xref: /openbmc/linux/drivers/rtc/rtc-ds1685.c (revision 2d091155)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * An rtc driver for the Dallas/Maxim DS1685/DS1687 and related real-time
4  * chips.
5  *
6  * Copyright (C) 2011-2014 Joshua Kinard <kumba@gentoo.org>.
7  * Copyright (C) 2009 Matthias Fuchs <matthias.fuchs@esd-electronics.com>.
8  *
9  * References:
10  *    DS1685/DS1687 3V/5V Real-Time Clocks, 19-5215, Rev 4/10.
11  *    DS17x85/DS17x87 3V/5V Real-Time Clocks, 19-5222, Rev 4/10.
12  *    DS1689/DS1693 3V/5V Serialized Real-Time Clocks, Rev 112105.
13  *    Application Note 90, Using the Multiplex Bus RTC Extended Features.
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/bcd.h>
19 #include <linux/delay.h>
20 #include <linux/io.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/rtc.h>
24 #include <linux/workqueue.h>
25 
26 #include <linux/rtc/ds1685.h>
27 
28 #ifdef CONFIG_PROC_FS
29 #include <linux/proc_fs.h>
30 #endif
31 
32 
33 /* ----------------------------------------------------------------------- */
34 /*
35  *  Standard read/write
36  *  all registers are mapped in CPU address space
37  */
38 
39 /**
40  * ds1685_read - read a value from an rtc register.
41  * @rtc: pointer to the ds1685 rtc structure.
42  * @reg: the register address to read.
43  */
44 static u8
45 ds1685_read(struct ds1685_priv *rtc, int reg)
46 {
47 	return readb((u8 __iomem *)rtc->regs +
48 		     (reg * rtc->regstep));
49 }
50 
51 /**
52  * ds1685_write - write a value to an rtc register.
53  * @rtc: pointer to the ds1685 rtc structure.
54  * @reg: the register address to write.
55  * @value: value to write to the register.
56  */
57 static void
58 ds1685_write(struct ds1685_priv *rtc, int reg, u8 value)
59 {
60 	writeb(value, ((u8 __iomem *)rtc->regs +
61 		       (reg * rtc->regstep)));
62 }
63 /* ----------------------------------------------------------------------- */
64 
65 /*
66  * Indirect read/write functions
67  * access happens via address and data register mapped in CPU address space
68  */
69 
70 /**
71  * ds1685_indirect_read - read a value from an rtc register.
72  * @rtc: pointer to the ds1685 rtc structure.
73  * @reg: the register address to read.
74  */
75 static u8
76 ds1685_indirect_read(struct ds1685_priv *rtc, int reg)
77 {
78 	writeb(reg, rtc->regs);
79 	return readb(rtc->data);
80 }
81 
82 /**
83  * ds1685_indirect_write - write a value to an rtc register.
84  * @rtc: pointer to the ds1685 rtc structure.
85  * @reg: the register address to write.
86  * @value: value to write to the register.
87  */
88 static void
89 ds1685_indirect_write(struct ds1685_priv *rtc, int reg, u8 value)
90 {
91 	writeb(reg, rtc->regs);
92 	writeb(value, rtc->data);
93 }
94 
95 /* ----------------------------------------------------------------------- */
96 /* Inlined functions */
97 
98 /**
99  * ds1685_rtc_bcd2bin - bcd2bin wrapper in case platform doesn't support BCD.
100  * @rtc: pointer to the ds1685 rtc structure.
101  * @val: u8 time value to consider converting.
102  * @bcd_mask: u8 mask value if BCD mode is used.
103  * @bin_mask: u8 mask value if BIN mode is used.
104  *
105  * Returns the value, converted to BIN if originally in BCD and bcd_mode TRUE.
106  */
107 static inline u8
108 ds1685_rtc_bcd2bin(struct ds1685_priv *rtc, u8 val, u8 bcd_mask, u8 bin_mask)
109 {
110 	if (rtc->bcd_mode)
111 		return (bcd2bin(val) & bcd_mask);
112 
113 	return (val & bin_mask);
114 }
115 
116 /**
117  * ds1685_rtc_bin2bcd - bin2bcd wrapper in case platform doesn't support BCD.
118  * @rtc: pointer to the ds1685 rtc structure.
119  * @val: u8 time value to consider converting.
120  * @bin_mask: u8 mask value if BIN mode is used.
121  * @bcd_mask: u8 mask value if BCD mode is used.
122  *
123  * Returns the value, converted to BCD if originally in BIN and bcd_mode TRUE.
124  */
125 static inline u8
126 ds1685_rtc_bin2bcd(struct ds1685_priv *rtc, u8 val, u8 bin_mask, u8 bcd_mask)
127 {
128 	if (rtc->bcd_mode)
129 		return (bin2bcd(val) & bcd_mask);
130 
131 	return (val & bin_mask);
132 }
133 
134 /**
135  * s1685_rtc_check_mday - check validity of the day of month.
136  * @rtc: pointer to the ds1685 rtc structure.
137  * @mday: day of month.
138  *
139  * Returns -EDOM if the day of month is not within 1..31 range.
140  */
141 static inline int
142 ds1685_rtc_check_mday(struct ds1685_priv *rtc, u8 mday)
143 {
144 	if (rtc->bcd_mode) {
145 		if (mday < 0x01 || mday > 0x31 || (mday & 0x0f) > 0x09)
146 			return -EDOM;
147 	} else {
148 		if (mday < 1 || mday > 31)
149 			return -EDOM;
150 	}
151 	return 0;
152 }
153 
154 /**
155  * ds1685_rtc_switch_to_bank0 - switch the rtc to bank 0.
156  * @rtc: pointer to the ds1685 rtc structure.
157  */
158 static inline void
159 ds1685_rtc_switch_to_bank0(struct ds1685_priv *rtc)
160 {
161 	rtc->write(rtc, RTC_CTRL_A,
162 		   (rtc->read(rtc, RTC_CTRL_A) & ~(RTC_CTRL_A_DV0)));
163 }
164 
165 /**
166  * ds1685_rtc_switch_to_bank1 - switch the rtc to bank 1.
167  * @rtc: pointer to the ds1685 rtc structure.
168  */
169 static inline void
170 ds1685_rtc_switch_to_bank1(struct ds1685_priv *rtc)
171 {
172 	rtc->write(rtc, RTC_CTRL_A,
173 		   (rtc->read(rtc, RTC_CTRL_A) | RTC_CTRL_A_DV0));
174 }
175 
176 /**
177  * ds1685_rtc_begin_data_access - prepare the rtc for data access.
178  * @rtc: pointer to the ds1685 rtc structure.
179  *
180  * This takes several steps to prepare the rtc for access to get/set time
181  * and alarm values from the rtc registers:
182  *  - Sets the SET bit in Control Register B.
183  *  - Reads Ext Control Register 4A and checks the INCR bit.
184  *  - If INCR is active, a short delay is added before Ext Control Register 4A
185  *    is read again in a loop until INCR is inactive.
186  *  - Switches the rtc to bank 1.  This allows access to all relevant
187  *    data for normal rtc operation, as bank 0 contains only the nvram.
188  */
189 static inline void
190 ds1685_rtc_begin_data_access(struct ds1685_priv *rtc)
191 {
192 	/* Set the SET bit in Ctrl B */
193 	rtc->write(rtc, RTC_CTRL_B,
194 		   (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET));
195 
196 	/* Switch to Bank 1 */
197 	ds1685_rtc_switch_to_bank1(rtc);
198 
199 	/* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */
200 	while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR)
201 		cpu_relax();
202 }
203 
204 /**
205  * ds1685_rtc_end_data_access - end data access on the rtc.
206  * @rtc: pointer to the ds1685 rtc structure.
207  *
208  * This ends what was started by ds1685_rtc_begin_data_access:
209  *  - Switches the rtc back to bank 0.
