xref: /openbmc/linux/drivers/rtc/rtc-mcp795.c (revision e3b9f1e8)
1 /*
2  * SPI Driver for Microchip MCP795 RTC
3  *
4  * Copyright (C) Josef Gajdusek <atx@atx.name>
5  *
6  * based on other Linux RTC drivers
7  *
8  * Device datasheet:
9  * http://ww1.microchip.com/downloads/en/DeviceDoc/22280A.pdf
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/printk.h>
21 #include <linux/spi/spi.h>
22 #include <linux/rtc.h>
23 #include <linux/of.h>
24 #include <linux/bcd.h>
25 #include <linux/delay.h>
26 
27 /* MCP795 Instructions, see datasheet table 3-1 */
28 #define MCP795_EEREAD	0x03
29 #define MCP795_EEWRITE	0x02
30 #define MCP795_EEWRDI	0x04
31 #define MCP795_EEWREN	0x06
32 #define MCP795_SRREAD	0x05
33 #define MCP795_SRWRITE	0x01
34 #define MCP795_READ	0x13
35 #define MCP795_WRITE	0x12
36 #define MCP795_UNLOCK	0x14
37 #define MCP795_IDWRITE	0x32
38 #define MCP795_IDREAD	0x33
39 #define MCP795_CLRWDT	0x44
40 #define MCP795_CLRRAM	0x54
41 
42 /* MCP795 RTCC registers, see datasheet table 4-1 */
43 #define MCP795_REG_SECONDS	0x01
44 #define MCP795_REG_DAY		0x04
45 #define MCP795_REG_MONTH	0x06
46 #define MCP795_REG_CONTROL	0x08
47 #define MCP795_REG_ALM0_SECONDS	0x0C
48 #define MCP795_REG_ALM0_DAY	0x0F
49 
50 #define MCP795_ST_BIT		BIT(7)
51 #define MCP795_24_BIT		BIT(6)
52 #define MCP795_LP_BIT		BIT(5)
53 #define MCP795_EXTOSC_BIT	BIT(3)
54 #define MCP795_OSCON_BIT	BIT(5)
55 #define MCP795_ALM0_BIT		BIT(4)
56 #define MCP795_ALM1_BIT		BIT(5)
57 #define MCP795_ALM0IF_BIT	BIT(3)
58 #define MCP795_ALM0C0_BIT	BIT(4)
59 #define MCP795_ALM0C1_BIT	BIT(5)
60 #define MCP795_ALM0C2_BIT	BIT(6)
61 
62 #define SEC_PER_DAY		(24 * 60 * 60)
63 
64 static int mcp795_rtcc_read(struct device *dev, u8 addr, u8 *buf, u8 count)
65 {
66 	struct spi_device *spi = to_spi_device(dev);
67 	int ret;
68 	u8 tx[2];
69 
70 	tx[0] = MCP795_READ;
71 	tx[1] = addr;
72 	ret = spi_write_then_read(spi, tx, sizeof(tx), buf, count);
73 
74 	if (ret)
75 		dev_err(dev, "Failed reading %d bytes from address %x.\n",
76 					count, addr);
77 
78 	return ret;
79 }
80 
81 static int mcp795_rtcc_write(struct device *dev, u8 addr, u8 *data, u8 count)
82 {
83 	struct spi_device *spi = to_spi_device(dev);
84 	int ret;
85 	u8 tx[2 + count];
86 
87 	tx[0] = MCP795_WRITE;
88 	tx[1] = addr;
89 	memcpy(&tx[2], data, count);
90 
91 	ret = spi_write(spi, tx, 2 + count);
92 
93 	if (ret)
94 		dev_err(dev, "Failed to write %d bytes to address %x.\n",
95 					count, addr);
96 
97 	return ret;
98 }
99 
100 static int mcp795_rtcc_set_bits(struct device *dev, u8 addr, u8 mask, u8 state)
101 {
102 	int ret;
103 	u8 tmp;
104 
105 	ret = mcp795_rtcc_read(dev, addr, &tmp, 1);
106 	if (ret)
107 		return ret;
108 
109 	if ((tmp & mask) != state) {
110 		tmp = (tmp & ~mask) | state;
111 		ret = mcp795_rtcc_write(dev, addr, &tmp, 1);
112 	}
113 
114 	return ret;
115 }
116 
117 static int mcp795_stop_oscillator(struct device *dev, bool *extosc)
118 {
119 	int retries = 5;
120 	int ret;
121 	u8 data;
122 
123 	ret = mcp795_rtcc_set_bits(dev, MCP795_REG_SECONDS, MCP795_ST_BIT, 0);
124 	if (ret)
125 		return ret;
126 	ret = mcp795_rtcc_read(dev, MCP795_REG_CONTROL, &data, 1);
127 	if (ret)
