xref: /openbmc/linux/drivers/rtc/rtc-meson.c (revision 5a158981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC driver for the interal RTC block in the Amlogic Meson6, Meson8,
4  * Meson8b and Meson8m2 SoCs.
5  *
6  * The RTC is split in to two parts, the AHB front end and a simple serial
7  * connection to the actual registers. This driver manages both parts.
8  *
9  * Copyright (c) 2018 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
10  * Copyright (c) 2015 Ben Dooks <ben.dooks@codethink.co.uk> for Codethink Ltd
11  * Based on origin by Carlo Caione <carlo@endlessm.com>
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/nvmem-provider.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/reset.h>
25 #include <linux/rtc.h>
26 
27 /* registers accessed from cpu bus */
28 #define RTC_ADDR0				0x00
29 	#define RTC_ADDR0_LINE_SCLK		BIT(0)
30 	#define RTC_ADDR0_LINE_SEN		BIT(1)
31 	#define RTC_ADDR0_LINE_SDI		BIT(2)
32 	#define RTC_ADDR0_START_SER		BIT(17)
33 	#define RTC_ADDR0_WAIT_SER		BIT(22)
34 	#define RTC_ADDR0_DATA			GENMASK(31, 24)
35 
36 #define RTC_ADDR1				0x04
37 	#define RTC_ADDR1_SDO			BIT(0)
38 	#define RTC_ADDR1_S_READY		BIT(1)
39 
40 #define RTC_ADDR2				0x08
41 #define RTC_ADDR3				0x0c
42 
43 #define RTC_REG4				0x10
44 	#define RTC_REG4_STATIC_VALUE		GENMASK(7, 0)
45 
46 /* rtc registers accessed via rtc-serial interface */
47 #define RTC_COUNTER		(0)
48 #define RTC_SEC_ADJ		(2)
49 #define RTC_REGMEM_0		(4)
50 #define RTC_REGMEM_1		(5)
51 #define RTC_REGMEM_2		(6)
52 #define RTC_REGMEM_3		(7)
53 
54 #define RTC_ADDR_BITS		(3)	/* number of address bits to send */
55 #define RTC_DATA_BITS		(32)	/* number of data bits to tx/rx */
56 
57 #define MESON_STATIC_BIAS_CUR	(0x5 << 1)
58 #define MESON_STATIC_VOLTAGE	(0x3 << 11)
59 #define MESON_STATIC_DEFAULT    (MESON_STATIC_BIAS_CUR | MESON_STATIC_VOLTAGE)
60 
61 struct meson_rtc {
62 	struct rtc_device	*rtc;		/* rtc device we created */
63 	struct device		*dev;		/* device we bound from */
64 	struct reset_control	*reset;		/* reset source */
65 	struct regulator	*vdd;		/* voltage input */
66 	struct regmap		*peripheral;	/* peripheral registers */
67 	struct regmap		*serial;	/* serial registers */
68 };
69 
70 static const struct regmap_config meson_rtc_peripheral_regmap_config = {
71 	.name		= "peripheral-registers",
72 	.reg_bits	= 8,
73 	.val_bits	= 32,
74 	.reg_stride	= 4,
75 	.max_register	= RTC_REG4,
76 	.fast_io	= true,
77 };
78 
79 /* RTC front-end serialiser controls */
80 
81 static void meson_rtc_sclk_pulse(struct meson_rtc *rtc)
82 {
83 	udelay(5);
84 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SCLK, 0);
85 	udelay(5);
86 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SCLK,
87 			   RTC_ADDR0_LINE_SCLK);
88 }
89 
90 static void meson_rtc_send_bit(struct meson_rtc *rtc, unsigned int bit)
91 {
92 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI,
93 			   bit ? RTC_ADDR0_LINE_SDI : 0);
94 	meson_rtc_sclk_pulse(rtc);
