1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale FlexTimer Module (FTM) alarm device driver.
4  *
5  * Copyright 2014 Freescale Semiconductor, Inc.
6  * Copyright 2019 NXP
7  *
8  */
9 
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/module.h>
20 #include <linux/fsl/ftm.h>
21 #include <linux/rtc.h>
22 #include <linux/time.h>
23 #include <linux/acpi.h>
24 
25 #define FTM_SC_CLK(c)		((c) << FTM_SC_CLK_MASK_SHIFT)
26 
27 /*
28  * Select Fixed frequency clock (32KHz) as clock source
29  * of FlexTimer Module
30  */
31 #define FTM_SC_CLKS_FIXED_FREQ	0x02
32 #define FIXED_FREQ_CLK		32000
33 
34 /* Select 128 (2^7) as divider factor */
35 #define MAX_FREQ_DIV		(1 << FTM_SC_PS_MASK)
36 
37 /* Maximum counter value in FlexTimer's CNT registers */
38 #define MAX_COUNT_VAL		0xffff
39 
40 struct ftm_rtc {
41 	struct rtc_device *rtc_dev;
42 	void __iomem *base;
43 	bool big_endian;
44 	u32 alarm_freq;
45 };
46 
47 static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
48 {
49 	if (dev->big_endian)
50 		return ioread32be(dev->base + reg);
51 	else
52 		return ioread32(dev->base + reg);
53 }
54 
55 static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
56 {
57 	if (dev->big_endian)
58 		iowrite32be(val, dev->base + reg);
59 	else
60 		iowrite32(val, dev->base + reg);
61 }
62 
63 static inline void ftm_counter_enable(struct ftm_rtc *rtc)
64 {
65 	u32 val;
66 
67 	/* select and enable counter clock source */
68 	val = rtc_readl(rtc, FTM_SC);
69 	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
70 	val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
71 	rtc_writel(rtc, FTM_SC, val);
72 }
73 
74 static inline void ftm_counter_disable(struct ftm_rtc *rtc)
75 {
76 	u32 val;
77 
78 	/* disable counter clock source */
79 	val = rtc_readl(rtc, FTM_SC);
80 	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
81 	rtc_writel(rtc, FTM_SC, val);
82 }
83 
84 static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
85 {
86 	unsigned int timeout = 100;
87 
88 	/*
89 	 *Fix errata A-007728 for flextimer
90 	 *	If the FTM counter reaches the FTM_MOD value between
91 	 *	the reading of the TOF bit and the writing of 0 to
92 	 *	the TOF bit, the process of clearing the TOF bit
93 	 *	does not work as expected when FTMx_CONF[NUMTOF] != 0
94 	 *	and the current TOF count is less than FTMx_CONF[NUMTOF].
95 	 *	If the above condition is met, the TOF bit remains set.
96 	 *	If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
97 	 *	TOF interrupt also remains asserted.
98 	 *
99 	 *	Above is the errata discription
100 	 *
101 	 *	In one word: software clearing TOF bit not works when
102 	 *	FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
103 	 *	reaches the FTM_MOD value.
104 	 *
105 	 *	The workaround is clearing TOF bit until it works
106 	 *	(FTM counter doesn't always reache the FTM_MOD anyway),
107 	 *	which may cost some cycles.
108 	 */
109 	while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
110 		rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
111 }
112 
113 static inline void ftm_irq_enable(struct ftm_rtc *rtc)
114 {
115 	u32 val;
116 
117 	val = rtc_readl(rtc, FTM_SC);
118 	val |= FTM_SC_TOIE;
119 	rtc_writel(rtc, FTM_SC, val);
120 }
121 
122 static inline void ftm_irq_disable(struct ftm_rtc *rtc)
123 {
124 	u32 val;
125 
126 	val = rtc_readl(rtc, FTM_SC);
127 	val &= ~FTM_SC_TOIE;
128 	rtc_writel(rtc, FTM_SC, val);
129 }
130 
131 static inline void ftm_reset_counter(struct ftm_rtc *rtc)
132 {
133 	/*
134 	 * The CNT register contains the FTM counter value.
135 	 * Reset clears the CNT register. Writing any value to COUNT
136 	 * updates the counter with its initial value, CNTIN.
137 	 */
138 	rtc_writel(rtc, FTM_CNT, 0x00);
139 }
140 
141 static void ftm_clean_alarm(struct ftm_rtc *rtc)
142 {
143 	ftm_counter_disable(rtc);
144 
145 	rtc_writel(rtc, FTM_CNTIN, 0x00);
146 	rtc_writel(rtc, FTM_MOD, ~0U);
147 
148 	ftm_reset_counter(rtc);
149 }
150 
151 static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
152 {
153 	struct ftm_rtc *rtc = dev;
154 
155 	rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
156 
157 	ftm_irq_acknowledge(rtc);
158 	ftm_irq_disable(rtc);
159 	ftm_clean_alarm(rtc);
160 
161 	return IRQ_HANDLED;
162 }
163 
164 static int ftm_rtc_alarm_irq_enable(struct device *dev,
165 		unsigned int enabled)
166 {
167 	struct ftm_rtc *rtc = dev_get_drvdata(dev);
168 
169 	if (enabled)
170 		ftm_irq_enable(rtc);
171 	else
172 		ftm_irq_disable(rtc);
173 
174 	return 0;
175 }
176 
177 /*
178  * Note:
179  *	The function is not really getting time from the RTC
180  *	since FlexTimer is not a RTC device, but we need to
181  *	get time to setup alarm, so we are using system time
182  *	for now.
