1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * An rtc driver for the Dallas DS1511 4 * 5 * Copyright (C) 2006 Atsushi Nemoto <anemo@mba.ocn.ne.jp> 6 * Copyright (C) 2007 Andrew Sharp <andy.sharp@lsi.com> 7 * 8 * Real time clock driver for the Dallas 1511 chip, which also 9 * contains a watchdog timer. There is a tiny amount of code that 10 * platform code could use to mess with the watchdog device a little 11 * bit, but not a full watchdog driver. 12 */ 13 14 #include <linux/bcd.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/gfp.h> 18 #include <linux/delay.h> 19 #include <linux/interrupt.h> 20 #include <linux/rtc.h> 21 #include <linux/platform_device.h> 22 #include <linux/io.h> 23 #include <linux/module.h> 24 25 enum ds1511reg { 26 DS1511_SEC = 0x0, 27 DS1511_MIN = 0x1, 28 DS1511_HOUR = 0x2, 29 DS1511_DOW = 0x3, 30 DS1511_DOM = 0x4, 31 DS1511_MONTH = 0x5, 32 DS1511_YEAR = 0x6, 33 DS1511_CENTURY = 0x7, 34 DS1511_AM1_SEC = 0x8, 35 DS1511_AM2_MIN = 0x9, 36 DS1511_AM3_HOUR = 0xa, 37 DS1511_AM4_DATE = 0xb, 38 DS1511_WD_MSEC = 0xc, 39 DS1511_WD_SEC = 0xd, 40 DS1511_CONTROL_A = 0xe, 41 DS1511_CONTROL_B = 0xf, 42 DS1511_RAMADDR_LSB = 0x10, 43 DS1511_RAMDATA = 0x13 44 }; 45 46 #define DS1511_BLF1 0x80 47 #define DS1511_BLF2 0x40 48 #define DS1511_PRS 0x20 49 #define DS1511_PAB 0x10 50 #define DS1511_TDF 0x08 51 #define DS1511_KSF 0x04 52 #define DS1511_WDF 0x02 53 #define DS1511_IRQF 0x01 54 #define DS1511_TE 0x80 55 #define DS1511_CS 0x40 56 #define DS1511_BME 0x20 57 #define DS1511_TPE 0x10 58 #define DS1511_TIE 0x08 59 #define DS1511_KIE 0x04 60 #define DS1511_WDE 0x02 61 #define DS1511_WDS 0x01 62 #define DS1511_RAM_MAX 0x100 63 64 #define RTC_CMD DS1511_CONTROL_B 65 #define RTC_CMD1 DS1511_CONTROL_A 66 67 #define RTC_ALARM_SEC DS1511_AM1_SEC 68 #define RTC_ALARM_MIN DS1511_AM2_MIN 69 #define RTC_ALARM_HOUR DS1511_AM3_HOUR 70 #define RTC_ALARM_DATE DS1511_AM4_DATE 71 72 #define RTC_SEC DS1511_SEC 73 #define RTC_MIN DS1511_MIN 74 #define RTC_HOUR DS1511_HOUR 75 #define RTC_DOW DS1511_DOW 76 #define RTC_DOM DS1511_DOM 77 #define RTC_MON DS1511_MONTH 78 #define RTC_YEAR DS1511_YEAR 79 #define RTC_CENTURY DS1511_CENTURY 80 81 #define RTC_TIE DS1511_TIE 82 #define RTC_TE DS1511_TE 83 84 struct rtc_plat_data { 85 struct rtc_device *rtc; 86 void __iomem *ioaddr; /* virtual base address */ 87 int irq; 88 unsigned int irqen; 89 int alrm_sec; 90 int alrm_min; 91 int alrm_hour; 92 int alrm_mday; 93 spinlock_t lock; 94 }; 95 96 static DEFINE_SPINLOCK(ds1511_lock); 97 98 static __iomem char *ds1511_base; 99 static u32 reg_spacing = 1; 100 101 static noinline void 102 rtc_write(uint8_t val, uint32_t reg) 103 { 104 writeb(val, ds1511_base + (reg * reg_spacing)); 105 } 106 107 static noinline uint8_t 108 rtc_read(enum ds1511reg reg) 109 { 110 return readb(ds1511_base + (reg * reg_spacing)); 111 } 112 113 static inline void 114 rtc_disable_update(void) 115 { 116 rtc_write((rtc_read(RTC_CMD) & ~RTC_TE), RTC_CMD); 117 } 118 119 static void 120 rtc_enable_update(void) 121 { 122 rtc_write((rtc_read(RTC_CMD) | RTC_TE), RTC_CMD); 123 } 124 125 /* 126 * #define DS1511_WDOG_RESET_SUPPORT 127 * 128 * Uncomment this if you want to use these routines in 129 * some platform code. 130 */ 131 #ifdef DS1511_WDOG_RESET_SUPPORT 132 /* 133 * just enough code to set the watchdog timer so that it 134 * will reboot the system 135 */ 136 