xref: /openbmc/linux/drivers/rtc/rtc-imxdi.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2010 Orex Computed Radiography
4  */
5 
6 /*
7  * The code contained herein is licensed under the GNU General Public
8  * License. You may obtain a copy of the GNU General Public License
9  * Version 2 or later at the following locations:
10  *
11  * http://www.opensource.org/licenses/gpl-license.html
12  * http://www.gnu.org/copyleft/gpl.html
13  */
14 
15 /* based on rtc-mc13892.c */
16 
17 /*
18  * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
19  * to implement a Linux RTC. Times and alarms are truncated to seconds.
20  * Since the RTC framework performs API locking via rtc->ops_lock the
21  * only simultaneous accesses we need to deal with is updating DryIce
22  * registers while servicing an alarm.
23  *
24  * Note that reading the DSR (DryIce Status Register) automatically clears
25  * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
26  * LP (Low Power) domain and set the WCF upon completion. Writes to the
27  * DIER (DryIce Interrupt Enable Register) are the only exception. These
28  * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
29  * not supported by the hardware.
30  */
31 
32 #include <linux/io.h>
33 #include <linux/clk.h>
34 #include <linux/delay.h>
35 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/rtc.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/workqueue.h>
41 #include <linux/of.h>
42 
43 /* DryIce Register Definitions */
44 
45 #define DTCMR     0x00           /* Time Counter MSB Reg */
46 #define DTCLR     0x04           /* Time Counter LSB Reg */
47 
48 #define DCAMR     0x08           /* Clock Alarm MSB Reg */
49 #define DCALR     0x0c           /* Clock Alarm LSB Reg */
50 #define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
51 
52 #define DCR       0x10           /* Control Reg */
53 #define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
54 #define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
55 #define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
56 #define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
57 #define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
58 #define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
59 #define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
60 #define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
61 #define DCR_TCE   (1 << 3)       /* Time Counter Enable */
62 #define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
63 
64 #define DSR       0x14           /* Status Reg */
65 #define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
66 #define DSR_ETBD  (1 << 22)      /* External tamper B detected */
67 #define DSR_ETAD  (1 << 21)      /* External tamper A detected */
68 #define DSR_EBD   (1 << 20)      /* External boot detected */
69 #define DSR_SAD   (1 << 19)      /* SCC alarm detected */
70 #define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
71 #define DSR_CTD   (1 << 17)      /* Clock tamper detected */
72 #define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
73 #define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
74 #define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
75 #define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
76 #define DSR_WEF   (1 << 7)       /* Write Error Flag */
77 #define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
78 #define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
79 #define DSR_TCO   (1 << 2)       /* time counter overflow */
80 #define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
81 #define DSR_SVF   (1 << 0)       /* Security Violation Flag */
82 
83 #define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
84 #define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
85 #define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
86 #define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
87 #define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
88 #define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
89 
90 #define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
91 
92 #define DTCR      0x28           /* DryIce Tamper Configuration Reg */
93 #define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
94 #define DTCR_TOE  (1 << 8)       /* time overflow enabled */
95 #define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
96 #define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
97 #define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
98 #define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
99 #define DTCR_SAIE (1 << 3)       /* SCC enabled */
100 #define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
101 #define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
102 #define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
103 
104 #define DGPR      0x3c           /* DryIce General Purpose Reg */
105 
106 /**
107  * struct imxdi_dev - private imxdi rtc data
108  * @pdev: pionter to platform dev
109  * @rtc: pointer to rtc struct
110  * @ioaddr: IO registers pointer
111  * @clk: input reference clock
112  * @dsr: copy of the DSR register
113  * @irq_lock: interrupt enable register (DIER) lock
114  * @write_wait: registers write complete queue
115  * @write_mutex: serialize registers write
116  * @work: schedule alarm work
117  */
118 struct imxdi_dev {
119 	struct platform_device *pdev;
120 	struct rtc_device *rtc;
121 	void __iomem *ioaddr;
122 	struct clk *clk;
123 	u32 dsr;
124 	spinlock_t irq_lock;
125 	wait_queue_head_t write_wait;
126 	struct mutex write_mutex;
127 	struct work_struct work;
128 };
129 
130 /* Some background:
131  *
132  * The DryIce unit is a complex security/tamper monitor device. To be able do
133  * its job in a useful manner it runs a bigger statemachine to bring it into
134  * security/tamper failure state and once again to bring it out of this state.
