1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved. 4 5 #include <linux/io.h> 6 #include <linux/rtc.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/platform_device.h> 11 #include <linux/pm_wakeirq.h> 12 #include <linux/clk.h> 13 #include <linux/of.h> 14 #include <linux/of_device.h> 15 16 #define RTC_INPUT_CLK_32768HZ (0x00 << 5) 17 #define RTC_INPUT_CLK_32000HZ (0x01 << 5) 18 #define RTC_INPUT_CLK_38400HZ (0x02 << 5) 19 20 #define RTC_SW_BIT (1 << 0) 21 #define RTC_ALM_BIT (1 << 2) 22 #define RTC_1HZ_BIT (1 << 4) 23 #define RTC_2HZ_BIT (1 << 7) 24 #define RTC_SAM0_BIT (1 << 8) 25 #define RTC_SAM1_BIT (1 << 9) 26 #define RTC_SAM2_BIT (1 << 10) 27 #define RTC_SAM3_BIT (1 << 11) 28 #define RTC_SAM4_BIT (1 << 12) 29 #define RTC_SAM5_BIT (1 << 13) 30 #define RTC_SAM6_BIT (1 << 14) 31 #define RTC_SAM7_BIT (1 << 15) 32 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \ 33 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \ 34 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT) 35 36 #define RTC_ENABLE_BIT (1 << 7) 37 38 #define MAX_PIE_NUM 9 39 #define MAX_PIE_FREQ 512 40 41 #define MXC_RTC_TIME 0 42 #define MXC_RTC_ALARM 1 43 44 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */ 45 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */ 46 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */ 47 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */ 48 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */ 49 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */ 50 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */ 51 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */ 52 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */ 53 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */ 54 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */ 55 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */ 56 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */ 57 58 enum imx_rtc_type { 59 IMX1_RTC, 60 IMX21_RTC, 61 }; 62 63 struct rtc_plat_data { 64 struct rtc_device *rtc; 65 void __iomem *ioaddr; 66 int irq; 67 struct clk *clk_ref; 68 struct clk *clk_ipg; 69 struct rtc_time g_rtc_alarm; 70 enum imx_rtc_type devtype; 71 }; 72 73 static const struct of_device_id imx_rtc_dt_ids[] = { 74 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC }, 75 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC }, 76 {} 77 }; 78 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids); 79 80 static inline int is_imx1_rtc(struct rtc_plat_data *data) 81 { 82 return data->devtype == IMX1_RTC; 83 } 84 85 /* 86 * This function is used to obtain the RTC time or the alarm value in 87 * second. 88 */ 89 static time64_t get_alarm_or_time(struct device *dev, int time_alarm) 90 { 91 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 92 void __iomem *ioaddr = pdata->ioaddr; 93 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0; 94 95 switch (time_alarm) { 96 case MXC_RTC_TIME: 97 day = readw(ioaddr + RTC_DAYR); 98 hr_min = readw(ioaddr + RTC_HOURMIN); 99 sec = readw(ioaddr + RTC_SECOND); 100 break; 101 case MXC_RTC_ALARM: 102 day = readw(ioaddr + RTC_DAYALARM); 103 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff; 104 sec = readw(ioaddr + RTC_ALRM_SEC); 105 break; 106 } 107 108 hr = hr_min >> 8; 109 min = hr_min & 0xff; 110 111 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec; 112 } 113 114 /* 115 * This function sets the RTC alarm value or the time value. 