void 137 ds1511_wdog_set(unsigned long deciseconds) 138 { 139 /* 140 * the wdog timer can take 99.99 seconds 141 */ 142 deciseconds %= 10000; 143 /* 144 * set the wdog values in the wdog registers 145 */ 146 rtc_write(bin2bcd(deciseconds % 100), DS1511_WD_MSEC); 147 rtc_write(bin2bcd(deciseconds / 100), DS1511_WD_SEC); 148 /* 149 * set wdog enable and wdog 'steering' bit to issue a reset 150 */ 151 rtc_write(rtc_read(RTC_CMD) | DS1511_WDE | DS1511_WDS, RTC_CMD); 152 } 153 154 void 155 ds1511_wdog_disable(void) 156 { 157 /* 158 * clear wdog enable and wdog 'steering' bits 159 */ 160 rtc_write(rtc_read(RTC_CMD) & ~(DS1511_WDE | DS1511_WDS), RTC_CMD); 161 /* 162 * clear the wdog counter 163 */ 164 rtc_write(0, DS1511_WD_MSEC); 165 rtc_write(0, DS1511_WD_SEC); 166 } 167 #endif 168 169 /* 170 * set the rtc chip's idea of the time. 171 * stupidly, some callers call with year unmolested; 172 * and some call with year = year - 1900. thanks. 173 */ 174 static int ds1511_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm) 175 { 176 u8 mon, day, dow, hrs, min, sec, yrs, cen; 177 unsigned long flags; 178 179 /* 180 * won't have to change this for a while 181 */ 182 if (rtc_tm->tm_year < 1900) 183 rtc_tm->tm_year += 1900; 184 185 if (rtc_tm->tm_year < 1970) 186 return -EINVAL; 187 188 yrs = rtc_tm->tm_year % 100; 189 cen = rtc_tm->tm_year / 100; 190 mon = rtc_tm->tm_mon + 1; /* tm_mon starts at zero */ 191 day = rtc_tm->tm_mday; 192 dow = rtc_tm->tm_wday & 0x7; /* automatic BCD */ 193 hrs = rtc_tm->tm_hour; 194 min = rtc_tm->tm_min; 195 sec = rtc_tm->tm_sec; 196 197 if ((mon > 12) || (day == 0)) 198 return -EINVAL; 199 200 if (day > rtc_month_days(rtc_tm->tm_mon, rtc_tm->tm_year)) 201 return -EINVAL; 202 203 if ((hrs >= 24) || (min >= 60) || (sec >= 60)) 204 return -EINVAL; 205 206 /* 207 * each register is a different number of valid bits 208 */ 209 sec = bin2bcd(sec) & 0x7f; 210 min = bin2bcd(min) & 0x7f; 211 hrs = bin2bcd(hrs) & 0x3f; 212 day = bin2bcd(day) & 0x3f; 213 mon = bin2bcd(mon) & 0x1f; 214 yrs = bin2bcd(yrs) & 0xff; 215 cen = bin2bcd(cen) & 0xff; 216 217 spin_lock_irqsave(&ds1511_lock, flags); 218 rtc_disable_update(); 219 rtc_write(cen, RTC_CENTURY); 220 rtc_write(yrs, RTC_YEAR); 221 rtc_write((rtc_read(RTC_MON) & 0xe0) | mon, RTC_MON); 222 rtc_write(day, RTC_DOM); 223 rtc_write(hrs, RTC_HOUR); 224 rtc_write(min, RTC_MIN); 225 rtc_write(sec, RTC_SEC); 226 rtc_write(dow, RTC_DOW); 227 rtc_enable_update(); 228 spin_unlock_irqrestore(&ds1511_lock, flags); 229 230 return 0; 231 } 232 233 static int ds1511_rtc_read_time(struct device *dev, struct rtc_time *rtc_tm) 234 { 235 unsigned int century; 236 unsigned long flags; 237 238 spin_lock_irqsave(&ds1511_lock, flags); 239 rtc_disable_update(); 240 241 rtc_tm->tm_sec = rtc_read(RTC_SEC) & 0x7f; 242 rtc_tm->tm_min = rtc_read(RTC_MIN) & 0x7f; 243 rtc_tm->tm_hour = rtc_read(RTC_HOUR) & 0x3f; 244 rtc_tm->tm_mday = rtc_read(RTC_DOM) & 0x3f; 245 rtc_tm->tm_wday = rtc_read(RTC_DOW) & 0x7; 246 rtc_tm->tm_mon = rtc_read(RTC_MON) & 0x1f; 247 rtc_tm->tm_year = rtc_read(RTC_YEAR) & 0x7f; 248 century = rtc_read(RTC_CENTURY); 249 250 rtc_enable_update(); 251 spin_unlock_irqrestore(&ds1511_lock, flags); 252 253 rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec); 254 rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min); 255 rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour); 