128 		return ret;
129 	*extosc = !!(data & MCP795_EXTOSC_BIT);
130 	ret = mcp795_rtcc_set_bits(
131 				dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, 0);
132 	if (ret)
133 		return ret;
134 	/* wait for the OSCON bit to clear */
135 	do {
136 		usleep_range(700, 800);
137 		ret = mcp795_rtcc_read(dev, MCP795_REG_DAY, &data, 1);
138 		if (ret)
139 			break;
140 		if (!(data & MCP795_OSCON_BIT))
141 			break;
142 
143 	} while (--retries);
144 
145 	return !retries ? -EIO : ret;
146 }
147 
148 static int mcp795_start_oscillator(struct device *dev, bool *extosc)
149 {
150 	if (extosc) {
151 		u8 data = *extosc ? MCP795_EXTOSC_BIT : 0;
152 		int ret;
153 
154 		ret = mcp795_rtcc_set_bits(
155 			dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, data);
156 		if (ret)
157 			return ret;
158 	}
159 	return mcp795_rtcc_set_bits(
160 			dev, MCP795_REG_SECONDS, MCP795_ST_BIT, MCP795_ST_BIT);
161 }
162 
163 /* Enable or disable Alarm 0 in RTC */
164 static int mcp795_update_alarm(struct device *dev, bool enable)
165 {
166 	int ret;
167 
168 	dev_dbg(dev, "%s alarm\n", enable ? "Enable" : "Disable");
169 
170 	if (enable) {
171 		/* clear ALM0IF (Alarm 0 Interrupt Flag) bit */
172 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_ALM0_DAY,
173 					MCP795_ALM0IF_BIT, 0);
174 		if (ret)
175 			return ret;
176 		/* enable alarm 0 */
177 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
178 					MCP795_ALM0_BIT, MCP795_ALM0_BIT);
179 	} else {
180 		/* disable alarm 0 and alarm 1 */
181 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
182 					MCP795_ALM0_BIT | MCP795_ALM1_BIT, 0);
183 	}
184 	return ret;
185 }
186 
187 static int mcp795_set_time(struct device *dev, struct rtc_time *tim)
188 {
189 	int ret;
190 	u8 data[7];
191 	bool extosc;
192 
193 	/* Stop RTC and store current value of EXTOSC bit */
194 	ret = mcp795_stop_oscillator(dev, &extosc);
195 	if (ret)
196 		return ret;
197 
198 	/* Read first, so we can leave config bits untouched */
199 	ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
200 
201 	if (ret)
202 		return ret;
203 
204 	data[0] = (data[0] & 0x80) | bin2bcd(tim->tm_sec);
205 	data[1] = (data[1] & 0x80) | bin2bcd(tim->tm_min);
206 	data[2] = bin2bcd(tim->tm_hour);
207 	data[3] = (data[3] & 0xF8) | bin2bcd(tim->tm_wday + 1);
208 	data[4] = bin2bcd(tim->tm_mday);
209 	data[5] = (data[5] & MCP795_LP_BIT) | bin2bcd(tim->tm_mon + 1);
210 
211 	if (tim->tm_year > 100)
212 		tim->tm_year -= 100;
213 
214 	data[6] = bin2bcd(tim->tm_year);
215 
216 	/* Always write the date and month using a separate Write command.
217 	 * This is a workaround for a know silicon issue that some combinations
218 	 * of date and month values may result in the date being reset to 1.
219 	 */
220 	ret = mcp795_rtcc_write(dev, MCP795_REG_SECONDS, data, 5);
221 	if (ret)
222 		return ret;
223 
224 	ret = mcp795_rtcc_write(dev, MCP795_REG_MONTH, &data[5], 2);
225 	if (ret)
226 		return ret;
227 
228 	/* Start back RTC and restore previous value of EXTOSC bit.
229 	 * There is no need to clear EXTOSC bit when the previous value was 0
230 	 * because it was already cleared when stopping the RTC oscillator.