210  *  - Clears the SET bit in Control Register B.
211  */
212 static inline void
213 ds1685_rtc_end_data_access(struct ds1685_priv *rtc)
214 {
215 	/* Switch back to Bank 0 */
216 	ds1685_rtc_switch_to_bank0(rtc);
217 
218 	/* Clear the SET bit in Ctrl B */
219 	rtc->write(rtc, RTC_CTRL_B,
220 		   (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET)));
221 }
222 
223 /**
224  * ds1685_rtc_get_ssn - retrieve the silicon serial number.
225  * @rtc: pointer to the ds1685 rtc structure.
226  * @ssn: u8 array to hold the bits of the silicon serial number.
227  *
228  * This number starts at 0x40, and is 8-bytes long, ending at 0x47. The
229  * first byte is the model number, the next six bytes are the serial number
230  * digits, and the final byte is a CRC check byte.  Together, they form the
231  * silicon serial number.
232  *
233  * These values are stored in bank1, so ds1685_rtc_switch_to_bank1 must be
234  * called first before calling this function, else data will be read out of
235  * the bank0 NVRAM.  Be sure to call ds1685_rtc_switch_to_bank0 when done.
236  */
237 static inline void
238 ds1685_rtc_get_ssn(struct ds1685_priv *rtc, u8 *ssn)
239 {
240 	ssn[0] = rtc->read(rtc, RTC_BANK1_SSN_MODEL);
241 	ssn[1] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_1);
242 	ssn[2] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_2);
243 	ssn[3] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_3);
244 	ssn[4] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_4);
245 	ssn[5] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_5);
246 	ssn[6] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_6);
247 	ssn[7] = rtc->read(rtc, RTC_BANK1_SSN_CRC);
248 }
249 /* ----------------------------------------------------------------------- */
250 
251 
252 /* ----------------------------------------------------------------------- */
253 /* Read/Set Time & Alarm functions */
254 
255 /**
256  * ds1685_rtc_read_time - reads the time registers.
257  * @dev: pointer to device structure.
258  * @tm: pointer to rtc_time structure.
259  */
260 static int
261 ds1685_rtc_read_time(struct device *dev, struct rtc_time *tm)
262 {
263 	struct ds1685_priv *rtc = dev_get_drvdata(dev);
264 	u8 century;
265 	u8 seconds, minutes, hours, wday, mday, month, years;
266 
267 	/* Fetch the time info from the RTC registers. */
268 	ds1685_rtc_begin_data_access(rtc);
269 	seconds = rtc->read(rtc, RTC_SECS);
270 	minutes = rtc->read(rtc, RTC_MINS);
271 	hours   = rtc->read(rtc, RTC_HRS);
272 	wday    = rtc->read(rtc, RTC_WDAY);
273 	mday    = rtc->read(rtc, RTC_MDAY);
274 	month   = rtc->read(rtc, RTC_MONTH);
275 	years   = rtc->read(rtc, RTC_YEAR);
276 	century = rtc->read(rtc, RTC_CENTURY);
277 	ds1685_rtc_end_data_access(rtc);
278 
279 	/* bcd2bin if needed, perform fixups, and store to rtc_time. */
280 	years        = ds1685_rtc_bcd2bin(rtc, years, RTC_YEAR_BCD_MASK,
281 					  RTC_YEAR_BIN_MASK);
282 	century      = ds1685_rtc_bcd2bin(rtc, century, RTC_CENTURY_MASK,
283 					  RTC_CENTURY_MASK);
284 	tm->tm_sec   = ds1685_rtc_bcd2bin(rtc, seconds, RTC_SECS_BCD_MASK,
285 					  RTC_SECS_BIN_MASK);
286 	tm->tm_min   = ds1685_rtc_bcd2bin(rtc, minutes, RTC_MINS_BCD_MASK,
287 					  RTC_MINS_BIN_MASK);
288 	tm->tm_hour  = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_24_BCD_MASK,
289 					  RTC_HRS_24_BIN_MASK);
290 	tm->tm_wday  = (ds1685_rtc_bcd2bin(rtc, wday, RTC_WDAY_MASK,
291 					   RTC_WDAY_MASK) - 1);
292 	tm->tm_mday  = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK,
293 					  RTC_MDAY_BIN_MASK);
294 	tm->tm_mon   = (ds1685_rtc_bcd2bin(rtc, month, RTC_MONTH_BCD_MASK,
295 					   RTC_MONTH_BIN_MASK) - 1);
296 	tm->tm_year  = ((years + (century * 100)) - 1900);
297 	tm->tm_yday  = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
298 	tm->tm_isdst = 0; /* RTC has hardcoded timezone, so don't use. */
299 
300 	return 0;
301 }
302 
303 /**
304  * ds1685_rtc_set_time - sets the time registers.
305  * @dev: pointer to device structure.
306  * @tm: pointer to rtc_time structure.
307  */
308 static int
309 ds1685_rtc_set_time(struct device *dev, struct rtc_time *tm)
310 {
311 	struct ds1685_priv *rtc = dev_get_drvdata(dev);
312 	u8 ctrlb, seconds, minutes, hours, wday, mday, month, years, century;
313 
314 	/* Fetch the time info from rtc_time. */
315 	seconds = ds1685_rtc_bin2bcd(rtc, tm->tm_sec, RTC_SECS_BIN_MASK,
316 				     RTC_SECS_BCD_MASK);
317 	minutes = ds1685_rtc_bin2bcd(rtc, tm->tm_min, RTC_MINS_BIN_MASK,
318 				     RTC_MINS_BCD_MASK);
319 	hours   = ds1685_rtc_bin2bcd(rtc, tm->tm_hour, RTC_HRS_24_BIN_MASK,
320 				     RTC_HRS_24_BCD_MASK);
321 	wday    = ds1685_rtc_bin2bcd(rtc, (tm->tm_wday + 1), RTC_WDAY_MASK,
322 				     RTC_WDAY_MASK);
323 	mday    = ds1685_rtc_bin2bcd(rtc, tm->tm_mday, RTC_MDAY_BIN_MASK,
324 				     RTC_MDAY_BCD_MASK);
325 	month   = ds1685_rtc_bin2bcd(rtc, (tm->tm_mon + 1), RTC_MONTH_BIN_MASK,
326 				     RTC_MONTH_BCD_MASK);
327 	years   = ds1685_rtc_bin2bcd(rtc, (tm->tm_year % 100),
328 				     RTC_YEAR_BIN_MASK, RTC_YEAR_BCD_MASK);
329 	century = ds1685_rtc_bin2bcd(rtc, ((tm->tm_year + 1900) / 100),
330 				     RTC_CENTURY_MASK, RTC_CENTURY_MASK);
331 
332 	/*
333 	 * Perform Sanity Checks:
334 	 *   - Months: !> 12, Month Day != 0.
335 	 *   - Month Day !> Max days in current month.
336 	 *   - Hours !>= 24, Mins !>= 60, Secs !>= 60, & Weekday !> 7.
337 	 */
338 	if ((tm->tm_mon > 11) || (mday == 0))
339 		return -EDOM;
340 
341 	if (tm->tm_mday > rtc_month_days(tm->tm_mon, tm->tm_year))
342 		return -EDOM;
343 
344 	if ((tm->tm_hour >= 24) || (tm->tm_min >= 60) ||
345 	    (tm->tm_sec >= 60)  || (wday > 7))
346 		return -EDOM;
347 
348 	/*
349 	 * Set the data mode to use and store the time values in the
350 	 * RTC registers.