256 rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday); 257 rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday); 258 rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon); 259 rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year); 260 century = bcd2bin(century) * 100; 261 262 /* 263 * Account for differences between how the RTC uses the values 264 * and how they are defined in a struct rtc_time; 265 */ 266 century += rtc_tm->tm_year; 267 rtc_tm->tm_year = century - 1900; 268 269 rtc_tm->tm_mon--; 270 271 return 0; 272 } 273 274 /* 275 * write the alarm register settings 276 * 277 * we only have the use to interrupt every second, otherwise 278 * known as the update interrupt, or the interrupt if the whole 279 * date/hours/mins/secs matches. the ds1511 has many more 280 * permutations, but the kernel doesn't. 281 */ 282 static void 283 ds1511_rtc_update_alarm(struct rtc_plat_data *pdata) 284 { 285 unsigned long flags; 286 287 spin_lock_irqsave(&pdata->lock, flags); 288 rtc_write(pdata->alrm_mday < 0 || (pdata->irqen & RTC_UF) ? 289 0x80 : bin2bcd(pdata->alrm_mday) & 0x3f, 290 RTC_ALARM_DATE); 291 rtc_write(pdata->alrm_hour < 0 || (pdata->irqen & RTC_UF) ? 292 0x80 : bin2bcd(pdata->alrm_hour) & 0x3f, 293 RTC_ALARM_HOUR); 294 rtc_write(pdata->alrm_min < 0 || (pdata->irqen & RTC_UF) ? 295 0x80 : bin2bcd(pdata->alrm_min) & 0x7f, 296 RTC_ALARM_MIN); 297 rtc_write(pdata->alrm_sec < 0 || (pdata->irqen & RTC_UF) ? 298 0x80 : bin2bcd(pdata->alrm_sec) & 0x7f, 299 RTC_ALARM_SEC); 300 rtc_write(rtc_read(RTC_CMD) | (pdata->irqen ? RTC_TIE : 0), RTC_CMD); 301 rtc_read(RTC_CMD1); /* clear interrupts */ 302 spin_unlock_irqrestore(&pdata->lock, flags); 303 } 304 305 static int 306 ds1511_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 307 { 308 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 309 310 if (pdata->irq <= 0) 311 return -EINVAL; 312 313 pdata->alrm_mday = alrm->time.tm_mday; 314 pdata->alrm_hour = alrm->time.tm_hour; 315 pdata->alrm_min = alrm->time.tm_min; 316 pdata->alrm_sec = alrm->time.tm_sec; 317 if (alrm->enabled) 318 pdata->irqen |= RTC_AF; 319 320 ds1511_rtc_update_alarm(pdata); 321 return 0; 322 } 323 324 static int 325 ds1511_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 326 { 327 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 328 329 if (pdata->irq <= 0) 330 return -EINVAL; 331 332 alrm->time.tm_mday = pdata->alrm_mday < 0 ? 0 : pdata->alrm_mday; 333 alrm->time.tm_hour = pdata->alrm_hour < 0 ? 0 : pdata->alrm_hour; 334 alrm->time.tm_min = pdata->alrm_min < 0 ? 0 : pdata->alrm_min; 335 alrm->time.tm_sec = pdata->alrm_sec < 0 ? 0 : pdata->alrm_sec; 336 alrm->enabled = (pdata->irqen & RTC_AF) ? 1 : 0; 337 return 0; 338 } 339 340 static irqreturn_t 341 ds1511_interrupt(int irq, void *dev_id) 342 { 343 struct platform_device *pdev = dev_id; 344 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 345 unsigned long events = 0; 346 347 spin_lock(&pdata->lock); 348 /* 349 * read and clear interrupt 350 */ 351 if (rtc_read(RTC_CMD1) & DS1511_IRQF) { 352 events = RTC_IRQF; 353 if (rtc_read(RTC_ALARM_SEC) & 0x80) 354 events |= RTC_UF; 355 else 356 events |= RTC_AF; 357 rtc_update_irq(pdata->rtc, 1, events); 358 } 359 spin_unlock(&pdata->lock); 360 return events ? IRQ_HANDLED : IRQ_NONE; 361 } 362 363 static int ds1511_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 