231 	 */
232 	ret = mcp795_start_oscillator(dev, extosc ? &extosc : NULL);
233 	if (ret)
234 		return ret;
235 
236 	dev_dbg(dev, "Set mcp795: %04d-%02d-%02d(%d) %02d:%02d:%02d\n",
237 			tim->tm_year + 1900, tim->tm_mon, tim->tm_mday,
238 			tim->tm_wday, tim->tm_hour, tim->tm_min, tim->tm_sec);
239 
240 	return 0;
241 }
242 
243 static int mcp795_read_time(struct device *dev, struct rtc_time *tim)
244 {
245 	int ret;
246 	u8 data[7];
247 
248 	ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
249 
250 	if (ret)
251 		return ret;
252 
253 	tim->tm_sec	= bcd2bin(data[0] & 0x7F);
254 	tim->tm_min	= bcd2bin(data[1] & 0x7F);
255 	tim->tm_hour	= bcd2bin(data[2] & 0x3F);
256 	tim->tm_wday	= bcd2bin(data[3] & 0x07) - 1;
257 	tim->tm_mday	= bcd2bin(data[4] & 0x3F);
258 	tim->tm_mon	= bcd2bin(data[5] & 0x1F) - 1;
259 	tim->tm_year	= bcd2bin(data[6]) + 100; /* Assume we are in 20xx */
260 
261 	dev_dbg(dev, "Read from mcp795: %04d-%02d-%02d(%d) %02d:%02d:%02d\n",
262 			tim->tm_year + 1900, tim->tm_mon, tim->tm_mday,
263 			tim->tm_wday, tim->tm_hour, tim->tm_min, tim->tm_sec);
264 
265 	return rtc_valid_tm(tim);
266 }
267 
268 static int mcp795_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
269 {
270 	struct rtc_time now_tm;
271 	time64_t now;
272 	time64_t later;
273 	u8 tmp[6];
274 	int ret;
275 
276 	/* Read current time from RTC hardware */
277 	ret = mcp795_read_time(dev, &now_tm);
278 	if (ret)
279 		return ret;
280 	/* Get the number of seconds since 1970 */
281 	now = rtc_tm_to_time64(&now_tm);
282 	later = rtc_tm_to_time64(&alm->time);
283 	if (later <= now)
284 		return -EINVAL;
285 	/* make sure alarm fires within the next one year */
286 	if ((later - now) >=
287 		(SEC_PER_DAY * (365 + is_leap_year(alm->time.tm_year))))
288 		return -EDOM;
289 	/* disable alarm */
290 	ret = mcp795_update_alarm(dev, false);
291 	if (ret)
292 		return ret;
293 	/* Read registers, so we can leave configuration bits untouched */
294 	ret = mcp795_rtcc_read(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
295 	if (ret)
296 		return ret;
297 
298 	alm->time.tm_year	= -1;
299 	alm->time.tm_isdst	= -1;
300 	alm->time.tm_yday	= -1;
301 
302 	tmp[0] = (tmp[0] & 0x80) | bin2bcd(alm->time.tm_sec);
303 	tmp[1] = (tmp[1] & 0x80) | bin2bcd(alm->time.tm_min);
304 	tmp[2] = (tmp[2] & 0xE0) | bin2bcd(alm->time.tm_hour);
305 	tmp[3] = (tmp[3] & 0x80) | bin2bcd(alm->time.tm_wday + 1);
306 	/* set alarm match: seconds, minutes, hour, day, date and month */
307 	tmp[3] |= (MCP795_ALM0C2_BIT | MCP795_ALM0C1_BIT | MCP795_ALM0C0_BIT);
308 	tmp[4] = (tmp[4] & 0xC0) | bin2bcd(alm->time.tm_mday);
309 	tmp[5] = (tmp[5] & 0xE0) | bin2bcd(alm->time.tm_mon + 1);
310 
311 	ret = mcp795_rtcc_write(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
312 	if (ret)
313 		return ret;
314 
315 	/* enable alarm if requested */
316 	if (alm->enabled) {
317 		ret = mcp795_update_alarm(dev, true);
318 		if (ret)
319 			return ret;
320 		dev_dbg(dev, "Alarm IRQ armed\n");
321 	}
322 	dev_dbg(dev, "Set alarm: %02d-%02d(%d) %02d:%02d:%02d\n",
323 			alm->time.tm_mon, alm->time.tm_mday, alm->time.tm_wday,
324 			alm->time.tm_hour, alm->time.tm_min, alm->time.tm_sec);
325 	return 0;
326 }
327 
328 static int mcp795_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
329 {
330 	u8 data[6];
331 	int ret;
332 
333 	ret = mcp795_rtcc_read(
334 			dev, MCP795_REG_ALM0_SECONDS, data, sizeof(data));
335 	if (ret)
336 		return ret;
337 
338 	alm->time.tm_sec	= bcd2bin(data[0] & 0x7F);
339 	alm->time.tm_min	= bcd2bin(data[1] & 0x7F);
340 	alm->time.tm_hour	= bcd2bin(data[2] & 0x1F);
341 	alm->time.tm_wday	= bcd2bin(data[3] & 0x07) - 1;
342 	alm->time.tm_mday	= bcd2bin(data[4] & 0x3F);
343 	alm->time.tm_mon	= bcd2bin(data[5] & 0x1F) - 1;
344 	alm->time.tm_year	= -1;
345 	alm->time.tm_isdst	= -1;
346 	alm->time.tm_yday	= -1;
347 
348 	dev_dbg(dev, "Read alarm: %02d-%02d(%d) %02d:%02d:%02d\n",
349 			alm->time.tm_mon, alm->time.tm_mday, alm->time.tm_wday,
350 			alm->time.tm_hour, alm->time.tm_min, alm->time.tm_sec);
351 	return 0;
352 }
353 
354 static int mcp795_alarm_irq_enable(struct device *dev, unsigned int enabled)
355 {
356 	return mcp795_update_alarm(dev, !!enabled);
357 }
358 
359 static irqreturn_t mcp795_irq(int irq, void *data)
360 {
361 	struct spi_device *spi = data;
362 	struct rtc_device *rtc = spi_get_drvdata(spi);
363 	struct mutex *lock = &rtc->ops_lock;
364 	int ret;
365 
366 	mutex_lock(lock);
367 
368 	/* Disable alarm.
