xref: /openbmc/linux/drivers/rtc/rtc-mxc.c (revision 9cdb81c7)
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 
20 #include <mach/hardware.h>
21 
22 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
25 
26 #define RTC_SW_BIT      (1 << 0)
27 #define RTC_ALM_BIT     (1 << 2)
28 #define RTC_1HZ_BIT     (1 << 4)
29 #define RTC_2HZ_BIT     (1 << 7)
30 #define RTC_SAM0_BIT    (1 << 8)
31 #define RTC_SAM1_BIT    (1 << 9)
32 #define RTC_SAM2_BIT    (1 << 10)
33 #define RTC_SAM3_BIT    (1 << 11)
34 #define RTC_SAM4_BIT    (1 << 12)
35 #define RTC_SAM5_BIT    (1 << 13)
36 #define RTC_SAM6_BIT    (1 << 14)
37 #define RTC_SAM7_BIT    (1 << 15)
38 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41 
42 #define RTC_ENABLE_BIT  (1 << 7)
43 
44 #define MAX_PIE_NUM     9
45 #define MAX_PIE_FREQ    512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 	{ 2,		RTC_2HZ_BIT },
48 	{ 4,		RTC_SAM0_BIT },
49 	{ 8,		RTC_SAM1_BIT },
50 	{ 16,		RTC_SAM2_BIT },
51 	{ 32,		RTC_SAM3_BIT },
52 	{ 64,		RTC_SAM4_BIT },
53 	{ 128,		RTC_SAM5_BIT },
54 	{ 256,		RTC_SAM6_BIT },
55 	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
56 };
57 
58 #define MXC_RTC_TIME	0
59 #define MXC_RTC_ALARM	1
60 
61 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
62 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
66 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
67 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
68 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
69 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
70 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
71 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
72 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
73 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
74 
75 struct rtc_plat_data {
76 	struct rtc_device *rtc;
77 	void __iomem *ioaddr;
78 	int irq;
79 	struct clk *clk;
80 	struct rtc_time g_rtc_alarm;
81 };
82 
83 /*
84  * This function is used to obtain the RTC time or the alarm value in
85  * second.
86  */
87 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
88 {
89 	struct platform_device *pdev = to_platform_device(dev);
90 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
91 	void __iomem *ioaddr = pdata->ioaddr;
92 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93 
94 	switch (time_alarm) {
95 	case MXC_RTC_TIME:
96 		day = readw(ioaddr + RTC_DAYR);
97 		hr_min = readw(ioaddr + RTC_HOURMIN);
98 		sec = readw(ioaddr + RTC_SECOND);
99 		break;
100 	case MXC_RTC_ALARM:
101 		day = readw(ioaddr + RTC_DAYALARM);
102 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 		sec = readw(ioaddr + RTC_ALRM_SEC);
104 		break;
105 	}
106 
107 	hr = hr_min >> 8;
108 	min = hr_min & 0xff;
109 
110 	return (((day * 24 + hr) * 60) + min) * 60 + sec;
111 }
112 
113 /*
114  * This function sets the RTC alarm value or the time value.
115  */
116 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117 {
118 	u32 day, hr, min, sec, temp;
119 	struct platform_device *pdev = to_platform_device(dev);
120 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121 	void __iomem *ioaddr = pdata->ioaddr;
122 
123 	day = time / 86400;
124 	time -= day * 86400;
125 
126 	/* time is within a day now */
127 	hr = time / 3600;
128 	time -= hr * 3600;
129 
130 	/* time is within an hour now */
131 	min = time / 60;
132 	sec = time - min * 60;
133 
134 	temp = (hr << 8) + min;
135 
136 	switch (time_alarm) {
137 	case MXC_RTC_TIME:
138 		writew(day, ioaddr + RTC_DAYR);
139 		writew(sec, ioaddr + RTC_SECOND);
140 		writew(temp, ioaddr + RTC_HOURMIN);
141 		break;
142 	case MXC_RTC_ALARM:
143 		writew(day, ioaddr + RTC_DAYALARM);
144 		writew(sec, ioaddr + RTC_ALRM_SEC);
145 		writew(temp, ioaddr + RTC_ALRM_HM);
146 		break;
147 	}
148 }
149 
150 /*
151  * This function updates the RTC alarm registers and then clears all the
152  * interrupt status bits.