364 { 365 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 366 367 if (pdata->irq <= 0) 368 return -EINVAL; 369 if (enabled) 370 pdata->irqen |= RTC_AF; 371 else 372 pdata->irqen &= ~RTC_AF; 373 ds1511_rtc_update_alarm(pdata); 374 return 0; 375 } 376 377 static const struct rtc_class_ops ds1511_rtc_ops = { 378 .read_time = ds1511_rtc_read_time, 379 .set_time = ds1511_rtc_set_time, 380 .read_alarm = ds1511_rtc_read_alarm, 381 .set_alarm = ds1511_rtc_set_alarm, 382 .alarm_irq_enable = ds1511_rtc_alarm_irq_enable, 383 }; 384 385 static int ds1511_nvram_read(void *priv, unsigned int pos, void *buf, 386 size_t size) 387 { 388 int i; 389 390 rtc_write(pos, DS1511_RAMADDR_LSB); 391 for (i = 0; i < size; i++) 392 *(char *)buf++ = rtc_read(DS1511_RAMDATA); 393 394 return 0; 395 } 396 397 static int ds1511_nvram_write(void *priv, unsigned int pos, void *buf, 398 size_t size) 399 { 400 int i; 401 402 rtc_write(pos, DS1511_RAMADDR_LSB); 403 for (i = 0; i < size; i++) 404 rtc_write(*(char *)buf++, DS1511_RAMDATA); 405 406 return 0; 407 } 408 409 static int ds1511_rtc_probe(struct platform_device *pdev) 410 { 411 struct rtc_plat_data *pdata; 412 int ret = 0; 413 struct nvmem_config ds1511_nvmem_cfg = { 414 .name = "ds1511_nvram", 415 .word_size = 1, 416 .stride = 1, 417 .size = DS1511_RAM_MAX, 418 .reg_read = ds1511_nvram_read, 419 .reg_write = ds1511_nvram_write, 420 .priv = &pdev->dev, 421 }; 422 423 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 424 if (!pdata) 425 return -ENOMEM; 426 427 ds1511_base = devm_platform_ioremap_resource(pdev, 0); 428 if (IS_ERR(ds1511_base)) 429 return PTR_ERR(ds1511_base); 430 pdata->ioaddr = ds1511_base; 431 pdata->irq = platform_get_irq(pdev, 0); 432 433 /* 434 * turn on the clock and the crystal, etc. 435 */ 436 rtc_write(DS1511_BME, RTC_CMD); 437 rtc_write(0, RTC_CMD1); 438 /* 439 * clear the wdog counter 440 */ 441 rtc_write(0, DS1511_WD_MSEC); 442 rtc_write(0, DS1511_WD_SEC); 443 /* 444 * start the clock 445 */ 446 rtc_enable_update(); 447 448 /* 449 * check for a dying bat-tree 450 */ 451 if (rtc_read(RTC_CMD1) & DS1511_BLF1) 452 dev_warn(&pdev->dev, "voltage-low detected.\n"); 453 454 spin_lock_init(&pdata->lock); 455 platform_set_drvdata(pdev, pdata); 456 457 pdata->rtc = devm_rtc_allocate_device(&pdev->dev); 458 if (IS_ERR(pdata->rtc)) 459 return PTR_ERR(pdata->rtc); 460 461 pdata->rtc->ops = &ds1511_rtc_ops; 462 463 ret = devm_rtc_register_device(pdata->rtc); 464 if (ret) 465 return ret; 466 467 devm_rtc_nvmem_register(pdata->rtc, &ds1511_nvmem_cfg); 468 469 /* 470 * if the platform has an interrupt in mind for this device, 471 * then by all means, set it 472 */ 473 if (pdata->irq > 0) { 474 rtc_read(RTC_CMD1); 475 if (devm_request_irq(&pdev->dev, pdata->irq, ds1511_interrupt, 476 IRQF_SHARED, pdev->name, pdev) < 0) { 477 478 dev_warn(&pdev->dev, "interrupt not available.\n"); 479 pdata->irq = 0; 480 } 481 } 482 483 return 0; 484 } 485 486 /* work with hotplug and coldplug */ 487 MODULE_ALIAS("platform:ds1511"); 488 489 static struct platform_driver ds1511_rtc_driver = { 490 .probe = ds1511_rtc_probe, 491 .driver = { 492 .name = "ds1511", 493 }, 494 }; 495 496 module_platform_driver(ds1511_rtc_driver); 497 498 MODULE_AUTHOR("Andrew Sharp <andy.sharp@lsi.com>"); 499 MODULE_DESCRIPTION("Dallas DS1511 RTC driver"); 500 MODULE_LICENSE("GPL"); 501