135  *
136  * This unit can be in one of three states:
137  *
138  * - "NON-VALID STATE"
139  *   always after the battery power was removed
140  * - "FAILURE STATE"
141  *   if one of the enabled security events has happened
142  * - "VALID STATE"
143  *   if the unit works as expected
144  *
145  * Everything stops when the unit enters the failure state including the RTC
146  * counter (to be able to detect the time the security event happened).
147  *
148  * The following events (when enabled) let the DryIce unit enter the failure
149  * state:
150  *
151  * - wire-mesh-tamper detect
152  * - external tamper B detect
153  * - external tamper A detect
154  * - temperature tamper detect
155  * - clock tamper detect
156  * - voltage tamper detect
157  * - RTC counter overflow
158  * - monotonic counter overflow
159  * - external boot
160  *
161  * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
162  * can only detect this state. In this case the unit is completely locked and
163  * must force a second "SYSTEM POR" to bring the DryIce into the
164  * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
165  * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
166  * a battery power cycle is required.
167  *
168  * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
169  * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
170  * task, we bring back this unit into life.
171  */
172 
173 /*
174  * Do a write into the unit without interrupt support.
175  * We do not need to check the WEF here, because the only reason this kind of
176  * write error can happen is if we write to the unit twice within the 122 us
177  * interval. This cannot happen, since we are using this function only while
178  * setting up the unit.
179  */
180 static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
181 			       unsigned reg)
182 {
183 	/* do the register write */
184 	writel(val, imxdi->ioaddr + reg);
185 
186 	/*
187 	 * now it takes four 32,768 kHz clock cycles to take
188 	 * the change into effect = 122 us
189 	 */
190 	usleep_range(130, 200);
191 }
192 
193 static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
194 {
195 	u32 dtcr;
196 
197 	dtcr = readl(imxdi->ioaddr + DTCR);
198 
199 	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
200 	/* the following flags force a transition into the "FAILURE STATE" */
201 	if (dsr & DSR_VTD)
202 		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
203 			  dtcr & DTCR_VTE ? "" : "Spurious ");
204 
205 	if (dsr & DSR_CTD)
206 		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
207 			  dtcr & DTCR_CTE ? "" : "Spurious ");
208 
209 	if (dsr & DSR_TTD)
210 		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
211 			  dtcr & DTCR_TTE ? "" : "Spurious ");
212 
213 	if (dsr & DSR_SAD)
214 		dev_emerg(&imxdi->pdev->dev,
215 			  "%sSecure Controller Alarm Event\n",
216 			  dtcr & DTCR_SAIE ? "" : "Spurious ");
217 
218 	if (dsr & DSR_EBD)
219 		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
220 			  dtcr & DTCR_EBE ? "" : "Spurious ");
221 
222 	if (dsr & DSR_ETAD)
223 		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
224 			  dtcr & DTCR_ETAE ? "" : "Spurious ");
225 
226 	if (dsr & DSR_ETBD)
227 		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
228 			  dtcr & DTCR_ETBE ? "" : "Spurious ");
229 
230 	if (dsr & DSR_WTD)
231 		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
232 			  dtcr & DTCR_WTE ? "" : "Spurious ");
233 
234 	if (dsr & DSR_MCO)
235 		dev_emerg(&imxdi->pdev->dev,
236 			  "%sMonotonic-counter Overflow Event\n",
237 			  dtcr & DTCR_MOE ? "" : "Spurious ");
238 
239 	if (dsr & DSR_TCO)
240 		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
241 			  dtcr & DTCR_TOE ? "" : "Spurious ");
242 }
243 