351 	 */
352 	ds1685_rtc_begin_data_access(rtc);
353 	ctrlb = rtc->read(rtc, RTC_CTRL_B);
354 	if (rtc->bcd_mode)
355 		ctrlb &= ~(RTC_CTRL_B_DM);
356 	else
357 		ctrlb |= RTC_CTRL_B_DM;
358 	rtc->write(rtc, RTC_CTRL_B, ctrlb);
359 	rtc->write(rtc, RTC_SECS, seconds);
360 	rtc->write(rtc, RTC_MINS, minutes);
361 	rtc->write(rtc, RTC_HRS, hours);
362 	rtc->write(rtc, RTC_WDAY, wday);
363 	rtc->write(rtc, RTC_MDAY, mday);
364 	rtc->write(rtc, RTC_MONTH, month);
365 	rtc->write(rtc, RTC_YEAR, years);
366 	rtc->write(rtc, RTC_CENTURY, century);
367 	ds1685_rtc_end_data_access(rtc);
368 
369 	return 0;
370 }
371 
372 /**
373  * ds1685_rtc_read_alarm - reads the alarm registers.
374  * @dev: pointer to device structure.
375  * @alrm: pointer to rtc_wkalrm structure.
376  *
377  * There are three primary alarm registers: seconds, minutes, and hours.
378  * A fourth alarm register for the month date is also available in bank1 for
379  * kickstart/wakeup features.  The DS1685/DS1687 manual states that a
380  * "don't care" value ranging from 0xc0 to 0xff may be written into one or
381  * more of the three alarm bytes to act as a wildcard value.  The fourth
382  * byte doesn't support a "don't care" value.
383  */
384 static int
385 ds1685_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
386 {
387 	struct ds1685_priv *rtc = dev_get_drvdata(dev);
388 	u8 seconds, minutes, hours, mday, ctrlb, ctrlc;
389 	int ret;
390 
391 	/* Fetch the alarm info from the RTC alarm registers. */
392 	ds1685_rtc_begin_data_access(rtc);
393 	seconds	= rtc->read(rtc, RTC_SECS_ALARM);
394 	minutes	= rtc->read(rtc, RTC_MINS_ALARM);
395 	hours	= rtc->read(rtc, RTC_HRS_ALARM);
396 	mday	= rtc->read(rtc, RTC_MDAY_ALARM);
397 	ctrlb	= rtc->read(rtc, RTC_CTRL_B);
398 	ctrlc	= rtc->read(rtc, RTC_CTRL_C);
399 	ds1685_rtc_end_data_access(rtc);
400 
401 	/* Check the month date for validity. */
402 	ret = ds1685_rtc_check_mday(rtc, mday);
403 	if (ret)
404 		return ret;
405 
406 	/*
407 	 * Check the three alarm bytes.
408 	 *
409 	 * The Linux RTC system doesn't support the "don't care" capability
410 	 * of this RTC chip.  We check for it anyways in case support is
411 	 * added in the future and only assign when we care.
412 	 */
413 	if (likely(seconds < 0xc0))
414 		alrm->time.tm_sec = ds1685_rtc_bcd2bin(rtc, seconds,
415 						       RTC_SECS_BCD_MASK,
416 						       RTC_SECS_BIN_MASK);
417 
418 	if (likely(minutes < 0xc0))
419 		alrm->time.tm_min = ds1685_rtc_bcd2bin(rtc, minutes,
420 						       RTC_MINS_BCD_MASK,
421 						       RTC_MINS_BIN_MASK);
422 
423 	if (likely(hours < 0xc0))
424 		alrm->time.tm_hour = ds1685_rtc_bcd2bin(rtc, hours,
425 							RTC_HRS_24_BCD_MASK,
426 							RTC_HRS_24_BIN_MASK);
427 
428 	/* Write the data to rtc_wkalrm. */
429 	alrm->time.tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK,
430 						RTC_MDAY_BIN_MASK);
431 	alrm->enabled = !!(ctrlb & RTC_CTRL_B_AIE);
432 	alrm->pending = !!(ctrlc & RTC_CTRL_C_AF);
433 
434 	return 0;
435 }
436 
437 /**
438  * ds1685_rtc_set_alarm - sets the alarm in registers.
439  * @dev: pointer to device structure.
440  * @alrm: pointer to rtc_wkalrm structure.
441  */
442 static int
443 ds1685_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
444 {
445 	struct ds1685_priv *rtc = dev_get_drvdata(dev);
446 	u8 ctrlb, seconds, minutes, hours, mday;
447 	int ret;
448 
449 	/* Fetch the alarm info and convert to BCD. */
450 	seconds	= ds1685_rtc_bin2bcd(rtc, alrm->time.tm_sec,
451 				     RTC_SECS_BIN_MASK,
452 				     RTC_SECS_BCD_MASK);
453 	minutes	= ds1685_rtc_bin2bcd(rtc, alrm->time.tm_min,
454 				     RTC_MINS_BIN_MASK,
455 				     RTC_MINS_BCD_MASK);
456 	hours	= ds1685_rtc_bin2bcd(rtc, alrm->time.tm_hour,
457 				     RTC_HRS_24_BIN_MASK,
458 				     RTC_HRS_24_BCD_MASK);
459 	mday	= ds1685_rtc_bin2bcd(rtc, alrm->time.tm_mday,
460 				     RTC_MDAY_BIN_MASK,
461 				     RTC_MDAY_BCD_MASK);
462 
463 	/* Check the month date for validity. */
464 	ret = ds1685_rtc_check_mday(rtc, mday);
465 	if (ret)
466 		return ret;
467 
468 	/*
469 	 * Check the three alarm bytes.
470 	 *
471 	 * The Linux RTC system doesn't support the "don't care" capability
472 	 * of this RTC chip because rtc_valid_tm tries to validate every
473 	 * field, and we only support four fields.  We put the support
474 	 * here anyways for the future.
475 	 */
476 	if (unlikely(seconds >= 0xc0))
477 		seconds = 0xff;
478 
479 	if (unlikely(minutes >= 0xc0))
480 		minutes = 0xff;
481 
482 	if (unlikely(hours >= 0xc0))
483 		hours = 0xff;
484 
485 	alrm->time.tm_mon	= -1;
486 	alrm->time.tm_year	= -1;
487 	alrm->time.tm_wday	= -1;
488 	alrm->time.tm_yday	= -1;
489 	alrm->time.tm_isdst	= -1;
490 
491 	/* Disable the alarm interrupt first. */
492 	ds1685_rtc_begin_data_access(rtc);
493 	ctrlb = rtc->read(rtc, RTC_CTRL_B);
494 	rtc->write(rtc, RTC_CTRL_B, (ctrlb & ~(RTC_CTRL_B_AIE)));
495 
496 	/* Read ctrlc to clear RTC_CTRL_C_AF. */
497 	rtc->read(rtc, RTC_CTRL_C);
498 
499 	/*
500 	 * Set the data mode to use and store the time values in the
501 	 * RTC registers.
502 	 */
503 	ctrlb = rtc->read(rtc, RTC_CTRL_B);
504 	if (rtc->bcd_mode)
505 		ctrlb &= ~(RTC_CTRL_B_DM);
506 	else
507 		ctrlb |= RTC_CTRL_B_DM;
508 	rtc->write(rtc, RTC_CTRL_B, ctrlb);
509 	rtc->write(rtc, RTC_SECS_ALARM, seconds);
510 	rtc->write(rtc, RTC_MINS_ALARM, minutes);
511 	rtc->write(rtc, RTC_HRS_ALARM, hours);
512 	rtc->write(rtc, RTC_MDAY_ALARM, mday);
513 
514 	/* Re-enable the alarm if needed. */
515 	if (alrm->enabled) {
516 		ctrlb = rtc->read(rtc, RTC_CTRL_B);
517 		ctrlb |= RTC_CTRL_B_AIE;
518 		rtc->write(rtc, RTC_CTRL_B, ctrlb);
519 	}
520 
521 	/* Done! */
522 	ds1685_rtc_end_data_access(rtc);
523 
524 	return 0;
525 }
526 /* ----------------------------------------------------------------------- */
527 
528 
529 /* ----------------------------------------------------------------------- */
530 /* /dev/rtcX Interface functions */
531 
532 /**
533  * ds1685_rtc_alarm_irq_enable - replaces ioctl() RTC_AIE on/off.