369 	 * There is no need to clear ALM0IF (Alarm 0 Interrupt Flag) bit,
370 	 * because it is done every time when alarm is enabled.
371 	 */
372 	ret = mcp795_update_alarm(&spi->dev, false);
373 	if (ret)
374 		dev_err(&spi->dev,
375 			"Failed to disable alarm in IRQ (ret=%d)\n", ret);
376 	rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
377 
378 	mutex_unlock(lock);
379 
380 	return IRQ_HANDLED;
381 }
382 
383 static const struct rtc_class_ops mcp795_rtc_ops = {
384 		.read_time = mcp795_read_time,
385 		.set_time = mcp795_set_time,
386 		.read_alarm = mcp795_read_alarm,
387 		.set_alarm = mcp795_set_alarm,
388 		.alarm_irq_enable = mcp795_alarm_irq_enable
389 };
390 
391 static int mcp795_probe(struct spi_device *spi)
392 {
393 	struct rtc_device *rtc;
394 	int ret;
395 
396 	spi->mode = SPI_MODE_0;
397 	spi->bits_per_word = 8;
398 	ret = spi_setup(spi);
399 	if (ret) {
400 		dev_err(&spi->dev, "Unable to setup SPI\n");
401 		return ret;
402 	}
403 
404 	/* Start the oscillator but don't set the value of EXTOSC bit */
405 	mcp795_start_oscillator(&spi->dev, NULL);
406 	/* Clear the 12 hour mode flag*/
407 	mcp795_rtcc_set_bits(&spi->dev, 0x03, MCP795_24_BIT, 0);
408 
409 	rtc = devm_rtc_device_register(&spi->dev, "rtc-mcp795",
410 					&mcp795_rtc_ops, THIS_MODULE);
411 	if (IS_ERR(rtc))
412 		return PTR_ERR(rtc);
413 
414 	spi_set_drvdata(spi, rtc);
415 
416 	if (spi->irq > 0) {
417 		dev_dbg(&spi->dev, "Alarm support enabled\n");
418 
419 		/* Clear any pending alarm (ALM0IF bit) before requesting
420 		 * the interrupt.
421 		 */
422 		mcp795_rtcc_set_bits(&spi->dev, MCP795_REG_ALM0_DAY,
423 					MCP795_ALM0IF_BIT, 0);
424 		ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
425 				mcp795_irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
426 				dev_name(&rtc->dev), spi);
427 		if (ret)
428 			dev_err(&spi->dev, "Failed to request IRQ: %d: %d\n",
429 						spi->irq, ret);
430 		else
431 			device_init_wakeup(&spi->dev, true);
432 	}
433 	return 0;
434 }
435 
436 #ifdef CONFIG_OF
437 static const struct of_device_id mcp795_of_match[] = {
438 	{ .compatible = "maxim,mcp795" },
439 	{ }
440 };
441 MODULE_DEVICE_TABLE(of, mcp795_of_match);
442 #endif
443 
444 static struct spi_driver mcp795_driver = {
445 		.driver = {
446 				.name = "rtc-mcp795",
447 				.of_match_table = of_match_ptr(mcp795_of_match),
448 		},
449 		.probe = mcp795_probe,
450 };
451 
452 module_spi_driver(mcp795_driver);
453 
454 MODULE_DESCRIPTION("MCP795 RTC SPI Driver");
455 MODULE_AUTHOR("Josef Gajdusek <atx@atx.name>");
456 MODULE_LICENSE("GPL");
457 MODULE_ALIAS("spi:mcp795");
458