xref: /openbmc/linux/drivers/rtc/rtc-ds1307.c (revision 560e20e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * rtc-ds1307.c - RTC driver for some mostly-compatible I2C chips.
4  *
5  *  Copyright (C) 2005 James Chapman (ds1337 core)
6  *  Copyright (C) 2006 David Brownell
7  *  Copyright (C) 2009 Matthias Fuchs (rx8025 support)
8  *  Copyright (C) 2012 Bertrand Achard (nvram access fixes)
9  */
10 
11 #include <linux/bcd.h>
12 #include <linux/i2c.h>
13 #include <linux/init.h>
14 #include <linux/kstrtox.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/rtc/ds1307.h>
19 #include <linux/rtc.h>
20 #include <linux/slab.h>
21 #include <linux/string.h>
22 #include <linux/hwmon.h>
23 #include <linux/hwmon-sysfs.h>
24 #include <linux/clk-provider.h>
25 #include <linux/regmap.h>
26 #include <linux/watchdog.h>
27 
28 /*
29  * We can't determine type by probing, but if we expect pre-Linux code
30  * to have set the chip up as a clock (turning on the oscillator and
31  * setting the date and time), Linux can ignore the non-clock features.
32  * That's a natural job for a factory or repair bench.
33  */
34 enum ds_type {
35 	unknown_ds_type, /* always first and 0 */
36 	ds_1307,
37 	ds_1308,
38 	ds_1337,
39 	ds_1338,
40 	ds_1339,
41 	ds_1340,
42 	ds_1341,
43 	ds_1388,
44 	ds_3231,
45 	m41t0,
46 	m41t00,
47 	m41t11,
48 	mcp794xx,
49 	rx_8025,
50 	rx_8130,
51 	last_ds_type /* always last */
52 	/* rs5c372 too?  different address... */
53 };
54 
55 /* RTC registers don't differ much, except for the century flag */
56 #define DS1307_REG_SECS		0x00	/* 00-59 */
57 #	define DS1307_BIT_CH		0x80
58 #	define DS1340_BIT_nEOSC		0x80
59 #	define MCP794XX_BIT_ST		0x80
60 #define DS1307_REG_MIN		0x01	/* 00-59 */
61 #	define M41T0_BIT_OF		0x80
62 #define DS1307_REG_HOUR		0x02	/* 00-23, or 1-12{am,pm} */
63 #	define DS1307_BIT_12HR		0x40	/* in REG_HOUR */
64 #	define DS1307_BIT_PM		0x20	/* in REG_HOUR */
65 #	define DS1340_BIT_CENTURY_EN	0x80	/* in REG_HOUR */
66 #	define DS1340_BIT_CENTURY	0x40	/* in REG_HOUR */
67 #define DS1307_REG_WDAY		0x03	/* 01-07 */
68 #	define MCP794XX_BIT_VBATEN	0x08
69 #define DS1307_REG_MDAY		0x04	/* 01-31 */
70 #define DS1307_REG_MONTH	0x05	/* 01-12 */
71 #	define DS1337_BIT_CENTURY	0x80	/* in REG_MONTH */
72 #define DS1307_REG_YEAR		0x06	/* 00-99 */
73 
74 /*
75  * Other registers (control, status, alarms, trickle charge, NVRAM, etc)
76  * start at 7, and they differ a LOT. Only control and status matter for
77  * basic RTC date and time functionality; be careful using them.