116 */ 117 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time) 118 { 119 u32 tod, day, hr, min, sec, temp; 120 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 121 void __iomem *ioaddr = pdata->ioaddr; 122 123 day = div_s64_rem(time, 86400, &tod); 124 125 /* time is within a day now */ 126 hr = tod / 3600; 127 tod -= hr * 3600; 128 129 /* time is within an hour now */ 130 min = tod / 60; 131 sec = tod - min * 60; 132 133 temp = (hr << 8) + min; 134 135 switch (time_alarm) { 136 case MXC_RTC_TIME: 137 writew(day, ioaddr + RTC_DAYR); 138 writew(sec, ioaddr + RTC_SECOND); 139 writew(temp, ioaddr + RTC_HOURMIN); 140 break; 141 case MXC_RTC_ALARM: 142 writew(day, ioaddr + RTC_DAYALARM); 143 writew(sec, ioaddr + RTC_ALRM_SEC); 144 writew(temp, ioaddr + RTC_ALRM_HM); 145 break; 146 } 147 } 148 149 /* 150 * This function updates the RTC alarm registers and then clears all the 151 * interrupt status bits. 152 */ 153 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm) 154 { 155 time64_t time; 156 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 157 void __iomem *ioaddr = pdata->ioaddr; 158 159 time = rtc_tm_to_time64(alrm); 160 161 /* clear all the interrupt status bits */ 162 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR); 163 set_alarm_or_time(dev, MXC_RTC_ALARM, time); 164 } 165 166 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit, 167 unsigned int enabled) 168 { 169 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 170 void __iomem *ioaddr = pdata->ioaddr; 171 u32 reg; 172 unsigned long flags; 173 174 spin_lock_irqsave(&pdata->rtc->irq_lock, flags); 175 reg = readw(ioaddr + RTC_RTCIENR); 176 177 if (enabled) 178 reg |= bit; 179 else 180 reg &= ~bit; 181 182 writew(reg, ioaddr + RTC_RTCIENR); 183 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags); 184 } 185 186 /* This function is the RTC interrupt service routine. */ 187 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id) 188 { 189 struct platform_device *pdev = dev_id; 190 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 191 void __iomem *ioaddr = pdata->ioaddr; 192 u32 status; 193 u32 events = 0; 194 195 spin_lock(&pdata->rtc->irq_lock); 196 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR); 197 /* clear interrupt sources */ 198 writew(status, ioaddr + RTC_RTCISR); 199 200 /* update irq data & counter */ 201 if (status & RTC_ALM_BIT) { 202 events |= (RTC_AF | RTC_IRQF); 203 /* RTC alarm should be one-shot */ 204 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0); 205 } 206 207 if (status & PIT_ALL_ON) 208 events |= (RTC_PF | RTC_IRQF); 209 210 rtc_update_irq(pdata->rtc, 1, events); 211 spin_unlock(&pdata->rtc->irq_lock); 212 213 return IRQ_HANDLED; 214 } 215 216 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 217 { 218 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled); 219 return 0; 220 } 221 222 /* 223 * This function reads the current RTC time into tm in Gregorian date. 224 */ 225 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm) 226 { 227 time64_t val; 228 229 /* Avoid roll-over from reading the different registers */ 230 do { 231 val = get_alarm_or_time(dev, MXC_RTC_TIME); 232 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME)); 233 234 rtc_time64_to_tm(val, tm); 235 236 return 0; 237 } 238 239 /* 240 * This function sets the internal RTC time based on tm in Gregorian date. 241 */ 242 static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm) 243 { 244 time64_t time = rtc_tm_to_time64(tm); 245 246 /* Avoid roll-over from reading the different registers */ 247 do { 248 set_alarm_or_time(dev, MXC_RTC_TIME, time); 249 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME)); 250 251 return 0; 252 } 253 254 /* 255 * This function reads the current alarm value into the passed in 'alrm' 256 * argument. It updates the alrm's pending field value based on the whether 257 * an alarm interrupt occurs or not. 258 */ 259 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 260 { 261 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 262 void __iomem *ioaddr = pdata->ioaddr; 263 264 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time); 265 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0; 