244 static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
245 				  const char *power_supply)
246 {
247 	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
248 		  power_supply);
249 }
250 
251 static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
252 {
253 	u32 dcr;
254 
255 	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
256 
257 	/* report the cause */
258 	di_report_tamper_info(imxdi, dsr);
259 
260 	dcr = readl(imxdi->ioaddr + DCR);
261 
262 	if (dcr & DCR_FSHL) {
263 		/* we are out of luck */
264 		di_what_is_to_be_done(imxdi, "battery");
265 		return -ENODEV;
266 	}
267 	/*
268 	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
269 	 * into the "NON-VALID STATE" + "FAILURE STATE"
270 	 */
271 	di_what_is_to_be_done(imxdi, "main");
272 
273 	return -ENODEV;
274 }
275 
276 static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
277 {
278 	/* initialize alarm */
279 	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
280 	di_write_busy_wait(imxdi, 0, DCALR);
281 
282 	/* clear alarm flag */
283 	if (dsr & DSR_CAF)
284 		di_write_busy_wait(imxdi, DSR_CAF, DSR);
285 
286 	return 0;
287 }
288 
289 static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
290 {
291 	u32 dcr, sec;
292 
293 	/*
294 	 * lets disable all sources which can force the DryIce unit into
295 	 * the "FAILURE STATE" for now
296 	 */
297 	di_write_busy_wait(imxdi, 0x00000000, DTCR);
298 	/* and lets protect them at runtime from any change */
299 	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
300 
301 	sec = readl(imxdi->ioaddr + DTCMR);
302 	if (sec != 0)
303 		dev_warn(&imxdi->pdev->dev,
304 			 "The security violation has happened at %u seconds\n",
305 			 sec);
306 	/*
307 	 * the timer cannot be set/modified if
308 	 * - the TCHL or TCSL bit is set in DCR
309 	 */
310 	dcr = readl(imxdi->ioaddr + DCR);
311 	if (!(dcr & DCR_TCE)) {
312 		if (dcr & DCR_TCHL) {
313 			/* we are out of luck */
314 			di_what_is_to_be_done(imxdi, "battery");
315 			return -ENODEV;
316 		}
317 		if (dcr & DCR_TCSL) {
318 			di_what_is_to_be_done(imxdi, "main");
319 			return -ENODEV;
320 		}
321 	}
322 	/*
323 	 * - the timer counter stops/is stopped if
324 	 *   - its overflow flag is set (TCO in DSR)
325 	 *      -> clear overflow bit to make it count again
326 	 *   - NVF is set in DSR
327 	 *      -> clear non-valid bit to make it count again
328 	 *   - its TCE (DCR) is cleared
329 	 *      -> set TCE to make it count
330 	 *   - it was never set before
331 	 *      -> write a time into it (required again if the NVF was set)
332 	 */
333 	/* state handled */
334 	di_write_busy_wait(imxdi, DSR_NVF, DSR);
335 	/* clear overflow flag */
336 	di_write_busy_wait(imxdi, DSR_TCO, DSR);
337 	/* enable the counter */
338 	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
339 	/* set and trigger it to make it count */
340 	di_write_busy_wait(imxdi, sec, DTCMR);
341 
342 	/* now prepare for the valid state */
343 	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
344 }
345 
346 static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
347 {
348 	u32 dcr;
349 
350 	/*
351 	 * now we must first remove the tamper sources in order to get the
352 	 * device out of the "FAILURE STATE"
353 	 * To disable any of the following sources we need to modify the DTCR
354 	 */
355 	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
356 			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
357 		dcr = __raw_readl(imxdi->ioaddr + DCR);
358 		if (dcr & DCR_TDCHL) {
359 			/*
360 			 * the tamper register is locked. We cannot disable the
361 			 * tamper detection. The TDCHL can only be reset by a
362 			 * DRYICE POR, but we cannot force a DRYICE POR in
363 			 * softwere because we are still in "FAILURE STATE".