95 }
96 
97 static void meson_rtc_send_bits(struct meson_rtc *rtc, u32 data,
98 				unsigned int nr)
99 {
100 	u32 bit = 1 << (nr - 1);
101 
102 	while (bit) {
103 		meson_rtc_send_bit(rtc, data & bit);
104 		bit >>= 1;
105 	}
106 }
107 
108 static void meson_rtc_set_dir(struct meson_rtc *rtc, u32 mode)
109 {
110 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN, 0);
111 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, 0);
112 	meson_rtc_send_bit(rtc, mode);
113 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, 0);
114 }
115 
116 static u32 meson_rtc_get_data(struct meson_rtc *rtc)
117 {
118 	u32 tmp, val = 0;
119 	int bit;
120 
121 	for (bit = 0; bit < RTC_DATA_BITS; bit++) {
122 		meson_rtc_sclk_pulse(rtc);
123 		val <<= 1;
124 
125 		regmap_read(rtc->peripheral, RTC_ADDR1, &tmp);
126 		val |= tmp & RTC_ADDR1_SDO;
127 	}
128 
129 	return val;
130 }
131 
132 static int meson_rtc_get_bus(struct meson_rtc *rtc)
133 {
134 	int ret, retries;
135 	u32 val;
136 
137 	/* prepare bus for transfers, set all lines low */
138 	val = RTC_ADDR0_LINE_SDI | RTC_ADDR0_LINE_SEN | RTC_ADDR0_LINE_SCLK;
139 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, val, 0);
140 
141 	for (retries = 0; retries < 3; retries++) {
142 		/* wait for the bus to be ready */
143 		if (!regmap_read_poll_timeout(rtc->peripheral, RTC_ADDR1, val,
144 					      val & RTC_ADDR1_S_READY, 10,
145 					      10000))
146 			return 0;
147 
148 		dev_warn(rtc->dev, "failed to get bus, resetting RTC\n");
149 
150 		ret = reset_control_reset(rtc->reset);
151 		if (ret)
152 			return ret;
153 	}
154 
155 	dev_err(rtc->dev, "bus is not ready\n");
156 	return -ETIMEDOUT;
157 }
158 
159 static int meson_rtc_serial_bus_reg_read(void *context, unsigned int reg,
160 					 unsigned int *data)
161 {
162 	struct meson_rtc *rtc = context;
163 	int ret;
164 
165 	ret = meson_rtc_get_bus(rtc);
166 	if (ret)
167 		return ret;
168 
169 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN,
170 			   RTC_ADDR0_LINE_SEN);
171 	meson_rtc_send_bits(rtc, reg, RTC_ADDR_BITS);
172 	meson_rtc_set_dir(rtc, 0);
173 	*data = meson_rtc_get_data(rtc);
174 
175 	return 0;
176 }
177 
178 static int meson_rtc_serial_bus_reg_write(void *context, unsigned int reg,
179 					  unsigned int data)
180 {
181 	struct meson_rtc *rtc = context;
182 	int ret;
183 
184 	ret = meson_rtc_get_bus(rtc);
185 	if (ret)
186 		return ret;
187 
188 	regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN,
189 			   RTC_ADDR0_LINE_SEN);
190 	meson_rtc_send_bits(rtc, data, RTC_DATA_BITS);
191 	meson_rtc_send_bits(rtc, reg, RTC_ADDR_BITS);
192 	meson_rtc_set_dir(rtc, 1);
193 
194 	return 0;
195 }
196 
197 static const struct regmap_bus meson_rtc_serial_bus = {
198 	.reg_read	= meson_rtc_serial_bus_reg_read,
199 	.reg_write	= meson_rtc_serial_bus_reg_write,
200 };
201 
202 static const struct regmap_config meson_rtc_serial_regmap_config = {
203 	.name		= "serial-registers",
