void __iomem *ioaddr = pdata->ioaddr;
171 	u32 reg;
172 	unsigned long flags;
173 
174 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
175 	reg = readw(ioaddr + RTC_RTCIENR);
176 
177 	if (enabled)
178 		reg |= bit;
179 	else
180 		reg &= ~bit;
181 
182 	writew(reg, ioaddr + RTC_RTCIENR);
183 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
184 }
185 
186 /* This function is the RTC interrupt service routine. */
187 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
188 {
189 	struct platform_device *pdev = dev_id;
190 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
191 	void __iomem *ioaddr = pdata->ioaddr;
192 	u32 status;
193 	u32 events = 0;
194 
195 	spin_lock(&pdata->rtc->irq_lock);
196 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
197 	/* clear interrupt sources */
198 	writew(status, ioaddr + RTC_RTCISR);
199 
200 	/* update irq data & counter */
201 	if (status & RTC_ALM_BIT) {
202 		events |= (RTC_AF | RTC_IRQF);
203 		/* RTC alarm should be one-shot */
204 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
205 	}
206 
207 	if (status & PIT_ALL_ON)
208 		events |= (RTC_PF | RTC_IRQF);
209 
210 	rtc_update_irq(pdata->rtc, 1, events);
211 	spin_unlock(&pdata->rtc->irq_lock);
212 
213 	return IRQ_HANDLED;
214 }
215 
216 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
217 {
218 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
219 	return 0;
220 }
221 
222 /*
223  * This function reads the current RTC time into tm in Gregorian date.
224  */
225 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
226 {
227 	time64_t val;
228 
229 	/* Avoid roll-over from reading the different registers */
230 	do {
231 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
232 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
233 
234 	rtc_time64_to_tm(val, tm);
235 
236 	return 0;
237 }
238 
239 /*
240  * This function sets the internal RTC time based on tm in Gregorian date.
241  */
242 static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
243 {
244 	time64_t time = rtc_tm_to_time64(tm);
245 
246 	/* Avoid roll-over from reading the different registers */
247 	do {
248 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
249 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
250 
251 	return 0;
252 }
253 
254 /*
255  * This function reads the current alarm value into the passed in 'alrm'
256  * argument. It updates the alrm's pending field value based on the whether
257  * an alarm interrupt occurs or not.
258  */
259 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
260 {
261 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
262 	void __iomem *ioaddr = pdata->ioaddr;
263 
264 	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
265 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
266 
267 	return 0;
268 }
269 
270 /*
271  * This function sets the RTC alarm based on passed in alrm.
272  */
273 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
274 {
275 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
276 
277 	rtc_update_alarm(dev, &alrm->time);
278 
279 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
280 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
281 
282 	return 0;
283 }
284 
285 /* RTC layer */
286 static const struct rtc_class_ops mxc_rtc_ops = {
287 	.read_time		= mxc_rtc_read_time,
288 	.set_time		= mxc_rtc_set_time,
289 	.read_alarm		= mxc_rtc_read_alarm,
290 	.set_alarm		= mxc_rtc_set_alarm,
291 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
292 };
293 
294 static int mxc_rtc_probe(struct platform_device *pdev)
295 {
296 	struct rtc_device *rtc;
297 	struct rtc_plat_data *pdata = NULL;
298 	u32 reg;
299 	unsigned long rate;
300 	int ret;
301 
302 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
303 	if (!pdata)
304 		return -ENOMEM;
305 
306 	pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
307 
308 	pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
309 	if (IS_ERR(pdata->ioaddr))
310 		return PTR_ERR(pdata->ioaddr);
311 
312 	rtc = devm_rtc_allocate_device(&pdev->dev);
313 	if (IS_ERR(rtc))
314 		return PTR_ERR(rtc);
315 
316 	pdata->rtc = rtc;
317 	rtc->ops = &mxc_rtc_ops;
318 	if (is_imx1_rtc(pdata)) {
319 		struct rtc_time tm;
320 
321 		/* 9bit days + hours minutes seconds */
322 		rtc->range_max = (1 << 9) * 86400 - 1;
323 
324 		/*
325 		 * Set the start date as beginning of the current year. This can
326 		 * be overridden using device tree.
327 		 */
328 		rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
329 		rtc->start_secs =  mktime64(tm.tm_year, 1, 1, 0, 0, 0);
330 		rtc->set_start_time = true;
331 	} else {
332 		/* 16bit days + hours minutes seconds */
333 		rtc->range_max = (1 << 16) * 86400ULL - 1;
334 	}
335 
336 	pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
337 	if (IS_ERR(pdata->clk_ipg)) {
338 		dev_err(&pdev->dev, "unable to get ipg clock!\n");
339 		return PTR_ERR(pdata->clk_ipg);
340 	}
341 
342 	pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
343 	if (IS_ERR(pdata->clk_ref)) {
344 		dev_err(&pdev->dev, "unable to get ref clock!\n");
345 		return PTR_ERR(pdata->clk_ref);
346 	}
347 
348 	rate = clk_get_rate(pdata->clk_ref);
349 
350 	if (rate == 32768)
351 		reg = RTC_INPUT_CLK_32768HZ;
352 	else if (rate == 32000)
353 		reg = RTC_INPUT_CLK_32000HZ;
354 	else if (rate == 38400)
355 		reg = RTC_INPUT_CLK_38400HZ;
356 	else {
357 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
358 		return -EINVAL;
359 	}
360 
361 	reg |= RTC_ENABLE_BIT;
362 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
363 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
364 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
365 		return -EIO;
366 	}
367 
368 	platform_set_drvdata(pdev, pdata);
369 
370 	/* Configure and enable the RTC */
371 	pdata->irq = platform_get_irq(pdev, 0);
372 
373 	if (pdata->irq >= 0 &&
374 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
375 			     IRQF_SHARED, pdev->name, pdev) < 0) {
376 		dev_warn(&pdev->dev, "interrupt not available.\n");
377 		pdata->irq = -1;
378 	}
379 
380 	if (pdata->irq >= 0) {
381 		device_init_wakeup(&pdev->dev, 1);
382 		ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
383 		if (ret)
384 			dev_err(&pdev->dev, "failed to enable irq wake\n");
385 	}
386 
387 	ret = devm_rtc_register_device(rtc);
388 
389 	return ret;
390 }
391 
392 static struct platform_driver mxc_rtc_driver = {
393 	.driver = {
394 		   .name	= "mxc_rtc",
395 		   .of_match_table = imx_rtc_dt_ids,
396 	},
397 	.probe = mxc_rtc_probe,
398 };
399 
400 module_platform_driver(mxc_rtc_driver)
401 
402 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
403 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
404 MODULE_LICENSE("GPL");
405 
406