364 			 * We need a DRYICE POR via battery power cycling....
365 			 */
366 			/*
367 			 * out of luck!
368 			 * we cannot disable them without a DRYICE POR
369 			 */
370 			di_what_is_to_be_done(imxdi, "battery");
371 			return -ENODEV;
372 		}
373 		if (dcr & DCR_TDCSL) {
374 			/* a soft lock can be removed by a SYSTEM POR */
375 			di_what_is_to_be_done(imxdi, "main");
376 			return -ENODEV;
377 		}
378 	}
379 
380 	/* disable all sources */
381 	di_write_busy_wait(imxdi, 0x00000000, DTCR);
382 
383 	/* clear the status bits now */
384 	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
385 			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
386 			DSR_MCO | DSR_TCO), DSR);
387 
388 	dsr = readl(imxdi->ioaddr + DSR);
389 	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
390 			DSR_WCF | DSR_WEF)) != 0)
391 		dev_warn(&imxdi->pdev->dev,
392 			 "There are still some sources of pain in DSR: %08x!\n",
393 			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
394 				 DSR_WCF | DSR_WEF));
395 
396 	/*
397 	 * now we are trying to clear the "Security-violation flag" to
398 	 * get the DryIce out of this state
399 	 */
400 	di_write_busy_wait(imxdi, DSR_SVF, DSR);
401 
402 	/* success? */
403 	dsr = readl(imxdi->ioaddr + DSR);
404 	if (dsr & DSR_SVF) {
405 		dev_crit(&imxdi->pdev->dev,
406 			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
407 		/* last resort */
408 		di_what_is_to_be_done(imxdi, "battery");
409 		return -ENODEV;
410 	}
411 
412 	/*
413 	 * now we have left the "FAILURE STATE" and ending up in the
414 	 * "NON-VALID STATE" time to recover everything
415 	 */
416 	return di_handle_invalid_state(imxdi, dsr);
417 }
418 
419 static int di_handle_state(struct imxdi_dev *imxdi)
420 {
421 	int rc;
422 	u32 dsr;
423 
424 	dsr = readl(imxdi->ioaddr + DSR);
425 
426 	switch (dsr & (DSR_NVF | DSR_SVF)) {
427 	case DSR_NVF:
428 		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
429 		rc = di_handle_invalid_state(imxdi, dsr);
430 		break;
431 	case DSR_SVF:
432 		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
433 		rc = di_handle_failure_state(imxdi, dsr);
434 		break;
435 	case DSR_NVF | DSR_SVF:
436 		dev_warn(&imxdi->pdev->dev,
437 			 "Failure+Invalid stated unit detected\n");
438 		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
439 		break;
440 	default:
441 		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
442 		rc = di_handle_valid_state(imxdi, dsr);
443 	}
444 
445 	return rc;
446 }
447 
448 /*
449  * enable a dryice interrupt
450  */
451 static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
452 {
453 	unsigned long flags;
454 
455 	spin_lock_irqsave(&imxdi->irq_lock, flags);
456 	writel(readl(imxdi->ioaddr + DIER) | intr,
457 	       imxdi->ioaddr + DIER);
458 	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
459 }
460 
461 /*
462  * disable a dryice interrupt
463  */
464 static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
465 {
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&imxdi->irq_lock, flags);
469 	writel(readl(imxdi->ioaddr + DIER) & ~intr,
470 	       imxdi->ioaddr + DIER);
471 	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
472 }
473 
474 /*
475  * This function attempts to clear the dryice write-error flag.
476  *
477  * A dryice write error is similar to a bus fault and should not occur in
478  * normal operation.  Clearing the flag requires another write, so the root
479  * cause of the problem may need to be fixed before the flag can be cleared.
480  */
481 static void clear_write_error(struct imxdi_dev *imxdi)
482 {
483 	int cnt;
484 
485 	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
486 
487 	/* clear the write error flag */
488 	writel(DSR_WEF, imxdi->ioaddr + DSR);
489 
490 	/* wait for it to take effect */
491 	for (cnt = 0; cnt < 1000; cnt++) {
492 		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
493 			return;
494 		udelay(10);
495 	}
496 	dev_err(&imxdi->pdev->dev,
497 			"ERROR: Cannot clear write-error flag!\n");
498 }
499 
500 /*
501  * Write a dryice register and wait until it completes.