266 267 return 0; 268 } 269 270 /* 271 * This function sets the RTC alarm based on passed in alrm. 272 */ 273 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 274 { 275 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 276 277 rtc_update_alarm(dev, &alrm->time); 278 279 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time)); 280 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled); 281 282 return 0; 283 } 284 285 /* RTC layer */ 286 static const struct rtc_class_ops mxc_rtc_ops = { 287 .read_time = mxc_rtc_read_time, 288 .set_time = mxc_rtc_set_time, 289 .read_alarm = mxc_rtc_read_alarm, 290 .set_alarm = mxc_rtc_set_alarm, 291 .alarm_irq_enable = mxc_rtc_alarm_irq_enable, 292 }; 293 294 static int mxc_rtc_probe(struct platform_device *pdev) 295 { 296 struct rtc_device *rtc; 297 struct rtc_plat_data *pdata = NULL; 298 u32 reg; 299 unsigned long rate; 300 int ret; 301 302 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 303 if (!pdata) 304 return -ENOMEM; 305 306 pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev); 307 308 pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0); 309 if (IS_ERR(pdata->ioaddr)) 310 return PTR_ERR(pdata->ioaddr); 311 312 rtc = devm_rtc_allocate_device(&pdev->dev); 313 if (IS_ERR(rtc)) 314 return PTR_ERR(rtc); 315 316 pdata->rtc = rtc; 317 rtc->ops = &mxc_rtc_ops; 318 if (is_imx1_rtc(pdata)) { 319 struct rtc_time tm; 320 321 /* 9bit days + hours minutes seconds */ 322 rtc->range_max = (1 << 9) * 86400 - 1; 323 324 /* 325 * Set the start date as beginning of the current year. This can 326 * be overridden using device tree. 327 */ 328 rtc_time64_to_tm(ktime_get_real_seconds(), &tm); 329 rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0); 330 rtc->set_start_time = true; 331 } else { 332 /* 16bit days + hours minutes seconds */ 333 rtc->range_max = (1 << 16) * 86400ULL - 1; 334 } 335 336 pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg"); 337 if (IS_ERR(pdata->clk_ipg)) { 338 dev_err(&pdev->dev, "unable to get ipg clock!\n"); 339 return PTR_ERR(pdata->clk_ipg); 340 } 341 342 pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref"); 343 if (IS_ERR(pdata->clk_ref)) { 344 dev_err(&pdev->dev, "unable to get ref clock!\n"); 345 return PTR_ERR(pdata->clk_ref); 346 } 347 348 rate = clk_get_rate(pdata->clk_ref); 349 350 if (rate == 32768) 351 reg = RTC_INPUT_CLK_32768HZ; 352 else if (rate == 32000) 353 reg = RTC_INPUT_CLK_32000HZ; 354 else if (rate == 38400) 355 reg = RTC_INPUT_CLK_38400HZ; 356 else { 357 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate); 358 return -EINVAL; 359 } 360 361 reg |= RTC_ENABLE_BIT; 362 writew(reg, (pdata->ioaddr + RTC_RTCCTL)); 363 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) { 364 dev_err(&pdev->dev, "hardware module can't be enabled!\n"); 365 return -EIO; 366 } 367 368 platform_set_drvdata(pdev, pdata); 369 370 /* Configure and enable the RTC */ 371 pdata->irq = platform_get_irq(pdev, 0); 372 373 if (pdata->irq >= 0 && 374 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, 375 IRQF_SHARED, pdev->name, pdev) < 0) { 376 dev_warn(&pdev->dev, "interrupt not available.\n"); 377 pdata->irq = -1; 378 } 379 380 if (pdata->irq >= 0) { 381 device_init_wakeup(&pdev->dev, 1); 382 ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq); 383 if (ret) 384 dev_err(&pdev->dev, "failed to enable irq wake\n"); 385 } 386 387 ret = devm_rtc_register_device(rtc); 388 389 return ret; 390 } 391 392 static struct platform_driver mxc_rtc_driver = { 393 .driver = { 394 .name = "mxc_rtc", 395 .of_match_table = imx_rtc_dt_ids, 396 }, 397 .probe = mxc_rtc_probe, 398 }; 399 400 module_platform_driver(mxc_rtc_driver) 401 402 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>"); 403 MODULE_DESCRIPTION("RTC driver for Freescale MXC"); 404 MODULE_LICENSE("GPL"); 405 406