78  */
79 #define DS1307_REG_CONTROL	0x07		/* or ds1338 */
80 #	define DS1307_BIT_OUT		0x80
81 #	define DS1338_BIT_OSF		0x20
82 #	define DS1307_BIT_SQWE		0x10
83 #	define DS1307_BIT_RS1		0x02
84 #	define DS1307_BIT_RS0		0x01
85 #define DS1337_REG_CONTROL	0x0e
86 #	define DS1337_BIT_nEOSC		0x80
87 #	define DS1339_BIT_BBSQI		0x20
88 #	define DS3231_BIT_BBSQW		0x40 /* same as BBSQI */
89 #	define DS1337_BIT_RS2		0x10
90 #	define DS1337_BIT_RS1		0x08
91 #	define DS1337_BIT_INTCN		0x04
92 #	define DS1337_BIT_A2IE		0x02
93 #	define DS1337_BIT_A1IE		0x01
94 #define DS1340_REG_CONTROL	0x07
95 #	define DS1340_BIT_OUT		0x80
96 #	define DS1340_BIT_FT		0x40
97 #	define DS1340_BIT_CALIB_SIGN	0x20
98 #	define DS1340_M_CALIBRATION	0x1f
99 #define DS1340_REG_FLAG		0x09
100 #	define DS1340_BIT_OSF		0x80
101 #define DS1337_REG_STATUS	0x0f
102 #	define DS1337_BIT_OSF		0x80
103 #	define DS3231_BIT_EN32KHZ	0x08
104 #	define DS1337_BIT_A2I		0x02
105 #	define DS1337_BIT_A1I		0x01
106 #define DS1339_REG_ALARM1_SECS	0x07
107 
108 #define DS13XX_TRICKLE_CHARGER_MAGIC	0xa0
109 
110 #define RX8025_REG_CTRL1	0x0e
111 #	define RX8025_BIT_2412		0x20
112 #define RX8025_REG_CTRL2	0x0f
113 #	define RX8025_BIT_PON		0x10
114 #	define RX8025_BIT_VDET		0x40
115 #	define RX8025_BIT_XST		0x20
116 
117 #define RX8130_REG_ALARM_MIN		0x17
118 #define RX8130_REG_ALARM_HOUR		0x18
119 #define RX8130_REG_ALARM_WEEK_OR_DAY	0x19
120 #define RX8130_REG_EXTENSION		0x1c
121 #define RX8130_REG_EXTENSION_WADA	BIT(3)
122 #define RX8130_REG_FLAG			0x1d
123 #define RX8130_REG_FLAG_VLF		BIT(1)
124 #define RX8130_REG_FLAG_AF		BIT(3)
125 #define RX8130_REG_CONTROL0		0x1e
126 #define RX8130_REG_CONTROL0_AIE		BIT(3)
127 #define RX8130_REG_CONTROL1		0x1f
128 #define RX8130_REG_CONTROL1_INIEN	BIT(4)
129 #define RX8130_REG_CONTROL1_CHGEN	BIT(5)
130 
131 #define MCP794XX_REG_CONTROL		0x07
132 #	define MCP794XX_BIT_ALM0_EN	0x10
133 #	define MCP794XX_BIT_ALM1_EN	0x20
134 #define MCP794XX_REG_ALARM0_BASE	0x0a
135 #define MCP794XX_REG_ALARM0_CTRL	0x0d
136 #define MCP794XX_REG_ALARM1_BASE	0x11
137 #define MCP794XX_REG_ALARM1_CTRL	0x14
138 #	define MCP794XX_BIT_ALMX_IF	BIT(3)
139 #	define MCP794XX_BIT_ALMX_C0	BIT(4)
140 #	define MCP794XX_BIT_ALMX_C1	BIT(5)
141 #	define MCP794XX_BIT_ALMX_C2	BIT(6)
142 #	define MCP794XX_BIT_ALMX_POL	BIT(7)
143 #	define MCP794XX_MSK_ALMX_MATCH	(MCP794XX_BIT_ALMX_C0 | \
144 					 MCP794XX_BIT_ALMX_C1 | \
145 					 MCP794XX_BIT_ALMX_C2)
146 
147 #define M41TXX_REG_CONTROL	0x07
148 #	define M41TXX_BIT_OUT		BIT(7)
149 #	define M41TXX_BIT_FT		BIT(6)
150 #	define M41TXX_BIT_CALIB_SIGN	BIT(5)
151 #	define M41TXX_M_CALIBRATION	GENMASK(4, 0)
152 
153 #define DS1388_REG_WDOG_HUN_SECS	0x08
154 #define DS1388_REG_WDOG_SECS		0x09
155 #define DS1388_REG_FLAG			0x0b
156 #	define DS1388_BIT_WF		BIT(6)
157 #	define DS1388_BIT_OSF		BIT(7)
158 #define DS1388_REG_CONTROL		0x0c
159 #	define DS1388_BIT_RST		BIT(0)
160 #	define DS1388_BIT_WDE		BIT(1)
161 #	define DS1388_BIT_nEOSC		BIT(7)
162 
163 /* negative offset step is -2.034ppm */
164 #define M41TXX_NEG_OFFSET_STEP_PPB	2034
165 /* positive offset step is +4.068ppm */
166 #define M41TXX_POS_OFFSET_STEP_PPB	4068
167 /* Min and max values supported with 'offset' interface by M41TXX */