183  */
184 static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
185 {
186 	rtc_time64_to_tm(ktime_get_real_seconds(), tm);
187 
188 	return 0;
189 }
190 
191 static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
192 {
193 	return 0;
194 }
195 
196 /*
197  * 1. Select fixed frequency clock (32KHz) as clock source;
198  * 2. Select 128 (2^7) as divider factor;
199  * So clock is 250 Hz (32KHz/128).
200  *
201  * 3. FlexTimer's CNT register is a 32bit register,
202  * but the register's 16 bit as counter value,it's other 16 bit
203  * is reserved.So minimum counter value is 0x0,maximum counter
204  * value is 0xffff.
205  * So max alarm value is 262 (65536 / 250) seconds
206  */
207 static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
208 {
209 	time64_t alm_time;
210 	unsigned long long cycle;
211 	struct ftm_rtc *rtc = dev_get_drvdata(dev);
212 
213 	alm_time = rtc_tm_to_time64(&alm->time);
214 
215 	ftm_clean_alarm(rtc);
216 	cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq;
217 	if (cycle > MAX_COUNT_VAL) {
218 		pr_err("Out of alarm range {0~262} seconds.\n");
219 		return -ERANGE;
220 	}
221 
222 	ftm_irq_disable(rtc);
223 
224 	/*
225 	 * The counter increments until the value of MOD is reached,
226 	 * at which point the counter is reloaded with the value of CNTIN.
227 	 * The TOF (the overflow flag) bit is set when the FTM counter
228 	 * changes from MOD to CNTIN. So we should using the cycle - 1.
229 	 */
230 	rtc_writel(rtc, FTM_MOD, cycle - 1);
231 
232 	ftm_counter_enable(rtc);
233 	ftm_irq_enable(rtc);
234 
235 	return 0;
236 
237 }
238 
239 static const struct rtc_class_ops ftm_rtc_ops = {
240 	.read_time		= ftm_rtc_read_time,
241 	.read_alarm		= ftm_rtc_read_alarm,
242 	.set_alarm		= ftm_rtc_set_alarm,
243 	.alarm_irq_enable	= ftm_rtc_alarm_irq_enable,
244 };
245 
246 static int ftm_rtc_probe(struct platform_device *pdev)
247 {
248 	int irq;
249 	int ret;
250 	struct ftm_rtc *rtc;
251 
252 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
253 	if (unlikely(!rtc)) {
254 		dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
255 		return -ENOMEM;
256 	}
257 
258 	platform_set_drvdata(pdev, rtc);
259 
260 	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
261 	if (IS_ERR(rtc->rtc_dev))
262 		return PTR_ERR(rtc->rtc_dev);
263 
264 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
265 	if (IS_ERR(rtc->base)) {
266 		dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
267 		return PTR_ERR(rtc->base);
268 	}
269 
270 	irq = platform_get_irq(pdev, 0);
271 	if (irq < 0) {
272 		dev_err(&pdev->dev, "can't get irq number\n");
273 		return irq;
274 	}
275 
276 	ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
277 			       IRQF_NO_SUSPEND, dev_name(&pdev->dev), rtc);
278 	if (ret < 0) {
279 		dev_err(&pdev->dev, "failed to request irq\n");
280 		return ret;
281 	}
282 
283 	rtc->big_endian =
284 		device_property_read_bool(&pdev->dev, "big-endian");
285 
286 	rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
287 	rtc->rtc_dev->ops = &ftm_rtc_ops;
288 
289 	device_init_wakeup(&pdev->dev, true);
290 
291 	ret = rtc_register_device(rtc->rtc_dev);
292 	if (ret) {
293 		dev_err(&pdev->dev, "can't register rtc device\n");
294 		return ret;
295 	}
296 
297 	return 0;
298 }
299 
300 static const struct of_device_id ftm_rtc_match[] = {
301 	{ .compatible = "fsl,ls1012a-ftm-alarm", },
302 	{ .compatible = "fsl,ls1021a-ftm-alarm", },
303 	{ .compatible = "fsl,ls1028a-ftm-alarm", },
304 	{ .compatible = "fsl,ls1043a-ftm-alarm", },
305 	{ .compatible = "fsl,ls1046a-ftm-alarm", },
306 	{ .compatible = "fsl,ls1088a-ftm-alarm", },
307 	{ .compatible = "fsl,ls208xa-ftm-alarm", },
308 	{ .compatible = "fsl,lx2160a-ftm-alarm", },
309 	{ },
310 };
311 
312 static const struct acpi_device_id ftm_imx_acpi_ids[] = {
313 	{"NXP0011",},
314 	{ }
315 };
316 MODULE_DEVICE_TABLE(acpi, ftm_imx_acpi_ids);
317 
318 static struct platform_driver ftm_rtc_driver = {
319 	.probe		= ftm_rtc_probe,
320 	.driver		= {
321 		.name	= "ftm-alarm",
322 		.of_match_table = ftm_rtc_match,
323 		.acpi_match_table = ACPI_PTR(ftm_imx_acpi_ids),
324 	},
325 };
326 
327 static int __init ftm_alarm_init(void)
328 {
329 	return platform_driver_register(&ftm_rtc_driver);
330 }
331 
332 device_initcall(ftm_alarm_init);
333 
334 MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
335 MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
336 MODULE_LICENSE("GPL");
337