502  *
503  * This function uses interrupts to determine when the
504  * write has completed.
505  */
506 static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
507 {
508 	int ret;
509 	int rc = 0;
510 
511 	/* serialize register writes */
512 	mutex_lock(&imxdi->write_mutex);
513 
514 	/* enable the write-complete interrupt */
515 	di_int_enable(imxdi, DIER_WCIE);
516 
517 	imxdi->dsr = 0;
518 
519 	/* do the register write */
520 	writel(val, imxdi->ioaddr + reg);
521 
522 	/* wait for the write to finish */
523 	ret = wait_event_interruptible_timeout(imxdi->write_wait,
524 			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
525 	if (ret < 0) {
526 		rc = ret;
527 		goto out;
528 	} else if (ret == 0) {
529 		dev_warn(&imxdi->pdev->dev,
530 				"Write-wait timeout "
531 				"val = 0x%08x reg = 0x%08x\n", val, reg);
532 	}
533 
534 	/* check for write error */
535 	if (imxdi->dsr & DSR_WEF) {
536 		clear_write_error(imxdi);
537 		rc = -EIO;
538 	}
539 
540 out:
541 	mutex_unlock(&imxdi->write_mutex);
542 
543 	return rc;
544 }
545 
546 /*
547  * read the seconds portion of the current time from the dryice time counter
548  */
549 static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
550 {
551 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
552 	unsigned long now;
553 
554 	now = readl(imxdi->ioaddr + DTCMR);
555 	rtc_time_to_tm(now, tm);
556 
557 	return 0;
558 }
559 
560 /*
561  * set the seconds portion of dryice time counter and clear the
562  * fractional part.
563  */
564 static int dryice_rtc_set_mmss(struct device *dev, unsigned long secs)
565 {
566 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
567 	u32 dcr, dsr;
568 	int rc;
569 
570 	dcr = readl(imxdi->ioaddr + DCR);
571 	dsr = readl(imxdi->ioaddr + DSR);
572 
573 	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
574 		if (dcr & DCR_TCHL) {
575 			/* we are even more out of luck */
576 			di_what_is_to_be_done(imxdi, "battery");
577 			return -EPERM;
578 		}
579 		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
580 			/* we are out of luck for now */
581 			di_what_is_to_be_done(imxdi, "main");
582 			return -EPERM;
583 		}
584 	}
585 
586 	/* zero the fractional part first */
587 	rc = di_write_wait(imxdi, 0, DTCLR);
588 	if (rc != 0)
589 		return rc;
590 
591 	rc = di_write_wait(imxdi, secs, DTCMR);
592 	if (rc != 0)
593 		return rc;
594 
595 	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
596 }
597 
598 static int dryice_rtc_alarm_irq_enable(struct device *dev,
599 		unsigned int enabled)
600 {
601 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
602 
603 	if (enabled)
604 		di_int_enable(imxdi, DIER_CAIE);
605 	else
606 		di_int_disable(imxdi, DIER_CAIE);
607 
608 	return 0;
609 }
610 
611 /*
612  * read the seconds portion of the alarm register.
613  * the fractional part of the alarm register is always zero.
