xref: /openbmc/linux/drivers/rtc/rtc-mxc.c (revision 7fe2f639)
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 
20 #include <mach/hardware.h>
21 
22 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
25 
26 #define RTC_SW_BIT      (1 << 0)
27 #define RTC_ALM_BIT     (1 << 2)
28 #define RTC_1HZ_BIT     (1 << 4)
29 #define RTC_2HZ_BIT     (1 << 7)
30 #define RTC_SAM0_BIT    (1 << 8)
31 #define RTC_SAM1_BIT    (1 << 9)
32 #define RTC_SAM2_BIT    (1 << 10)
33 #define RTC_SAM3_BIT    (1 << 11)
34 #define RTC_SAM4_BIT    (1 << 12)
35 #define RTC_SAM5_BIT    (1 << 13)
36 #define RTC_SAM6_BIT    (1 << 14)
37 #define RTC_SAM7_BIT    (1 << 15)
38 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41 
42 #define RTC_ENABLE_BIT  (1 << 7)
43 
44 #define MAX_PIE_NUM     9
45 #define MAX_PIE_FREQ    512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 	{ 2,		RTC_2HZ_BIT },
48 	{ 4,		RTC_SAM0_BIT },
49 	{ 8,		RTC_SAM1_BIT },
50 	{ 16,		RTC_SAM2_BIT },
51 	{ 32,		RTC_SAM3_BIT },
52 	{ 64,		RTC_SAM4_BIT },
53 	{ 128,		RTC_SAM5_BIT },
54 	{ 256,		RTC_SAM6_BIT },
55 	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
56 };
57 
58 #define MXC_RTC_TIME	0
59 #define MXC_RTC_ALARM	1
60 
61 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
62 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
66 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
67 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
68 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
69 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
70 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
71 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
72 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
73 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
74 
75 struct rtc_plat_data {
76 	struct rtc_device *rtc;
77 	void __iomem *ioaddr;
78 	int irq;
79 	struct clk *clk;
80 	struct rtc_time g_rtc_alarm;
81 };
82 
83 /*
84  * This function is used to obtain the RTC time or the alarm value in
85  * second.
86  */
87 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
88 {
89 	struct platform_device *pdev = to_platform_device(dev);
90 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
91 	void __iomem *ioaddr = pdata->ioaddr;
92 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93 
94 	switch (time_alarm) {
95 	case MXC_RTC_TIME:
96 		day = readw(ioaddr + RTC_DAYR);
97 		hr_min = readw(ioaddr + RTC_HOURMIN);
98 		sec = readw(ioaddr + RTC_SECOND);
99 		break;
100 	case MXC_RTC_ALARM:
101 		day = readw(ioaddr + RTC_DAYALARM);
102 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 		sec = readw(ioaddr + RTC_ALRM_SEC);
104 		break;
105 	}
106 
107 	hr = hr_min >> 8;
108 	min = hr_min & 0xff;
109 
110 	return (((day * 24 + hr) * 60) + min) * 60 + sec;
111 }
112 
113 /*
114  * This function sets the RTC alarm value or the time value.
115  */
116 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117 {
118 	u32 day, hr, min, sec, temp;
119 	struct platform_device *pdev = to_platform_device(dev);
120 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121 	void __iomem *ioaddr = pdata->ioaddr;
122 
123 	day = time / 86400;
124 	time -= day * 86400;
125 
126 	/* time is within a day now */
127 	hr = time / 3600;
128 	time -= hr * 3600;
129 
130 	/* time is within an hour now */
131 	min = time / 60;
132 	sec = time - min * 60;
133 
134 	temp = (hr << 8) + min;
135 
136 	switch (time_alarm) {
137 	case MXC_RTC_TIME:
138 		writew(day, ioaddr + RTC_DAYR);
139 		writew(sec, ioaddr + RTC_SECOND);
140 		writew(temp, ioaddr + RTC_HOURMIN);
141 		break;
142 	case MXC_RTC_ALARM:
143 		writew(day, ioaddr + RTC_DAYALARM);
144 		writew(sec, ioaddr + RTC_ALRM_SEC);
145 		writew(temp, ioaddr + RTC_ALRM_HM);
146 		break;
147 	}
148 }
149 
150 /*
151  * This function updates the RTC alarm registers and then clears all the
152  * interrupt status bits.