534  * @dev: pointer to device structure.
535  * @enabled: flag indicating whether to enable or disable.
536  */
537 static int
538 ds1685_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
539 {
540 	struct ds1685_priv *rtc = dev_get_drvdata(dev);
541 
542 	/* Flip the requisite interrupt-enable bit. */
543 	if (enabled)
544 		rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) |
545 					     RTC_CTRL_B_AIE));
546 	else
547 		rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) &
548 					     ~(RTC_CTRL_B_AIE)));
549 
550 	/* Read Control C to clear all the flag bits. */
551 	rtc->read(rtc, RTC_CTRL_C);
552 
553 	return 0;
554 }
555 /* ----------------------------------------------------------------------- */
556 
557 
558 /* ----------------------------------------------------------------------- */
559 /* IRQ handler */
560 
561 /**
562  * ds1685_rtc_extended_irq - take care of extended interrupts
563  * @rtc: pointer to the ds1685 rtc structure.
564  * @pdev: platform device pointer.
565  */
566 static void
567 ds1685_rtc_extended_irq(struct ds1685_priv *rtc, struct platform_device *pdev)
568 {
569 	u8 ctrl4a, ctrl4b;
570 
571 	ds1685_rtc_switch_to_bank1(rtc);
572 	ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
573 	ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
574 
575 	/*
576 	 * Check for a kickstart interrupt. With Vcc applied, this
577 	 * typically means that the power button was pressed, so we
578 	 * begin the shutdown sequence.
579 	 */
580 	if ((ctrl4b & RTC_CTRL_4B_KSE) && (ctrl4a & RTC_CTRL_4A_KF)) {
581 		/* Briefly disable kickstarts to debounce button presses. */
582 		rtc->write(rtc, RTC_EXT_CTRL_4B,
583 			   (rtc->read(rtc, RTC_EXT_CTRL_4B) &
584 			    ~(RTC_CTRL_4B_KSE)));
585 
586 		/* Clear the kickstart flag. */
587 		rtc->write(rtc, RTC_EXT_CTRL_4A,
588 			   (ctrl4a & ~(RTC_CTRL_4A_KF)));
589 
590 
591 		/*
592 		 * Sleep 500ms before re-enabling kickstarts.  This allows
593 		 * adequate time to avoid reading signal jitter as additional
594 		 * button presses.
595 		 */
596 		msleep(500);
597 		rtc->write(rtc, RTC_EXT_CTRL_4B,
598 			   (rtc->read(rtc, RTC_EXT_CTRL_4B) |
599 			    RTC_CTRL_4B_KSE));
600 
601 		/* Call the platform pre-poweroff function. Else, shutdown. */
602 		if (rtc->prepare_poweroff != NULL)
603 			rtc->prepare_poweroff();
604 		else
605 			ds1685_rtc_poweroff(pdev);
606 	}
607 
608 	/*
609 	 * Check for a wake-up interrupt.  With Vcc applied, this is
610 	 * essentially a second alarm interrupt, except it takes into
611 	 * account the 'date' register in bank1 in addition to the
612 	 * standard three alarm registers.
613 	 */
614 	if ((ctrl4b & RTC_CTRL_4B_WIE) && (ctrl4a & RTC_CTRL_4A_WF)) {
615 		rtc->write(rtc, RTC_EXT_CTRL_4A,
616 			   (ctrl4a & ~(RTC_CTRL_4A_WF)));
617 
618 		/* Call the platform wake_alarm function if defined. */
619 		if (rtc->wake_alarm != NULL)
620 			rtc->wake_alarm();
621 		else
622 			dev_warn(&pdev->dev,
623 				 "Wake Alarm IRQ just occurred!\n");
624 	}
625 
626 	/*
627 	 * Check for a ram-clear interrupt.  This happens if RIE=1 and RF=0
628 	 * when RCE=1 in 4B.  This clears all NVRAM bytes in bank0 by setting
629 	 * each byte to a logic 1.  This has no effect on any extended
630 	 * NV-SRAM that might be present, nor on the time/calendar/alarm
631 	 * registers.  After a ram-clear is completed, there is a minimum
632 	 * recovery time of ~150ms in which all reads/writes are locked out.
633 	 * NOTE: A ram-clear can still occur if RCE=1 and RIE=0.  We cannot
634 	 * catch this scenario.
635 	 */
636 	if ((ctrl4b & RTC_CTRL_4B_RIE) && (ctrl4a & RTC_CTRL_4A_RF)) {
637 		rtc->write(rtc, RTC_EXT_CTRL_4A,
638 			   (ctrl4a & ~(RTC_CTRL_4A_RF)));
639 		msleep(150);
640 
641 		/* Call the platform post_ram_clear function if defined. */
642 		if (rtc->post_ram_clear != NULL)
643 			rtc->post_ram_clear();
644 		else
645 			dev_warn(&pdev->dev,
646 				 "RAM-Clear IRQ just occurred!\n");
647 	}
648 	ds1685_rtc_switch_to_bank0(rtc);
649 }
650 
651 /**
652  * ds1685_rtc_irq_handler - IRQ handler.
653  * @irq: IRQ number.
654  * @dev_id: platform device pointer.
655  */
656 static irqreturn_t
657 ds1685_rtc_irq_handler(int irq, void *dev_id)
658 {
659 	struct platform_device *pdev = dev_id;
660 	struct ds1685_priv *rtc = platform_get_drvdata(pdev);
661 	u8 ctrlb, ctrlc;
662 	unsigned long events = 0;
663 	u8 num_irqs = 0;
664 
665 	/* Abort early if the device isn't ready yet (i.e., DEBUG_SHIRQ). */
666 	if (unlikely(!rtc))
667 		return IRQ_HANDLED;
668 
669 	rtc_lock(rtc->dev);
670 
671 	/* Ctrlb holds the interrupt-enable bits and ctrlc the flag bits. */
672 	ctrlb = rtc->read(rtc, RTC_CTRL_B);
673 	ctrlc = rtc->read(rtc, RTC_CTRL_C);
674 
675 	/* Is the IRQF bit set? */
676 	if (likely(ctrlc & RTC_CTRL_C_IRQF)) {
677 		/*
678 		 * We need to determine if it was one of the standard
679 		 * events: PF, AF, or UF.  If so, we handle them and
680 		 * update the RTC core.
681 		 */
682 		if (likely(ctrlc & RTC_CTRL_B_PAU_MASK)) {
683 			events = RTC_IRQF;
684 
685 			/* Check for a periodic interrupt. */
686 			if ((ctrlb & RTC_CTRL_B_PIE) &&
687 			    (ctrlc & RTC_CTRL_C_PF)) {
688 				events |= RTC_PF;
689 				num_irqs++;
690 			}
691 
692 			/* Check for an alarm interrupt. */
693 			if ((ctrlb & RTC_CTRL_B_AIE) &&
694 			    (ctrlc & RTC_CTRL_C_AF)) {
695 				events |= RTC_AF;
696 				num_irqs++;
697 			}
698 
699 			/* Check for an update interrupt. */
700 			if ((ctrlb & RTC_CTRL_B_UIE) &&
701 			    (ctrlc & RTC_CTRL_C_UF)) {
702 				events |= RTC_UF;
703 				num_irqs++;
704 			}
705 		} else {
706 			/*
707 			 * One of the "extended" interrupts was received that
708 			 * is not recognized by the RTC core.