204 	.reg_bits	= 4,
205 	.reg_stride	= 1,
206 	.val_bits	= 32,
207 	.max_register	= RTC_REGMEM_3,
208 	.fast_io	= false,
209 };
210 
211 static int meson_rtc_write_static(struct meson_rtc *rtc, u32 data)
212 {
213 	u32 tmp;
214 
215 	regmap_write(rtc->peripheral, RTC_REG4,
216 		     FIELD_PREP(RTC_REG4_STATIC_VALUE, (data >> 8)));
217 
218 	/* write the static value and start the auto serializer */
219 	tmp = FIELD_PREP(RTC_ADDR0_DATA, (data & 0xff)) | RTC_ADDR0_START_SER;
220 	regmap_update_bits(rtc->peripheral, RTC_ADDR0,
221 			   RTC_ADDR0_DATA | RTC_ADDR0_START_SER, tmp);
222 
223 	/* wait for the auto serializer to complete */
224 	return regmap_read_poll_timeout(rtc->peripheral, RTC_REG4, tmp,
225 					!(tmp & RTC_ADDR0_WAIT_SER), 10,
226 					10000);
227 }
228 
229 /* RTC interface layer functions */
230 
231 static int meson_rtc_gettime(struct device *dev, struct rtc_time *tm)
232 {
233 	struct meson_rtc *rtc = dev_get_drvdata(dev);
234 	u32 time;
235 	int ret;
236 
237 	ret = regmap_read(rtc->serial, RTC_COUNTER, &time);
238 	if (!ret)
239 		rtc_time64_to_tm(time, tm);
240 
241 	return ret;
242 }
243 
244 static int meson_rtc_settime(struct device *dev, struct rtc_time *tm)
245 {
246 	struct meson_rtc *rtc = dev_get_drvdata(dev);
247 
248 	return regmap_write(rtc->serial, RTC_COUNTER, rtc_tm_to_time64(tm));
249 }
250 
251 static const struct rtc_class_ops meson_rtc_ops = {
252 	.read_time	= meson_rtc_gettime,
253 	.set_time	= meson_rtc_settime,
254 };
255 
256 /* NVMEM interface layer functions */
257 
258 static int meson_rtc_regmem_read(void *context, unsigned int offset,
259 				 void *buf, size_t bytes)
260 {
261 	struct meson_rtc *rtc = context;
262 	unsigned int read_offset, read_size;
263 
264 	read_offset = RTC_REGMEM_0 + (offset / 4);
265 	read_size = bytes / 4;
266 
267 	return regmap_bulk_read(rtc->serial, read_offset, buf, read_size);
268 }
269 
270 static int meson_rtc_regmem_write(void *context, unsigned int offset,
271 				  void *buf, size_t bytes)
272 {
273 	struct meson_rtc *rtc = context;
274 	unsigned int write_offset, write_size;
275 
276 	write_offset = RTC_REGMEM_0 + (offset / 4);
277 	write_size = bytes / 4;
278 
279 	return regmap_bulk_write(rtc->serial, write_offset, buf, write_size);
280 }
281 
282 static int meson_rtc_probe(struct platform_device *pdev)
283 {
284 	struct nvmem_config meson_rtc_nvmem_config = {
285 		.name = "meson-rtc-regmem",
286 		.type = NVMEM_TYPE_BATTERY_BACKED,
287 		.word_size = 4,
288 		.stride = 4,
289 		.size = 4 * 4,
290 		.reg_read = meson_rtc_regmem_read,
291 		.reg_write = meson_rtc_regmem_write,
292 	};
293 	struct device *dev = &pdev->dev;
294 	struct meson_rtc *rtc;
295 	void __iomem *base;
296 	int ret;
297 	u32 tm;
298 
299 	rtc = devm_kzalloc(dev, sizeof(struct meson_rtc), GFP_KERNEL);
300 	if (!rtc)
301 		return -ENOMEM;
302 
303 	rtc->rtc = devm_rtc_allocate_device(dev);
304 	if (IS_ERR(rtc->rtc))
305 		return PTR_ERR(rtc->rtc);