153  */
154 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155 {
156 	struct rtc_time alarm_tm, now_tm;
157 	unsigned long now, time;
158 	int ret;
159 	struct platform_device *pdev = to_platform_device(dev);
160 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
161 	void __iomem *ioaddr = pdata->ioaddr;
162 
163 	now = get_alarm_or_time(dev, MXC_RTC_TIME);
164 	rtc_time_to_tm(now, &now_tm);
165 	alarm_tm.tm_year = now_tm.tm_year;
166 	alarm_tm.tm_mon = now_tm.tm_mon;
167 	alarm_tm.tm_mday = now_tm.tm_mday;
168 	alarm_tm.tm_hour = alrm->tm_hour;
169 	alarm_tm.tm_min = alrm->tm_min;
170 	alarm_tm.tm_sec = alrm->tm_sec;
171 	rtc_tm_to_time(&now_tm, &now);
172 	rtc_tm_to_time(&alarm_tm, &time);
173 
174 	if (time < now) {
175 		time += 60 * 60 * 24;
176 		rtc_time_to_tm(time, &alarm_tm);
177 	}
178 
179 	ret = rtc_tm_to_time(&alarm_tm, &time);
180 
181 	/* clear all the interrupt status bits */
182 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
183 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
184 
185 	return ret;
186 }
187 
188 /* This function is the RTC interrupt service routine. */
189 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
190 {
191 	struct platform_device *pdev = dev_id;
192 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
193 	void __iomem *ioaddr = pdata->ioaddr;
194 	u32 status;
195 	u32 events = 0;
196 
197 	spin_lock_irq(&pdata->rtc->irq_lock);
198 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
199 	/* clear interrupt sources */
200 	writew(status, ioaddr + RTC_RTCISR);
201 
202 	/* clear alarm interrupt if it has occurred */
203 	if (status & RTC_ALM_BIT)
204 		status &= ~RTC_ALM_BIT;
205 
206 	/* update irq data & counter */
207 	if (status & RTC_ALM_BIT)
208 		events |= (RTC_AF | RTC_IRQF);
209 
210 	if (status & RTC_1HZ_BIT)
211 		events |= (RTC_UF | RTC_IRQF);
212 
213 	if (status & PIT_ALL_ON)
214 		events |= (RTC_PF | RTC_IRQF);
215 
216 	if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
217 		rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
218 
219 	rtc_update_irq(pdata->rtc, 1, events);
220 	spin_unlock_irq(&pdata->rtc->irq_lock);
221 
222 	return IRQ_HANDLED;
223 }
224 
225 /*
226  * Clear all interrupts and release the IRQ
227  */
228 static void mxc_rtc_release(struct device *dev)
229 {
230 	struct platform_device *pdev = to_platform_device(dev);
231 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
232 	void __iomem *ioaddr = pdata->ioaddr;
233 
234 	spin_lock_irq(&pdata->rtc->irq_lock);
235 
236 	/* Disable all rtc interrupts */
237 	writew(0, ioaddr + RTC_RTCIENR);
238 
239 	/* Clear all interrupt status */
240 	writew(0xffffffff, ioaddr + RTC_RTCISR);
241 
242 	spin_unlock_irq(&pdata->rtc->irq_lock);
243 }
244 
245 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
246 				unsigned int enabled)
247 {
248 	struct platform_device *pdev = to_platform_device(dev);
249 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
250 	void __iomem *ioaddr = pdata->ioaddr;
251 	u32 reg;
252 
253 	spin_lock_irq(&pdata->rtc->irq_lock);
254 	reg = readw(ioaddr + RTC_RTCIENR);
255 
256 	if (enabled)
257 		reg |= bit;
258 	else
259 		reg &= ~bit;
260 
261 	writew(reg, ioaddr + RTC_RTCIENR);
262 	spin_unlock_irq(&pdata->rtc->irq_lock);
263 }
264 
265 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
266 {
267 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
268 	return 0;
269 }
270 
271 /*
272  * This function reads the current RTC time into tm in Gregorian date.
273  */
274 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
275 {
276 	u32 val;
277 
278 	/* Avoid roll-over from reading the different registers */
279 	do {
280 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
281 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
282 
283 	rtc_time_to_tm(val, tm);
284 
285 	return 0;
286 }
287 
288 /*
289  * This function sets the internal RTC time based on tm in Gregorian date.
290  */
291 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
292 {
293 	/* Avoid roll-over from reading the different registers */
294 	do {
295 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
296 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
297 
298 	return 0;
299 }
300 
301 /*
302  * This function reads the current alarm value into the passed in 'alrm'
303  * argument. It updates the alrm's pending field value based on the whether
304  * an alarm interrupt occurs or not.
305  */
306 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
307 {
308 	struct platform_device *pdev = to_platform_device(dev);
309 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
310 	void __iomem *ioaddr = pdata->ioaddr;
311 
312 	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
313 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
314 
315 	return 0;
316 }
317 
318 /*
319  * This function sets the RTC alarm based on passed in alrm.