153  */
154 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155 {
156 	struct rtc_time alarm_tm, now_tm;
157 	unsigned long now, time;
158 	struct platform_device *pdev = to_platform_device(dev);
159 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
160 	void __iomem *ioaddr = pdata->ioaddr;
161 
162 	now = get_alarm_or_time(dev, MXC_RTC_TIME);
163 	rtc_time_to_tm(now, &now_tm);
164 	alarm_tm.tm_year = now_tm.tm_year;
165 	alarm_tm.tm_mon = now_tm.tm_mon;
166 	alarm_tm.tm_mday = now_tm.tm_mday;
167 	alarm_tm.tm_hour = alrm->tm_hour;
168 	alarm_tm.tm_min = alrm->tm_min;
169 	alarm_tm.tm_sec = alrm->tm_sec;
170 	rtc_tm_to_time(&alarm_tm, &time);
171 
172 	/* clear all the interrupt status bits */
173 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
174 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
175 
176 	return 0;
177 }
178 
179 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
180 				unsigned int enabled)
181 {
182 	struct platform_device *pdev = to_platform_device(dev);
183 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
184 	void __iomem *ioaddr = pdata->ioaddr;
185 	u32 reg;
186 
187 	spin_lock_irq(&pdata->rtc->irq_lock);
188 	reg = readw(ioaddr + RTC_RTCIENR);
189 
190 	if (enabled)
191 		reg |= bit;
192 	else
193 		reg &= ~bit;
194 
195 	writew(reg, ioaddr + RTC_RTCIENR);
196 	spin_unlock_irq(&pdata->rtc->irq_lock);
197 }
198 
199 /* This function is the RTC interrupt service routine. */
200 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
201 {
202 	struct platform_device *pdev = dev_id;
203 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
204 	void __iomem *ioaddr = pdata->ioaddr;
205 	u32 status;
206 	u32 events = 0;
207 
208 	spin_lock_irq(&pdata->rtc->irq_lock);
209 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
210 	/* clear interrupt sources */
211 	writew(status, ioaddr + RTC_RTCISR);
212 
213 	/* update irq data & counter */
214 	if (status & RTC_ALM_BIT) {
215 		events |= (RTC_AF | RTC_IRQF);
216 		/* RTC alarm should be one-shot */
217 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
218 	}
219 
220 	if (status & RTC_1HZ_BIT)
221 		events |= (RTC_UF | RTC_IRQF);
222 
223 	if (status & PIT_ALL_ON)
224 		events |= (RTC_PF | RTC_IRQF);
225 
226 	rtc_update_irq(pdata->rtc, 1, events);
227 	spin_unlock_irq(&pdata->rtc->irq_lock);
228 
229 	return IRQ_HANDLED;
230 }
231 
232 /*
233  * Clear all interrupts and release the IRQ
234  */
235 static void mxc_rtc_release(struct device *dev)
236 {
237 	struct platform_device *pdev = to_platform_device(dev);
238 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
239 	void __iomem *ioaddr = pdata->ioaddr;
240 
241 	spin_lock_irq(&pdata->rtc->irq_lock);
242 
243 	/* Disable all rtc interrupts */
244 	writew(0, ioaddr + RTC_RTCIENR);
245 
246 	/* Clear all interrupt status */
247 	writew(0xffffffff, ioaddr + RTC_RTCISR);
248 
249 	spin_unlock_irq(&pdata->rtc->irq_lock);
250 }
251 
252 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
253 {
254 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
255 	return 0;
256 }
257 
258 /*
259  * This function reads the current RTC time into tm in Gregorian date.
260  */
261 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
262 {
263 	u32 val;
264 
265 	/* Avoid roll-over from reading the different registers */
266 	do {
267 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
268 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
269 
270 	rtc_time_to_tm(val, tm);
271 
272 	return 0;
273 }
274 
275 /*
276  * This function sets the internal RTC time based on tm in Gregorian date.
277  */
278 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
279 {
280 	/*
281 	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
282 	 */
283 	if (cpu_is_mx1()) {
284 		struct rtc_time tm;
285 
286 		rtc_time_to_tm(time, &tm);
287 		tm.tm_year = 70;
288 		rtc_tm_to_time(&tm, &time);
289 	}
290 
291 	/* Avoid roll-over from reading the different registers */
292 	do {
293 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
294 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
295 
296 	return 0;
297 }
298 
299 /*
300  * This function reads the current alarm value into the passed in 'alrm'
301  * argument. It updates the alrm's pending field value based on the whether
302  * an alarm interrupt occurs or not.
303  */
304 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
305 {
306 	struct platform_device *pdev = to_platform_device(dev);
307 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
308 	void __iomem *ioaddr = pdata->ioaddr;
309 
310 	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
311 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
312 
313 	return 0;
314 }
315 
316 /*
317  * This function sets the RTC alarm based on passed in alrm.