709 			 */
710 			ds1685_rtc_extended_irq(rtc, pdev);
711 		}
712 	}
713 	rtc_update_irq(rtc->dev, num_irqs, events);
714 	rtc_unlock(rtc->dev);
715 
716 	return events ? IRQ_HANDLED : IRQ_NONE;
717 }
718 /* ----------------------------------------------------------------------- */
719 
720 
721 /* ----------------------------------------------------------------------- */
722 /* ProcFS interface */
723 
724 #ifdef CONFIG_PROC_FS
725 #define NUM_REGS	6	/* Num of control registers. */
726 #define NUM_BITS	8	/* Num bits per register. */
727 #define NUM_SPACES	4	/* Num spaces between each bit. */
728 
729 /*
730  * Periodic Interrupt Rates.
731  */
732 static const char *ds1685_rtc_pirq_rate[16] = {
733 	"none", "3.90625ms", "7.8125ms", "0.122070ms", "0.244141ms",
734 	"0.488281ms", "0.9765625ms", "1.953125ms", "3.90625ms", "7.8125ms",
735 	"15.625ms", "31.25ms", "62.5ms", "125ms", "250ms", "500ms"
736 };
737 
738 /*
739  * Square-Wave Output Frequencies.
740  */
741 static const char *ds1685_rtc_sqw_freq[16] = {
742 	"none", "256Hz", "128Hz", "8192Hz", "4096Hz", "2048Hz", "1024Hz",
743 	"512Hz", "256Hz", "128Hz", "64Hz", "32Hz", "16Hz", "8Hz", "4Hz", "2Hz"
744 };
745 
746 /**
747  * ds1685_rtc_proc - procfs access function.
748  * @dev: pointer to device structure.
749  * @seq: pointer to seq_file structure.
750  */
751 static int
752 ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
753 {
754 	struct ds1685_priv *rtc = dev_get_drvdata(dev);
755 	u8 ctrla, ctrlb, ctrld, ctrl4a, ctrl4b, ssn[8];
756 	char *model;
757 
758 	/* Read all the relevant data from the control registers. */
759 	ds1685_rtc_switch_to_bank1(rtc);
760 	ds1685_rtc_get_ssn(rtc, ssn);
761 	ctrla = rtc->read(rtc, RTC_CTRL_A);
762 	ctrlb = rtc->read(rtc, RTC_CTRL_B);
763 	ctrld = rtc->read(rtc, RTC_CTRL_D);
764 	ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
765 	ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
766 	ds1685_rtc_switch_to_bank0(rtc);
767 
768 	/* Determine the RTC model. */
769 	switch (ssn[0]) {
770 	case RTC_MODEL_DS1685:
771 		model = "DS1685/DS1687\0";
772 		break;
773 	case RTC_MODEL_DS1689:
774 		model = "DS1689/DS1693\0";
775 		break;
776 	case RTC_MODEL_DS17285:
777 		model = "DS17285/DS17287\0";
778 		break;
779 	case RTC_MODEL_DS17485:
780 		model = "DS17485/DS17487\0";
781 		break;
782 	case RTC_MODEL_DS17885:
783 		model = "DS17885/DS17887\0";
784 		break;
785 	default:
786 		model = "Unknown\0";
787 		break;
788 	}
789 
790 	/* Print out the information. */
791 	seq_printf(seq,
792 	   "Model\t\t: %s\n"
793 	   "Oscillator\t: %s\n"
794 	   "12/24hr\t\t: %s\n"
795 	   "DST\t\t: %s\n"
796 	   "Data mode\t: %s\n"
797 	   "Battery\t\t: %s\n"
798 	   "Aux batt\t: %s\n"
799 	   "Update IRQ\t: %s\n"
800 	   "Periodic IRQ\t: %s\n"
801 	   "Periodic Rate\t: %s\n"
802 	   "SQW Freq\t: %s\n"
803 	   "Serial #\t: %8phC\n",
804 	   model,
805 	   ((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"),
806 	   ((ctrlb & RTC_CTRL_B_2412) ? "24-hour" : "12-hour"),
807 	   ((ctrlb & RTC_CTRL_B_DSE) ? "enabled" : "disabled"),
808 	   ((ctrlb & RTC_CTRL_B_DM) ? "binary" : "BCD"),
809 	   ((ctrld & RTC_CTRL_D_VRT) ? "ok" : "exhausted or n/a"),
810 	   ((ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "exhausted or n/a"),
811 	   ((ctrlb & RTC_CTRL_B_UIE) ? "yes" : "no"),
812 	   ((ctrlb & RTC_CTRL_B_PIE) ? "yes" : "no"),
813 	   (!(ctrl4b & RTC_CTRL_4B_E32K) ?
814 	    ds1685_rtc_pirq_rate[(ctrla & RTC_CTRL_A_RS_MASK)] : "none"),
815 	   (!((ctrl4b & RTC_CTRL_4B_E32K)) ?
816 	    ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"),
817 	   ssn);
818 	return 0;
819 }
820 #else
821 #define ds1685_rtc_proc NULL
822 #endif /* CONFIG_PROC_FS */
823 /* ----------------------------------------------------------------------- */
824 
825 
826 /* ----------------------------------------------------------------------- */
827 /* RTC Class operations */
828 
829 static const struct rtc_class_ops
830 ds1685_rtc_ops = {
831 	.proc = ds1685_rtc_proc,
832 	.read_time = ds1685_rtc_read_time,
833 	.set_time = ds1685_rtc_set_time,
834 	.read_alarm = ds1685_rtc_read_alarm,
835 	.set_alarm = ds1685_rtc_set_alarm,
836 	.alarm_irq_enable = ds1685_rtc_alarm_irq_enable,
837 };
838 /* ----------------------------------------------------------------------- */
839 
840 static int ds1685_nvram_read(void *priv, unsigned int pos, void *val,
841 			     size_t size)
842 {
843 	struct ds1685_priv *rtc = priv;
844 	struct mutex *rtc_mutex = &rtc->dev->ops_lock;
845 	ssize_t count;
846 	u8 *buf = val;
847 	int err;
848 
849 	err = mutex_lock_interruptible(rtc_mutex);
850 	if (err)
851 		return err;
852 
853 	ds1685_rtc_switch_to_bank0(rtc);
854 
855 	/* Read NVRAM in time and bank0 registers. */
856 	for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0;
857 	     count++, size--) {
858 		if (count < NVRAM_SZ_TIME)
859 			*buf++ = rtc->read(rtc, (NVRAM_TIME_BASE + pos++));
860 		else
861 			*buf++ = rtc->read(rtc, (NVRAM_BANK0_BASE + pos++));
862 	}
863 
864 #ifndef CONFIG_RTC_DRV_DS1689
865 	if (size > 0) {
866 		ds1685_rtc_switch_to_bank1(rtc);
867 
868 #ifndef CONFIG_RTC_DRV_DS1685
869 		/* Enable burst-mode on DS17x85/DS17x87 */
870 		rtc->write(rtc, RTC_EXT_CTRL_4A,
871 			   (rtc->read(rtc, RTC_EXT_CTRL_4A) |
872 			    RTC_CTRL_4A_BME));
873 
874 		/* We need one write to RTC_BANK1_RAM_ADDR_LSB to start
875 		 * reading with burst-mode */
876 		rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB,
877 			   (pos - NVRAM_TOTAL_SZ_BANK0));
878 #endif
879 
880 		/* Read NVRAM in bank1 registers. */
881 		for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ;
882 		     count++, size--) {
883 #ifdef CONFIG_RTC_DRV_DS1685
