xref: /openbmc/linux/drivers/rtc/rtc-mxc.c (revision 565d76cb)
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 
20 #include <mach/hardware.h>
21 
22 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
25 
26 #define RTC_SW_BIT      (1 << 0)
27 #define RTC_ALM_BIT     (1 << 2)
28 #define RTC_1HZ_BIT     (1 << 4)
29 #define RTC_2HZ_BIT     (1 << 7)
30 #define RTC_SAM0_BIT    (1 << 8)
31 #define RTC_SAM1_BIT    (1 << 9)
32 #define RTC_SAM2_BIT    (1 << 10)
33 #define RTC_SAM3_BIT    (1 << 11)
34 #define RTC_SAM4_BIT    (1 << 12)
35 #define RTC_SAM5_BIT    (1 << 13)
36 #define RTC_SAM6_BIT    (1 << 14)
37 #define RTC_SAM7_BIT    (1 << 15)
38 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41 
42 #define RTC_ENABLE_BIT  (1 << 7)
43 
44 #define MAX_PIE_NUM     9
45 #define MAX_PIE_FREQ    512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 	{ 2,		RTC_2HZ_BIT },
48 	{ 4,		RTC_SAM0_BIT },
49 	{ 8,		RTC_SAM1_BIT },
50 	{ 16,		RTC_SAM2_BIT },
51 	{ 32,		RTC_SAM3_BIT },
52 	{ 64,		RTC_SAM4_BIT },
53 	{ 128,		RTC_SAM5_BIT },
54 	{ 256,		RTC_SAM6_BIT },
55 	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
56 };
57 
58 /* Those are the bits from a classic RTC we want to mimic */
59 #define RTC_IRQF	0x80	/* any of the following 3 is active */
60 #define RTC_PF		0x40	/* Periodic interrupt */
61 #define RTC_AF		0x20	/* Alarm interrupt */
62 #define RTC_UF		0x10	/* Update interrupt for 1Hz RTC */
63 
64 #define MXC_RTC_TIME	0
65 #define MXC_RTC_ALARM	1
66 
67 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
68 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
69 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
70 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
71 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
72 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
73 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
74 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
75 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
76 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
77 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
78 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
79 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
80 
81 struct rtc_plat_data {
82 	struct rtc_device *rtc;
83 	void __iomem *ioaddr;
84 	int irq;
85 	struct clk *clk;
86 	struct rtc_time g_rtc_alarm;
87 };
88 
89 /*
90  * This function is used to obtain the RTC time or the alarm value in
91  * second.
92  */
93 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
94 {
95 	struct platform_device *pdev = to_platform_device(dev);
96 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
97 	void __iomem *ioaddr = pdata->ioaddr;
98 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
99 
100 	switch (time_alarm) {
101 	case MXC_RTC_TIME:
102 		day = readw(ioaddr + RTC_DAYR);
103 		hr_min = readw(ioaddr + RTC_HOURMIN);
104 		sec = readw(ioaddr + RTC_SECOND);
105 		break;
106 	case MXC_RTC_ALARM:
107 		day = readw(ioaddr + RTC_DAYALARM);
108 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
109 		sec = readw(ioaddr + RTC_ALRM_SEC);
110 		break;
111 	}
112 
113 	hr = hr_min >> 8;
114 	min = hr_min & 0xff;
115 
116 	return (((day * 24 + hr) * 60) + min) * 60 + sec;
117 }
118 
119 /*
120  * This function sets the RTC alarm value or the time value.
121  */
122 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
123 {
124 	u32 day, hr, min, sec, temp;
125 	struct platform_device *pdev = to_platform_device(dev);
126 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
127 	void __iomem *ioaddr = pdata->ioaddr;
128 
129 	day = time / 86400;
130 	time -= day * 86400;
131 
132 	/* time is within a day now */
133 	hr = time / 3600;
134 	time -= hr * 3600;
135 
136 	/* time is within an hour now */
137 	min = time / 60;
138 	sec = time - min * 60;
139 
140 	temp = (hr << 8) + min;
141 
142 	switch (time_alarm) {
143 	case MXC_RTC_TIME:
144 		writew(day, ioaddr + RTC_DAYR);
145 		writew(sec, ioaddr + RTC_SECOND);
146 		writew(temp, ioaddr + RTC_HOURMIN);
147 		break;
148 	case MXC_RTC_ALARM:
149 		writew(day, ioaddr + RTC_DAYALARM);
150 		writew(sec, ioaddr + RTC_ALRM_SEC);
151 		writew(temp, ioaddr + RTC_ALRM_HM);
152 		break;
153 	}
154 }
155 
156 /*
157  * This function updates the RTC alarm registers and then clears all the
158  * interrupt status bits.