614  */
615 static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
616 {
617 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
618 	u32 dcamr;
619 
620 	dcamr = readl(imxdi->ioaddr + DCAMR);
621 	rtc_time_to_tm(dcamr, &alarm->time);
622 
623 	/* alarm is enabled if the interrupt is enabled */
624 	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
625 
626 	/* don't allow the DSR read to mess up DSR_WCF */
627 	mutex_lock(&imxdi->write_mutex);
628 
629 	/* alarm is pending if the alarm flag is set */
630 	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
631 
632 	mutex_unlock(&imxdi->write_mutex);
633 
634 	return 0;
635 }
636 
637 /*
638  * set the seconds portion of dryice alarm register
639  */
640 static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
641 {
642 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
643 	unsigned long now;
644 	unsigned long alarm_time;
645 	int rc;
646 
647 	rc = rtc_tm_to_time(&alarm->time, &alarm_time);
648 	if (rc)
649 		return rc;
650 
651 	/* don't allow setting alarm in the past */
652 	now = readl(imxdi->ioaddr + DTCMR);
653 	if (alarm_time < now)
654 		return -EINVAL;
655 
656 	/* write the new alarm time */
657 	rc = di_write_wait(imxdi, (u32)alarm_time, DCAMR);
658 	if (rc)
659 		return rc;
660 
661 	if (alarm->enabled)
662 		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
663 	else
664 		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
665 
666 	return 0;
667 }
668 
669 static const struct rtc_class_ops dryice_rtc_ops = {
670 	.read_time		= dryice_rtc_read_time,
671 	.set_mmss		= dryice_rtc_set_mmss,
672 	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
673 	.read_alarm		= dryice_rtc_read_alarm,
674 	.set_alarm		= dryice_rtc_set_alarm,
675 };
676 
677 /*
678  * interrupt handler for dryice "normal" and security violation interrupt
679  */
680 static irqreturn_t dryice_irq(int irq, void *dev_id)
681 {
682 	struct imxdi_dev *imxdi = dev_id;
683 	u32 dsr, dier;
684 	irqreturn_t rc = IRQ_NONE;
685 
686 	dier = readl(imxdi->ioaddr + DIER);
687 	dsr = readl(imxdi->ioaddr + DSR);
688 
689 	/* handle the security violation event */
690 	if (dier & DIER_SVIE) {
691 		if (dsr & DSR_SVF) {
692 			/*
693 			 * Disable the interrupt when this kind of event has
694 			 * happened.
695 			 * There cannot be more than one event of this type,
696 			 * because it needs a complex state change
697 			 * including a main power cycle to get again out of
698 			 * this state.
699 			 */
700 			di_int_disable(imxdi, DIER_SVIE);
701 			/* report the violation */
702 			di_report_tamper_info(imxdi, dsr);
703 			rc = IRQ_HANDLED;
704 		}
705 	}
706 
707 	/* handle write complete and write error cases */
708 	if (dier & DIER_WCIE) {
709 		/*If the write wait queue is empty then there is no pending
710 		  operations. It means the interrupt is for DryIce -Security.
711 		  IRQ must be returned as none.*/
712 		if (list_empty_careful(&imxdi->write_wait.head))
713 			return rc;
714 
715 		/* DSR_WCF clears itself on DSR read */
716 		if (dsr & (DSR_WCF | DSR_WEF)) {
717 			/* mask the interrupt */
718 			di_int_disable(imxdi, DIER_WCIE);
719 
720 			/* save the dsr value for the wait queue */
721 			imxdi->dsr |= dsr;
722 
723 			wake_up_interruptible(&imxdi->write_wait);
724 			rc = IRQ_HANDLED;
725 		}
726 	}
727 
728 	/* handle the alarm case */
729 	if (dier & DIER_CAIE) {
730 		/* DSR_WCF clears itself on DSR read */
731 		if (dsr & DSR_CAF) {
732 			/* mask the interrupt */
733 			di_int_disable(imxdi, DIER_CAIE);
734 
735 			/* finish alarm in user context */
736 			schedule_work(&imxdi->work);
737 			rc = IRQ_HANDLED;
738 		}
739 	}
740 	return rc;
741 }
742 
743 /*
744  * post the alarm event from user context so it can sleep
745  * on the write completion.