884 			/* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR
885 			 * before each read. */
886 			rtc->write(rtc, RTC_BANK1_RAM_ADDR,
887 				   (pos - NVRAM_TOTAL_SZ_BANK0));
888 #endif
889 			*buf++ = rtc->read(rtc, RTC_BANK1_RAM_DATA_PORT);
890 			pos++;
891 		}
892 
893 #ifndef CONFIG_RTC_DRV_DS1685
894 		/* Disable burst-mode on DS17x85/DS17x87 */
895 		rtc->write(rtc, RTC_EXT_CTRL_4A,
896 			   (rtc->read(rtc, RTC_EXT_CTRL_4A) &
897 			    ~(RTC_CTRL_4A_BME)));
898 #endif
899 		ds1685_rtc_switch_to_bank0(rtc);
900 	}
901 #endif /* !CONFIG_RTC_DRV_DS1689 */
902 	mutex_unlock(rtc_mutex);
903 
904 	return 0;
905 }
906 
907 static int ds1685_nvram_write(void *priv, unsigned int pos, void *val,
908 			      size_t size)
909 {
910 	struct ds1685_priv *rtc = priv;
911 	struct mutex *rtc_mutex = &rtc->dev->ops_lock;
912 	ssize_t count;
913 	u8 *buf = val;
914 	int err;
915 
916 	err = mutex_lock_interruptible(rtc_mutex);
917 	if (err)
918 		return err;
919 
920 	ds1685_rtc_switch_to_bank0(rtc);
921 
922 	/* Write NVRAM in time and bank0 registers. */
923 	for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0;
924 	     count++, size--)
925 		if (count < NVRAM_SZ_TIME)
926 			rtc->write(rtc, (NVRAM_TIME_BASE + pos++),
927 				   *buf++);
928 		else
929 			rtc->write(rtc, (NVRAM_BANK0_BASE), *buf++);
930 
931 #ifndef CONFIG_RTC_DRV_DS1689
932 	if (size > 0) {
933 		ds1685_rtc_switch_to_bank1(rtc);
934 
935 #ifndef CONFIG_RTC_DRV_DS1685
936 		/* Enable burst-mode on DS17x85/DS17x87 */
937 		rtc->write(rtc, RTC_EXT_CTRL_4A,
938 			   (rtc->read(rtc, RTC_EXT_CTRL_4A) |
939 			    RTC_CTRL_4A_BME));
940 
941 		/* We need one write to RTC_BANK1_RAM_ADDR_LSB to start
942 		 * writing with burst-mode */
943 		rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB,
944 			   (pos - NVRAM_TOTAL_SZ_BANK0));
945 #endif
946 
947 		/* Write NVRAM in bank1 registers. */
948 		for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ;
949 		     count++, size--) {
950 #ifdef CONFIG_RTC_DRV_DS1685
951 			/* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR
952 			 * before each read. */
953 			rtc->write(rtc, RTC_BANK1_RAM_ADDR,
954 				   (pos - NVRAM_TOTAL_SZ_BANK0));
955 #endif
956 			rtc->write(rtc, RTC_BANK1_RAM_DATA_PORT, *buf++);
957 			pos++;
958 		}
959 
960 #ifndef CONFIG_RTC_DRV_DS1685
961 		/* Disable burst-mode on DS17x85/DS17x87 */
962 		rtc->write(rtc, RTC_EXT_CTRL_4A,
963 			   (rtc->read(rtc, RTC_EXT_CTRL_4A) &
964 			    ~(RTC_CTRL_4A_BME)));
965 #endif
966 		ds1685_rtc_switch_to_bank0(rtc);
967 	}
968 #endif /* !CONFIG_RTC_DRV_DS1689 */
969 	mutex_unlock(rtc_mutex);
970 
971 	return 0;
972 }
973 
974 /* ----------------------------------------------------------------------- */
975 /* SysFS interface */
976 
977 /**
978  * ds1685_rtc_sysfs_battery_show - sysfs file for main battery status.
979  * @dev: pointer to device structure.
980  * @attr: pointer to device_attribute structure.
981  * @buf: pointer to char array to hold the output.
982  */
983 static ssize_t
984 ds1685_rtc_sysfs_battery_show(struct device *dev,
985 			      struct device_attribute *attr, char *buf)
986 {
987 	struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
988 	u8 ctrld;
989 
990 	ctrld = rtc->read(rtc, RTC_CTRL_D);
991 
992 	return sprintf(buf, "%s\n",
993 			(ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A");
994 }
995 static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL);
996 
997 /**
998  * ds1685_rtc_sysfs_auxbatt_show - sysfs file for aux battery status.
999  * @dev: pointer to device structure.
1000  * @attr: pointer to device_attribute structure.
1001  * @buf: pointer to char array to hold the output.
1002  */
1003 static ssize_t
1004 ds1685_rtc_sysfs_auxbatt_show(struct device *dev,
1005 			      struct device_attribute *attr, char *buf)
1006 {
1007 	struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
1008 	u8 ctrl4a;
1009 
1010 	ds1685_rtc_switch_to_bank1(rtc);
1011 	ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
1012 	ds1685_rtc_switch_to_bank0(rtc);
1013 
1014 	return sprintf(buf, "%s\n",
1015 			(ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A");
1016 }
1017 static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL);
1018 
1019 /**
1020  * ds1685_rtc_sysfs_serial_show - sysfs file for silicon serial number.
1021  * @dev: pointer to device structure.
1022  * @attr: pointer to device_attribute structure.
1023  * @buf: pointer to char array to hold the output.
1024  */
1025 static ssize_t
1026 ds1685_rtc_sysfs_serial_show(struct device *dev,
1027 			     struct device_attribute *attr, char *buf)
1028 {
1029 	struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
1030 	u8 ssn[8];
1031 
1032 	ds1685_rtc_switch_to_bank1(rtc);
1033 	ds1685_rtc_get_ssn(rtc, ssn);
1034 	ds1685_rtc_switch_to_bank0(rtc);
1035 
1036 	return sprintf(buf, "%8phC\n", ssn);
1037 }
1038 static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL);
1039 
1040 /*
1041  * struct ds1685_rtc_sysfs_misc_attrs - list for misc RTC features.
1042  */
1043 static struct attribute*
1044 ds1685_rtc_sysfs_misc_attrs[] = {
1045 	&dev_attr_battery.attr,
1046 	&dev_attr_auxbatt.attr,
1047 	&dev_attr_serial.attr,
1048 	NULL,
1049 };
1050 
1051 /*
1052  * struct ds1685_rtc_sysfs_misc_grp - attr group for misc RTC features.
1053  */
1054 static const struct attribute_group
1055 ds1685_rtc_sysfs_misc_grp = {
1056 	.name = "misc",
1057 	.attrs = ds1685_rtc_sysfs_misc_attrs,
1058 };
1059 
1060 /* ----------------------------------------------------------------------- */
1061 /* Driver Probe/Removal */
1062 
1063 /**
1064  * ds1685_rtc_probe - initializes rtc driver.
1065  * @pdev: pointer to platform_device structure.