159  */
160 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
161 {
162 	struct rtc_time alarm_tm, now_tm;
163 	unsigned long now, time;
164 	int ret;
165 	struct platform_device *pdev = to_platform_device(dev);
166 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
167 	void __iomem *ioaddr = pdata->ioaddr;
168 
169 	now = get_alarm_or_time(dev, MXC_RTC_TIME);
170 	rtc_time_to_tm(now, &now_tm);
171 	alarm_tm.tm_year = now_tm.tm_year;
172 	alarm_tm.tm_mon = now_tm.tm_mon;
173 	alarm_tm.tm_mday = now_tm.tm_mday;
174 	alarm_tm.tm_hour = alrm->tm_hour;
175 	alarm_tm.tm_min = alrm->tm_min;
176 	alarm_tm.tm_sec = alrm->tm_sec;
177 	rtc_tm_to_time(&now_tm, &now);
178 	rtc_tm_to_time(&alarm_tm, &time);
179 
180 	if (time < now) {
181 		time += 60 * 60 * 24;
182 		rtc_time_to_tm(time, &alarm_tm);
183 	}
184 
185 	ret = rtc_tm_to_time(&alarm_tm, &time);
186 
187 	/* clear all the interrupt status bits */
188 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
189 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
190 
191 	return ret;
192 }
193 
194 /* This function is the RTC interrupt service routine. */
195 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
196 {
197 	struct platform_device *pdev = dev_id;
198 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
199 	void __iomem *ioaddr = pdata->ioaddr;
200 	u32 status;
201 	u32 events = 0;
202 
203 	spin_lock_irq(&pdata->rtc->irq_lock);
204 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
205 	/* clear interrupt sources */
206 	writew(status, ioaddr + RTC_RTCISR);
207 
208 	/* clear alarm interrupt if it has occurred */
209 	if (status & RTC_ALM_BIT)
210 		status &= ~RTC_ALM_BIT;
211 
212 	/* update irq data & counter */
213 	if (status & RTC_ALM_BIT)
214 		events |= (RTC_AF | RTC_IRQF);
215 
216 	if (status & RTC_1HZ_BIT)
217 		events |= (RTC_UF | RTC_IRQF);
218 
219 	if (status & PIT_ALL_ON)
220 		events |= (RTC_PF | RTC_IRQF);
221 
222 	if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
223 		rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
224 
225 	rtc_update_irq(pdata->rtc, 1, events);
226 	spin_unlock_irq(&pdata->rtc->irq_lock);
227 
228 	return IRQ_HANDLED;
229 }
230 
231 /*
232  * Clear all interrupts and release the IRQ
233  */
234 static void mxc_rtc_release(struct device *dev)
235 {
236 	struct platform_device *pdev = to_platform_device(dev);
237 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
238 	void __iomem *ioaddr = pdata->ioaddr;
239 
240 	spin_lock_irq(&pdata->rtc->irq_lock);
241 
242 	/* Disable all rtc interrupts */
243 	writew(0, ioaddr + RTC_RTCIENR);
244 
245 	/* Clear all interrupt status */
246 	writew(0xffffffff, ioaddr + RTC_RTCISR);
247 
248 	spin_unlock_irq(&pdata->rtc->irq_lock);
249 }
250 
251 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
252 				unsigned int enabled)
253 {
254 	struct platform_device *pdev = to_platform_device(dev);
255 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
256 	void __iomem *ioaddr = pdata->ioaddr;
257 	u32 reg;
258 
259 	spin_lock_irq(&pdata->rtc->irq_lock);
260 	reg = readw(ioaddr + RTC_RTCIENR);
261 
262 	if (enabled)
263 		reg |= bit;
264 	else
265 		reg &= ~bit;
266 
267 	writew(reg, ioaddr + RTC_RTCIENR);
268 	spin_unlock_irq(&pdata->rtc->irq_lock);
269 }
270 
271 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
272 {
273 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
274 	return 0;
275 }
276 
277 /*
278  * This function reads the current RTC time into tm in Gregorian date.
279  */
280 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
281 {
282 	u32 val;
283 
284 	/* Avoid roll-over from reading the different registers */
285 	do {
286 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
287 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
288 
289 	rtc_time_to_tm(val, tm);
290 
291 	return 0;
292 }
293 
294 /*
295  * This function sets the internal RTC time based on tm in Gregorian date.
296  */
297 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
298 {
299 	/* Avoid roll-over from reading the different registers */
300 	do {
301 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
302 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
303 
304 	return 0;
305 }
306 
307 /*
308  * This function reads the current alarm value into the passed in 'alrm'
309  * argument. It updates the alrm's pending field value based on the whether
310  * an alarm interrupt occurs or not.
311  */
312 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
313 {
314 	struct platform_device *pdev = to_platform_device(dev);
315 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
316 	void __iomem *ioaddr = pdata->ioaddr;
317 
318 	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
319 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
320 
321 	return 0;
322 }
323 
324 /*
325  * This function sets the RTC alarm based on passed in alrm.