746  */
747 static void dryice_work(struct work_struct *work)
748 {
749 	struct imxdi_dev *imxdi = container_of(work,
750 			struct imxdi_dev, work);
751 
752 	/* dismiss the interrupt (ignore error) */
753 	di_write_wait(imxdi, DSR_CAF, DSR);
754 
755 	/* pass the alarm event to the rtc framework. */
756 	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
757 }
758 
759 /*
760  * probe for dryice rtc device
761  */
762 static int __init dryice_rtc_probe(struct platform_device *pdev)
763 {
764 	struct resource *res;
765 	struct imxdi_dev *imxdi;
766 	int norm_irq, sec_irq;
767 	int rc;
768 
769 	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
770 	if (!imxdi)
771 		return -ENOMEM;
772 
773 	imxdi->pdev = pdev;
774 
775 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
776 	imxdi->ioaddr = devm_ioremap_resource(&pdev->dev, res);
777 	if (IS_ERR(imxdi->ioaddr))
778 		return PTR_ERR(imxdi->ioaddr);
779 
780 	spin_lock_init(&imxdi->irq_lock);
781 
782 	norm_irq = platform_get_irq(pdev, 0);
783 	if (norm_irq < 0)
784 		return norm_irq;
785 
786 	/* the 2nd irq is the security violation irq
787 	 * make this optional, don't break the device tree ABI
788 	 */
789 	sec_irq = platform_get_irq(pdev, 1);
790 	if (sec_irq <= 0)
791 		sec_irq = IRQ_NOTCONNECTED;
792 
793 	init_waitqueue_head(&imxdi->write_wait);
794 
795 	INIT_WORK(&imxdi->work, dryice_work);
796 
797 	mutex_init(&imxdi->write_mutex);
798 
799 	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
800 	if (IS_ERR(imxdi->clk))
801 		return PTR_ERR(imxdi->clk);
802 	rc = clk_prepare_enable(imxdi->clk);
803 	if (rc)
804 		return rc;
805 
806 	/*
807 	 * Initialize dryice hardware
808 	 */
809 
810 	/* mask all interrupts */
811 	writel(0, imxdi->ioaddr + DIER);
812 
813 	rc = di_handle_state(imxdi);
814 	if (rc != 0)
815 		goto err;
816 
817 	rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
818 			      IRQF_SHARED, pdev->name, imxdi);
819 	if (rc) {
820 		dev_warn(&pdev->dev, "interrupt not available.\n");
821 		goto err;
822 	}
823 
824 	rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
825 			      IRQF_SHARED, pdev->name, imxdi);
826 	if (rc) {
827 		dev_warn(&pdev->dev, "security violation interrupt not available.\n");
828 		/* this is not an error, see above */
829 	}
830 
831 	platform_set_drvdata(pdev, imxdi);
832 	imxdi->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
833 				  &dryice_rtc_ops, THIS_MODULE);
834 	if (IS_ERR(imxdi->rtc)) {
835 		rc = PTR_ERR(imxdi->rtc);
836 		goto err;
837 	}
838 
839 	return 0;
840 
841 err:
842 	clk_disable_unprepare(imxdi->clk);
843 
844 	return rc;
845 }
846 
847 static int __exit dryice_rtc_remove(struct platform_device *pdev)
848 {
849 	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
850 
851 	flush_work(&imxdi->work);
852 
853 	/* mask all interrupts */
854 	writel(0, imxdi->ioaddr + DIER);
855 
856 	clk_disable_unprepare(imxdi->clk);
857 
858 	return 0;
859 }
860 
861 #ifdef CONFIG_OF
862 static const struct of_device_id dryice_dt_ids[] = {
863 	{ .compatible = "fsl,imx25-rtc" },
864 	{ /* sentinel */ }
865 };
866 
867 MODULE_DEVICE_TABLE(of, dryice_dt_ids);
868 #endif
869 
870 static struct platform_driver dryice_rtc_driver = {
871 	.driver = {
872 		   .name = "imxdi_rtc",
873 		   .of_match_table = of_match_ptr(dryice_dt_ids),
874 		   },
875 	.remove = __exit_p(dryice_rtc_remove),
876 };
877 
878 module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
879 
880 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
881 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
882 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
883 MODULE_LICENSE("GPL");
884