306 
307 	platform_set_drvdata(pdev, rtc);
308 
309 	rtc->dev = dev;
310 
311 	rtc->rtc->ops = &meson_rtc_ops;
312 	rtc->rtc->range_max = U32_MAX;
313 
314 	base = devm_platform_ioremap_resource(pdev, 0);
315 	if (IS_ERR(base))
316 		return PTR_ERR(base);
317 
318 	rtc->peripheral = devm_regmap_init_mmio(dev, base,
319 					&meson_rtc_peripheral_regmap_config);
320 	if (IS_ERR(rtc->peripheral)) {
321 		dev_err(dev, "failed to create peripheral regmap\n");
322 		return PTR_ERR(rtc->peripheral);
323 	}
324 
325 	rtc->reset = devm_reset_control_get(dev, NULL);
326 	if (IS_ERR(rtc->reset)) {
327 		dev_err(dev, "missing reset line\n");
328 		return PTR_ERR(rtc->reset);
329 	}
330 
331 	rtc->vdd = devm_regulator_get(dev, "vdd");
332 	if (IS_ERR(rtc->vdd)) {
333 		dev_err(dev, "failed to get the vdd-supply\n");
334 		return PTR_ERR(rtc->vdd);
335 	}
336 
337 	ret = regulator_enable(rtc->vdd);
338 	if (ret) {
339 		dev_err(dev, "failed to enable vdd-supply\n");
340 		return ret;
341 	}
342 
343 	ret = meson_rtc_write_static(rtc, MESON_STATIC_DEFAULT);
344 	if (ret) {
345 		dev_err(dev, "failed to set static values\n");
346 		goto out_disable_vdd;
347 	}
348 
349 	rtc->serial = devm_regmap_init(dev, &meson_rtc_serial_bus, rtc,
350 				       &meson_rtc_serial_regmap_config);
351 	if (IS_ERR(rtc->serial)) {
352 		dev_err(dev, "failed to create serial regmap\n");
353 		ret = PTR_ERR(rtc->serial);
354 		goto out_disable_vdd;
355 	}
356 
357 	/*
358 	 * check if we can read RTC counter, if not then the RTC is probably
359 	 * not functional. If it isn't probably best to not bind.
360 	 */
361 	ret = regmap_read(rtc->serial, RTC_COUNTER, &tm);
362 	if (ret) {
363 		dev_err(dev, "cannot read RTC counter, RTC not functional\n");
364 		goto out_disable_vdd;
365 	}
366 
367 	meson_rtc_nvmem_config.priv = rtc;
368 	ret = rtc_nvmem_register(rtc->rtc, &meson_rtc_nvmem_config);
369 	if (ret)
370 		goto out_disable_vdd;
371 
372 	ret = rtc_register_device(rtc->rtc);
373 	if (ret)
374 		goto out_disable_vdd;
375 
376 	return 0;
377 
378 out_disable_vdd:
379 	regulator_disable(rtc->vdd);
380 	return ret;
381 }
382 
383 static const struct of_device_id meson_rtc_dt_match[] = {
384 	{ .compatible = "amlogic,meson6-rtc", },
385 	{ .compatible = "amlogic,meson8-rtc", },
386 	{ .compatible = "amlogic,meson8b-rtc", },
387 	{ .compatible = "amlogic,meson8m2-rtc", },
388 	{ },
389 };
390 MODULE_DEVICE_TABLE(of, meson_rtc_dt_match);
391 
392 static struct platform_driver meson_rtc_driver = {
393 	.probe		= meson_rtc_probe,
394 	.driver		= {
395 		.name		= "meson-rtc",
396 		.of_match_table	= of_match_ptr(meson_rtc_dt_match),
397 	},
398 };
399 module_platform_driver(meson_rtc_driver);
400 
401 MODULE_DESCRIPTION("Amlogic Meson RTC Driver");
402 MODULE_AUTHOR("Ben Dooks <ben.doosk@codethink.co.uk>");
403 MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
404 MODULE_LICENSE("GPL v2");
405 MODULE_ALIAS("platform:meson-rtc");
406