326  */
327 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
328 {
329 	struct platform_device *pdev = to_platform_device(dev);
330 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
331 	int ret;
332 
333 	if (rtc_valid_tm(&alrm->time)) {
334 		if (alrm->time.tm_sec > 59 ||
335 		    alrm->time.tm_hour > 23 ||
336 		    alrm->time.tm_min > 59)
337 			return -EINVAL;
338 
339 		ret = rtc_update_alarm(dev, &alrm->time);
340 	} else {
341 		ret = rtc_valid_tm(&alrm->time);
342 		if (ret)
343 			return ret;
344 
345 		ret = rtc_update_alarm(dev, &alrm->time);
346 	}
347 
348 	if (ret)
349 		return ret;
350 
351 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
352 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
353 
354 	return 0;
355 }
356 
357 /* RTC layer */
358 static struct rtc_class_ops mxc_rtc_ops = {
359 	.release		= mxc_rtc_release,
360 	.read_time		= mxc_rtc_read_time,
361 	.set_mmss		= mxc_rtc_set_mmss,
362 	.read_alarm		= mxc_rtc_read_alarm,
363 	.set_alarm		= mxc_rtc_set_alarm,
364 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
365 };
366 
367 static int __init mxc_rtc_probe(struct platform_device *pdev)
368 {
369 	struct resource *res;
370 	struct rtc_device *rtc;
371 	struct rtc_plat_data *pdata = NULL;
372 	u32 reg;
373 	unsigned long rate;
374 	int ret;
375 
376 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
377 	if (!res)
378 		return -ENODEV;
379 
380 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
381 	if (!pdata)
382 		return -ENOMEM;
383 
384 	if (!devm_request_mem_region(&pdev->dev, res->start,
385 				     resource_size(res), pdev->name))
386 		return -EBUSY;
387 
388 	pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
389 				     resource_size(res));
390 
391 	pdata->clk = clk_get(&pdev->dev, "rtc");
392 	if (IS_ERR(pdata->clk)) {
393 		dev_err(&pdev->dev, "unable to get clock!\n");
394 		ret = PTR_ERR(pdata->clk);
395 		goto exit_free_pdata;
396 	}
397 
398 	clk_enable(pdata->clk);
399 	rate = clk_get_rate(pdata->clk);
400 
401 	if (rate == 32768)
402 		reg = RTC_INPUT_CLK_32768HZ;
403 	else if (rate == 32000)
404 		reg = RTC_INPUT_CLK_32000HZ;
405 	else if (rate == 38400)
406 		reg = RTC_INPUT_CLK_38400HZ;
407 	else {
408 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
409 		ret = -EINVAL;
410 		goto exit_put_clk;
411 	}
412 
413 	reg |= RTC_ENABLE_BIT;
414 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
415 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
416 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
417 		ret = -EIO;
418 		goto exit_put_clk;
419 	}
420 
421 	rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
422 				  THIS_MODULE);
423 	if (IS_ERR(rtc)) {
424 		ret = PTR_ERR(rtc);
425 		goto exit_put_clk;
426 	}
427 
428 	pdata->rtc = rtc;
429 	platform_set_drvdata(pdev, pdata);
430 
431 	/* Configure and enable the RTC */
432 	pdata->irq = platform_get_irq(pdev, 0);
433 
434 	if (pdata->irq >= 0 &&
435 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
436 			     IRQF_SHARED, pdev->name, pdev) < 0) {
437 		dev_warn(&pdev->dev, "interrupt not available.\n");
438 		pdata->irq = -1;
439 	}
440 
441 	return 0;
442 
443 exit_put_clk:
444 	clk_disable(pdata->clk);
445 	clk_put(pdata->clk);
446 
447 exit_free_pdata:
448 
449 	return ret;
450 }
451 
452 static int __exit mxc_rtc_remove(struct platform_device *pdev)
453 {
454 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
455 
456 	rtc_device_unregister(pdata->rtc);
457 
458 	clk_disable(pdata->clk);
459 	clk_put(pdata->clk);
460 	platform_set_drvdata(pdev, NULL);
461 
462 	return 0;
463 }
464 
465 static struct platform_driver mxc_rtc_driver = {
466 	.driver = {
467 		   .name	= "mxc_rtc",
468 		   .owner	= THIS_MODULE,
469 	},
470 	.remove		= __exit_p(mxc_rtc_remove),
471 };
472 
473 static int __init mxc_rtc_init(void)
474 {
475 	return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
476 }
477 
478 static void __exit mxc_rtc_exit(void)
479 {
480 	platform_driver_unregister(&mxc_rtc_driver);
481 }
482 
483 module_init(mxc_rtc_init);
484 module_exit(mxc_rtc_exit);
485 
486 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
487 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
488 MODULE_LICENSE("GPL");
489 
490