318  */
319 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
320 {
321 	struct platform_device *pdev = to_platform_device(dev);
322 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
323 	int ret;
324 
325 	ret = rtc_update_alarm(dev, &alrm->time);
326 	if (ret)
327 		return ret;
328 
329 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
330 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
331 
332 	return 0;
333 }
334 
335 /* RTC layer */
336 static struct rtc_class_ops mxc_rtc_ops = {
337 	.release		= mxc_rtc_release,
338 	.read_time		= mxc_rtc_read_time,
339 	.set_mmss		= mxc_rtc_set_mmss,
340 	.read_alarm		= mxc_rtc_read_alarm,
341 	.set_alarm		= mxc_rtc_set_alarm,
342 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
343 };
344 
345 static int __init mxc_rtc_probe(struct platform_device *pdev)
346 {
347 	struct resource *res;
348 	struct rtc_device *rtc;
349 	struct rtc_plat_data *pdata = NULL;
350 	u32 reg;
351 	unsigned long rate;
352 	int ret;
353 
354 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
355 	if (!res)
356 		return -ENODEV;
357 
358 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
359 	if (!pdata)
360 		return -ENOMEM;
361 
362 	if (!devm_request_mem_region(&pdev->dev, res->start,
363 				     resource_size(res), pdev->name))
364 		return -EBUSY;
365 
366 	pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
367 				     resource_size(res));
368 
369 	pdata->clk = clk_get(&pdev->dev, "rtc");
370 	if (IS_ERR(pdata->clk)) {
371 		dev_err(&pdev->dev, "unable to get clock!\n");
372 		ret = PTR_ERR(pdata->clk);
373 		goto exit_free_pdata;
374 	}
375 
376 	clk_enable(pdata->clk);
377 	rate = clk_get_rate(pdata->clk);
378 
379 	if (rate == 32768)
380 		reg = RTC_INPUT_CLK_32768HZ;
381 	else if (rate == 32000)
382 		reg = RTC_INPUT_CLK_32000HZ;
383 	else if (rate == 38400)
384 		reg = RTC_INPUT_CLK_38400HZ;
385 	else {
386 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
387 		ret = -EINVAL;
388 		goto exit_put_clk;
389 	}
390 
391 	reg |= RTC_ENABLE_BIT;
392 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
393 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
394 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
395 		ret = -EIO;
396 		goto exit_put_clk;
397 	}
398 
399 	platform_set_drvdata(pdev, pdata);
400 
401 	/* Configure and enable the RTC */
402 	pdata->irq = platform_get_irq(pdev, 0);
403 
404 	if (pdata->irq >= 0 &&
405 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
406 			     IRQF_SHARED, pdev->name, pdev) < 0) {
407 		dev_warn(&pdev->dev, "interrupt not available.\n");
408 		pdata->irq = -1;
409 	}
410 
411 	if (pdata->irq >=0)
412 		device_init_wakeup(&pdev->dev, 1);
413 
414 	rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
415 				  THIS_MODULE);
416 	if (IS_ERR(rtc)) {
417 		ret = PTR_ERR(rtc);
418 		goto exit_clr_drvdata;
419 	}
420 
421 	pdata->rtc = rtc;
422 
423 	return 0;
424 
425 exit_clr_drvdata:
426 	platform_set_drvdata(pdev, NULL);
427 exit_put_clk:
428 	clk_disable(pdata->clk);
429 	clk_put(pdata->clk);
430 
431 exit_free_pdata:
432 
433 	return ret;
434 }
435 
436 static int __exit mxc_rtc_remove(struct platform_device *pdev)
437 {
438 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
439 
440 	rtc_device_unregister(pdata->rtc);
441 
442 	clk_disable(pdata->clk);
443 	clk_put(pdata->clk);
444 	platform_set_drvdata(pdev, NULL);
445 
446 	return 0;
447 }
448 
449 #ifdef CONFIG_PM
450 static int mxc_rtc_suspend(struct device *dev)
451 {
452 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
453 
454 	if (device_may_wakeup(dev))
455 		enable_irq_wake(pdata->irq);
456 
457 	return 0;
458 }
459 
460 static int mxc_rtc_resume(struct device *dev)
461 {
462 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
463 
464 	if (device_may_wakeup(dev))
465 		disable_irq_wake(pdata->irq);
466 
467 	return 0;
468 }
469 
470 static struct dev_pm_ops mxc_rtc_pm_ops = {
471 	.suspend	= mxc_rtc_suspend,
472 	.resume		= mxc_rtc_resume,
473 };
474 #endif
475 
476 static struct platform_driver mxc_rtc_driver = {
477 	.driver = {
478 		   .name	= "mxc_rtc",
479 #ifdef CONFIG_PM
480 		   .pm		= &mxc_rtc_pm_ops,
481 #endif
482 		   .owner	= THIS_MODULE,
483 	},
484 	.remove		= __exit_p(mxc_rtc_remove),
485 };
486 
487 static int __init mxc_rtc_init(void)
488 {
489 	return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
490 }
491 
492 static void __exit mxc_rtc_exit(void)
493 {
494 	platform_driver_unregister(&mxc_rtc_driver);
495 }
496 
497 module_init(mxc_rtc_init);
498 module_exit(mxc_rtc_exit);
499 
500 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
501 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
502 MODULE_LICENSE("GPL");
503 
504