320  */
321 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
322 {
323 	struct platform_device *pdev = to_platform_device(dev);
324 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
325 	int ret;
326 
327 	if (rtc_valid_tm(&alrm->time)) {
328 		if (alrm->time.tm_sec > 59 ||
329 		    alrm->time.tm_hour > 23 ||
330 		    alrm->time.tm_min > 59)
331 			return -EINVAL;
332 
333 		ret = rtc_update_alarm(dev, &alrm->time);
334 	} else {
335 		ret = rtc_valid_tm(&alrm->time);
336 		if (ret)
337 			return ret;
338 
339 		ret = rtc_update_alarm(dev, &alrm->time);
340 	}
341 
342 	if (ret)
343 		return ret;
344 
345 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
346 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
347 
348 	return 0;
349 }
350 
351 /* RTC layer */
352 static struct rtc_class_ops mxc_rtc_ops = {
353 	.release		= mxc_rtc_release,
354 	.read_time		= mxc_rtc_read_time,
355 	.set_mmss		= mxc_rtc_set_mmss,
356 	.read_alarm		= mxc_rtc_read_alarm,
357 	.set_alarm		= mxc_rtc_set_alarm,
358 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
359 };
360 
361 static int __init mxc_rtc_probe(struct platform_device *pdev)
362 {
363 	struct resource *res;
364 	struct rtc_device *rtc;
365 	struct rtc_plat_data *pdata = NULL;
366 	u32 reg;
367 	unsigned long rate;
368 	int ret;
369 
370 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
371 	if (!res)
372 		return -ENODEV;
373 
374 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
375 	if (!pdata)
376 		return -ENOMEM;
377 
378 	if (!devm_request_mem_region(&pdev->dev, res->start,
379 				     resource_size(res), pdev->name))
380 		return -EBUSY;
381 
382 	pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
383 				     resource_size(res));
384 
385 	pdata->clk = clk_get(&pdev->dev, "rtc");
386 	if (IS_ERR(pdata->clk)) {
387 		dev_err(&pdev->dev, "unable to get clock!\n");
388 		ret = PTR_ERR(pdata->clk);
389 		goto exit_free_pdata;
390 	}
391 
392 	clk_enable(pdata->clk);
393 	rate = clk_get_rate(pdata->clk);
394 
395 	if (rate == 32768)
396 		reg = RTC_INPUT_CLK_32768HZ;
397 	else if (rate == 32000)
398 		reg = RTC_INPUT_CLK_32000HZ;
399 	else if (rate == 38400)
400 		reg = RTC_INPUT_CLK_38400HZ;
401 	else {
402 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
403 		ret = -EINVAL;
404 		goto exit_put_clk;
405 	}
406 
407 	reg |= RTC_ENABLE_BIT;
408 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
409 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
410 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
411 		ret = -EIO;
412 		goto exit_put_clk;
413 	}
414 
415 	platform_set_drvdata(pdev, pdata);
416 
417 	/* Configure and enable the RTC */
418 	pdata->irq = platform_get_irq(pdev, 0);
419 
420 	if (pdata->irq >= 0 &&
421 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
422 			     IRQF_SHARED, pdev->name, pdev) < 0) {
423 		dev_warn(&pdev->dev, "interrupt not available.\n");
424 		pdata->irq = -1;
425 	}
426 
427 	rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
428 				  THIS_MODULE);
429 	if (IS_ERR(rtc)) {
430 		ret = PTR_ERR(rtc);
431 		goto exit_clr_drvdata;
432 	}
433 
434 	pdata->rtc = rtc;
435 
436 	return 0;
437 
438 exit_clr_drvdata:
439 	platform_set_drvdata(pdev, NULL);
440 exit_put_clk:
441 	clk_disable(pdata->clk);
442 	clk_put(pdata->clk);
443 
444 exit_free_pdata:
445 
446 	return ret;
447 }
448 
449 static int __exit mxc_rtc_remove(struct platform_device *pdev)
450 {
451 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
452 
453 	rtc_device_unregister(pdata->rtc);
454 
455 	clk_disable(pdata->clk);
456 	clk_put(pdata->clk);
457 	platform_set_drvdata(pdev, NULL);
458 
459 	return 0;
460 }
461 
462 static struct platform_driver mxc_rtc_driver = {
463 	.driver = {
464 		   .name	= "mxc_rtc",
465 		   .owner	= THIS_MODULE,
466 	},
467 	.remove		= __exit_p(mxc_rtc_remove),
468 };
469 
470 static int __init mxc_rtc_init(void)
471 {
472 	return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
473 }
474 
475 static void __exit mxc_rtc_exit(void)
476 {
477 	platform_driver_unregister(&mxc_rtc_driver);
478 }
479 
480 module_init(mxc_rtc_init);
481 module_exit(mxc_rtc_exit);
482 
483 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
484 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
485 MODULE_LICENSE("GPL");
486 
487