1066  */
1067 static int
1068 ds1685_rtc_probe(struct platform_device *pdev)
1069 {
1070 	struct rtc_device *rtc_dev;
1071 	struct ds1685_priv *rtc;
1072 	struct ds1685_rtc_platform_data *pdata;
1073 	u8 ctrla, ctrlb, hours;
1074 	unsigned char am_pm;
1075 	int ret = 0;
1076 	struct nvmem_config nvmem_cfg = {
1077 		.name = "ds1685_nvram",
1078 		.size = NVRAM_TOTAL_SZ,
1079 		.reg_read = ds1685_nvram_read,
1080 		.reg_write = ds1685_nvram_write,
1081 	};
1082 
1083 	/* Get the platform data. */
1084 	pdata = (struct ds1685_rtc_platform_data *) pdev->dev.platform_data;
1085 	if (!pdata)
1086 		return -ENODEV;
1087 
1088 	/* Allocate memory for the rtc device. */
1089 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
1090 	if (!rtc)
1091 		return -ENOMEM;
1092 
1093 	/* Setup resources and access functions */
1094 	switch (pdata->access_type) {
1095 	case ds1685_reg_direct:
1096 		rtc->regs = devm_platform_ioremap_resource(pdev, 0);
1097 		if (IS_ERR(rtc->regs))
1098 			return PTR_ERR(rtc->regs);
1099 		rtc->read = ds1685_read;
1100 		rtc->write = ds1685_write;
1101 		break;
1102 	case ds1685_reg_indirect:
1103 		rtc->regs = devm_platform_ioremap_resource(pdev, 0);
1104 		if (IS_ERR(rtc->regs))
1105 			return PTR_ERR(rtc->regs);
1106 		rtc->data = devm_platform_ioremap_resource(pdev, 1);
1107 		if (IS_ERR(rtc->data))
1108 			return PTR_ERR(rtc->data);
1109 		rtc->read = ds1685_indirect_read;
1110 		rtc->write = ds1685_indirect_write;
1111 		break;
1112 	}
1113 
1114 	if (!rtc->read || !rtc->write)
1115 		return -ENXIO;
1116 
1117 	/* Get the register step size. */
1118 	if (pdata->regstep > 0)
1119 		rtc->regstep = pdata->regstep;
1120 	else
1121 		rtc->regstep = 1;
1122 
1123 	/* Platform pre-shutdown function, if defined. */
1124 	if (pdata->plat_prepare_poweroff)
1125 		rtc->prepare_poweroff = pdata->plat_prepare_poweroff;
1126 
1127 	/* Platform wake_alarm function, if defined. */
1128 	if (pdata->plat_wake_alarm)
1129 		rtc->wake_alarm = pdata->plat_wake_alarm;
1130 
1131 	/* Platform post_ram_clear function, if defined. */
1132 	if (pdata->plat_post_ram_clear)
1133 		rtc->post_ram_clear = pdata->plat_post_ram_clear;
1134 
1135 	/* set the driver data. */
1136 	platform_set_drvdata(pdev, rtc);
1137 
1138 	/* Turn the oscillator on if is not already on (DV1 = 1). */
1139 	ctrla = rtc->read(rtc, RTC_CTRL_A);
1140 	if (!(ctrla & RTC_CTRL_A_DV1))
1141 		ctrla |= RTC_CTRL_A_DV1;
1142 
1143 	/* Enable the countdown chain (DV2 = 0) */
1144 	ctrla &= ~(RTC_CTRL_A_DV2);
1145 
1146 	/* Clear RS3-RS0 in Control A. */
1147 	ctrla &= ~(RTC_CTRL_A_RS_MASK);
1148 
1149 	/*
1150 	 * All done with Control A.  Switch to Bank 1 for the remainder of
1151 	 * the RTC setup so we have access to the extended functions.
1152 	 */
1153 	ctrla |= RTC_CTRL_A_DV0;
1154 	rtc->write(rtc, RTC_CTRL_A, ctrla);
1155 
1156 	/* Default to 32768kHz output. */
1157 	rtc->write(rtc, RTC_EXT_CTRL_4B,
1158 		   (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_E32K));
1159 
1160 	/* Set the SET bit in Control B so we can do some housekeeping. */
1161 	rtc->write(rtc, RTC_CTRL_B,
1162 		   (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET));
1163 
1164 	/* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */
1165 	while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR)
1166 		cpu_relax();
1167 
1168 	/*
1169 	 * If the platform supports BCD mode, then set DM=0 in Control B.
1170 	 * Otherwise, set DM=1 for BIN mode.
1171 	 */
1172 	ctrlb = rtc->read(rtc, RTC_CTRL_B);
1173 	if (pdata->bcd_mode)
1174 		ctrlb &= ~(RTC_CTRL_B_DM);
1175 	else
1176 		ctrlb |= RTC_CTRL_B_DM;
1177 	rtc->bcd_mode = pdata->bcd_mode;
1178 
1179 	/*
1180 	 * Disable Daylight Savings Time (DSE = 0).
1181 	 * The RTC has hardcoded timezone information that is rendered
1182 	 * obselete.  We'll let the OS deal with DST settings instead.
1183 	 */
1184 	if (ctrlb & RTC_CTRL_B_DSE)
1185 		ctrlb &= ~(RTC_CTRL_B_DSE);
1186 
1187 	/* Force 24-hour mode (2412 = 1). */
1188 	if (!(ctrlb & RTC_CTRL_B_2412)) {
1189 		/* Reinitialize the time hours. */
1190 		hours = rtc->read(rtc, RTC_HRS);
1191 		am_pm = hours & RTC_HRS_AMPM_MASK;
1192 		hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK,
1193 					   RTC_HRS_12_BIN_MASK);
1194 		hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours));
1195 
1196 		/* Enable 24-hour mode. */
1197 		ctrlb |= RTC_CTRL_B_2412;
1198 
1199 		/* Write back to Control B, including DM & DSE bits. */
1200 		rtc->write(rtc, RTC_CTRL_B, ctrlb);
1201 
1202 		/* Write the time hours back. */
1203 		rtc->write(rtc, RTC_HRS,
1204 			   ds1685_rtc_bin2bcd(rtc, hours,
1205 					      RTC_HRS_24_BIN_MASK,
1206 					      RTC_HRS_24_BCD_MASK));
1207 
1208 		/* Reinitialize the alarm hours. */
1209 		hours = rtc->read(rtc, RTC_HRS_ALARM);
1210 		am_pm = hours & RTC_HRS_AMPM_MASK;
1211 		hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK,
1212 					   RTC_HRS_12_BIN_MASK);
1213 		hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours));
1214 
1215 		/* Write the alarm hours back. */
1216 		rtc->write(rtc, RTC_HRS_ALARM,
1217 			   ds1685_rtc_bin2bcd(rtc, hours,
1218 					      RTC_HRS_24_BIN_MASK,
1219 					      RTC_HRS_24_BCD_MASK));
1220 	} else {
1221 		/* 24-hour mode is already set, so write Control B back. */
1222 		rtc->write(rtc, RTC_CTRL_B, ctrlb);
1223 	}
1224 
1225 	/* Unset the SET bit in Control B so the RTC can update. */
1226 	rtc->write(rtc, RTC_CTRL_B,
1227 		   (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET)));
1228 
1229 	/* Check the main battery. */
1230 	if (!(rtc->read(rtc, RTC_CTRL_D) & RTC_CTRL_D_VRT))
1231 		dev_warn(&pdev->dev,
1232 			 "Main battery is exhausted! RTC may be invalid!\n");
1233 
1234 	/* Check the auxillary battery.  It is optional. */
1235 	if (!(rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_VRT2))
1236 		dev_warn(&pdev->dev,
1237 			 "Aux battery is exhausted or not available.\n");
1238 
1239 	/* Read Ctrl B and clear PIE/AIE/UIE. */
1240 	rtc->write(rtc, RTC_CTRL_B,
1241 		   (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_PAU_MASK)));
1242 
1243 	/* Reading Ctrl C auto-clears PF/AF/UF. */
1244 	rtc->read(rtc, RTC_CTRL_C);
1245 
1246 	/* Read Ctrl 4B and clear RIE/WIE/KSE. */
1247 	rtc->write(rtc, RTC_EXT_CTRL_4B,
1248 		   (rtc->read(rtc, RTC_EXT_CTRL_4B) & ~(RTC_CTRL_4B_RWK_MASK)));
1249 
1250 	/* Clear RF/WF/KF in Ctrl 4A. */
1251 	rtc->write(rtc, RTC_EXT_CTRL_4A,
1252 		   (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_RWK_MASK)));
1253 
1254 	/*
1255 	 * Re-enable KSE to handle power button events.  We do not enable
1256 	 * WIE or RIE by default.
1257 	 */
1258 	rtc->write(rtc, RTC_EXT_CTRL_4B,
1259 		   (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_KSE));
1260 
1261 	rtc_dev = devm_rtc_allocate_device(&pdev->dev);
1262 	if (IS_ERR(rtc_dev))
1263 		return PTR_ERR(rtc_dev);
1264 
1265 	rtc_dev->ops = &ds1685_rtc_ops;
1266 
1267 	/* Century bit is useless because leap year fails in 1900 and 2100 */
1268 	rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
1269 	rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
1270 
1271 	/* Maximum periodic rate is 8192Hz (0.122070ms). */
1272 	rtc_dev->max_user_freq = RTC_MAX_USER_FREQ;
1273 
1274 	/* See if the platform doesn't support UIE. */
1275 	if (pdata->uie_unsupported)
1276 		clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc_dev->features);
1277 
1278 	rtc->dev = rtc_dev;
1279 
1280 	/*
1281 	 * Fetch the IRQ and setup the interrupt handler.
1282 	 *
1283 	 * Not all platforms have the IRQF pin tied to something.  If not, the
1284 	 * RTC will still set the *IE / *F flags and raise IRQF in ctrlc, but
1285 	 * there won't be an automatic way of notifying the kernel about it,
1286 	 * unless ctrlc is explicitly polled.
1287 	 */
1288 	rtc->irq_num = platform_get_irq(pdev, 0);
1289 	if (rtc->irq_num <= 0) {
1290 		clear_bit(RTC_FEATURE_ALARM, rtc_dev->features);
1291 	} else {
1292 		/* Request an IRQ. */
1293 		ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_num,
1294 				       NULL, ds1685_rtc_irq_handler,
1295 				       IRQF_SHARED | IRQF_ONESHOT,
1296 				       pdev->name, pdev);
1297 
1298 		/* Check to see if something came back. */
1299 		if (unlikely(ret)) {
1300 			dev_warn(&pdev->dev,
1301 				 "RTC interrupt not available\n");
1302 			rtc->irq_num = 0;
1303 		}
1304 	}
1305 
1306 	/* Setup complete. */
1307 	ds1685_rtc_switch_to_bank0(rtc);
1308 
1309 	ret = rtc_add_group(rtc_dev, &ds1685_rtc_sysfs_misc_grp);
1310 	if (ret)
1311 		return ret;
1312 
1313 	nvmem_cfg.priv = rtc;
1314 	ret = devm_rtc_nvmem_register(rtc_dev, &nvmem_cfg);
1315 	if (ret)
1316 		return ret;
1317 
1318 	return devm_rtc_register_device(rtc_dev);
1319 }
1320 
1321 /**
1322  * ds1685_rtc_remove - removes rtc driver.
1323  * @pdev: pointer to platform_device structure.
1324  */
1325 static int
1326 ds1685_rtc_remove(struct platform_device *pdev)
1327 {
1328 	struct ds1685_priv *rtc = platform_get_drvdata(pdev);
1329 
1330 	/* Read Ctrl B and clear PIE/AIE/UIE. */
1331 	rtc->write(rtc, RTC_CTRL_B,
1332 		   (rtc->read(rtc, RTC_CTRL_B) &
1333 		    ~(RTC_CTRL_B_PAU_MASK)));
1334 
1335 	/* Reading Ctrl C auto-clears PF/AF/UF. */
1336 	rtc->read(rtc, RTC_CTRL_C);
1337 
1338 	/* Read Ctrl 4B and clear RIE/WIE/KSE. */
1339 	rtc->write(rtc, RTC_EXT_CTRL_4B,
1340 		   (rtc->read(rtc, RTC_EXT_CTRL_4B) &
1341 		    ~(RTC_CTRL_4B_RWK_MASK)));
1342 
1343 	/* Manually clear RF/WF/KF in Ctrl 4A. */
1344 	rtc->write(rtc, RTC_EXT_CTRL_4A,
1345 		   (rtc->read(rtc, RTC_EXT_CTRL_4A) &
1346 		    ~(RTC_CTRL_4A_RWK_MASK)));
1347 
1348 	return 0;
1349 }
1350 
1351 /*
1352  * ds1685_rtc_driver - rtc driver properties.
1353  */
1354 static struct platform_driver ds1685_rtc_driver = {
1355 	.driver		= {
1356 		.name	= "rtc-ds1685",
1357 	},
1358 	.probe		= ds1685_rtc_probe,
1359 	.remove		= ds1685_rtc_remove,
1360 };
1361 module_platform_driver(ds1685_rtc_driver);
1362 /* ----------------------------------------------------------------------- */
1363 
1364 
1365 /* ----------------------------------------------------------------------- */
1366 /* Poweroff function */
1367 
1368 /**
1369  * ds1685_rtc_poweroff - uses the RTC chip to power the system off.
1370  * @pdev: pointer to platform_device structure.
1371  */
1372 void __noreturn
1373 ds1685_rtc_poweroff(struct platform_device *pdev)
1374 {
1375 	u8 ctrla, ctrl4a, ctrl4b;
1376 	struct ds1685_priv *rtc;
1377 
1378 	/* Check for valid RTC data, else, spin forever. */
1379 	if (unlikely(!pdev)) {
1380 		pr_emerg("platform device data not available, spinning forever ...\n");
1381 		while(1);
1382 		unreachable();
1383 	} else {
1384 		/* Get the rtc data. */
1385 		rtc = platform_get_drvdata(pdev);
1386 
1387 		/*
1388 		 * Disable our IRQ.  We're powering down, so we're not
1389 		 * going to worry about cleaning up.  Most of that should
1390 		 * have been taken care of by the shutdown scripts and this
1391 		 * is the final function call.
1392 		 */
1393 		if (rtc->irq_num)
1394 			disable_irq_nosync(rtc->irq_num);
1395 
1396 		/* Oscillator must be on and the countdown chain enabled. */
1397 		ctrla = rtc->read(rtc, RTC_CTRL_A);
1398 		ctrla |= RTC_CTRL_A_DV1;
1399 		ctrla &= ~(RTC_CTRL_A_DV2);
1400 		rtc->write(rtc, RTC_CTRL_A, ctrla);
1401 
1402 		/*
1403 		 * Read Control 4A and check the status of the auxillary
1404 		 * battery.  This must be present and working (VRT2 = 1)
1405 		 * for wakeup and kickstart functionality to be useful.
1406 		 */
1407 		ds1685_rtc_switch_to_bank1(rtc);
1408 		ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
1409 		if (ctrl4a & RTC_CTRL_4A_VRT2) {
1410 			/* Clear all of the interrupt flags on Control 4A. */
1411 			ctrl4a &= ~(RTC_CTRL_4A_RWK_MASK);
1412 			rtc->write(rtc, RTC_EXT_CTRL_4A, ctrl4a);
1413 
1414 			/*
1415 			 * The auxillary battery is present and working.
1416 			 * Enable extended functions (ABE=1), enable
1417 			 * wake-up (WIE=1), and enable kickstart (KSE=1)
1418 			 * in Control 4B.
1419 			 */
1420 			ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
1421 			ctrl4b |= (RTC_CTRL_4B_ABE | RTC_CTRL_4B_WIE |
1422 				   RTC_CTRL_4B_KSE);
1423 			rtc->write(rtc, RTC_EXT_CTRL_4B, ctrl4b);
1424 		}
1425 
1426 		/* Set PAB to 1 in Control 4A to power the system down. */
1427 		dev_warn(&pdev->dev, "Powerdown.\n");
1428 		msleep(20);
1429 		rtc->write(rtc, RTC_EXT_CTRL_4A,
1430 			   (ctrl4a | RTC_CTRL_4A_PAB));
1431 
1432 		/* Spin ... we do not switch back to bank0. */
1433 		while(1);
1434 		unreachable();
1435 	}
1436 }
1437 EXPORT_SYMBOL(ds1685_rtc_poweroff);
1438 /* ----------------------------------------------------------------------- */
1439 
1440 
1441 MODULE_AUTHOR("Joshua Kinard <kumba@gentoo.org>");
1442 MODULE_AUTHOR("Matthias Fuchs <matthias.fuchs@esd-electronics.com>");
1443 MODULE_DESCRIPTION("Dallas/Maxim DS1685/DS1687-series RTC driver");
1444 MODULE_LICENSE("GPL");
1445 MODULE_ALIAS("platform:rtc-ds1685");
1446