168 #define M41TXX_MIN_OFFSET	((-31) * M41TXX_NEG_OFFSET_STEP_PPB)
169 #define M41TXX_MAX_OFFSET	((31) * M41TXX_POS_OFFSET_STEP_PPB)
170 
171 struct ds1307 {
172 	enum ds_type		type;
173 	struct device		*dev;
174 	struct regmap		*regmap;
175 	const char		*name;
176 	struct rtc_device	*rtc;
177 #ifdef CONFIG_COMMON_CLK
178 	struct clk_hw		clks[2];
179 #endif
180 };
181 
182 struct chip_desc {
183 	unsigned		alarm:1;
184 	u16			nvram_offset;
185 	u16			nvram_size;
186 	u8			offset; /* register's offset */
187 	u8			century_reg;
188 	u8			century_enable_bit;
189 	u8			century_bit;
190 	u8			bbsqi_bit;
191 	irq_handler_t		irq_handler;
192 	const struct rtc_class_ops *rtc_ops;
193 	u16			trickle_charger_reg;
194 	u8			(*do_trickle_setup)(struct ds1307 *, u32,
195 						    bool);
196 	/* Does the RTC require trickle-resistor-ohms to select the value of
197 	 * the resistor between Vcc and Vbackup?
198 	 */
199 	bool			requires_trickle_resistor;
200 	/* Some RTC's batteries and supercaps were charged by default, others
201 	 * allow charging but were not configured previously to do so.
202 	 * Remember this behavior to stay backwards compatible.
203 	 */
204 	bool			charge_default;
205 };
206 
207 static const struct chip_desc chips[last_ds_type];
208 
209 static int ds1307_get_time(struct device *dev, struct rtc_time *t)
210 {
211 	struct ds1307	*ds1307 = dev_get_drvdata(dev);
212 	int		tmp, ret;
213 	const struct chip_desc *chip = &chips[ds1307->type];
214 	u8 regs[7];
215 
216 	if (ds1307->type == rx_8130) {
217 		unsigned int regflag;
218 		ret = regmap_read(ds1307->regmap, RX8130_REG_FLAG, &regflag);
219 		if (ret) {
220 			dev_err(dev, "%s error %d\n", "read", ret);
221 			return ret;
222 		}
223 
224 		if (regflag & RX8130_REG_FLAG_VLF) {
225 			dev_warn_once(dev, "oscillator failed, set time!\n");
226 			return -EINVAL;
227 		}
228 	}
229 
230 	/* read the RTC date and time registers all at once */
231 	ret = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
232 			       sizeof(regs));
233 	if (ret) {
234 		dev_err(dev, "%s error %d\n", "read", ret);
235 		return ret;
236 	}
237 
238 	dev_dbg(dev, "%s: %7ph\n", "read", regs);
239 
240 	/* if oscillator fail bit is set, no data can be trusted */
241 	if (ds1307->type == m41t0 &&
242 	    regs[DS1307_REG_MIN] & M41T0_BIT_OF) {
243 		dev_warn_once(dev, "oscillator failed, set time!\n");
244 		return -EINVAL;
245 	}
246 
247 	tmp = regs[DS1307_REG_SECS];
248 	switch (ds1307->type) {
249 	case ds_1307:
250 	case m41t0:
251 	case m41t00:
252 	case m41t11:
253 		if (tmp & DS1307_BIT_CH)
254 			return -EINVAL;
255 		break;
256 	case ds_1308:
257 	case ds_1338:
258 		if (tmp & DS1307_BIT_CH)
259 			return -EINVAL;
260 
261 		ret = regmap_read(ds1307->regmap, DS1307_REG_CONTROL, &tmp);
262 		if (ret)
263 			return ret;
264 		if (tmp & DS1338_BIT_OSF)
265 			return -EINVAL;
266 		break;
267 	case ds_1340:
268 		if (tmp & DS1340_BIT_nEOSC)
269 			return -EINVAL;
270 
271 		ret = regmap_read(ds1307->regmap, DS1340_REG_FLAG, &tmp);
272 		if (ret)
273 			return ret;
274 		if (tmp & DS1340_BIT_OSF)
275 			return -EINVAL;
276 		break;
277 	case ds_1388:
278 		ret = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &tmp);
279 		if (ret)
280 			return ret;
281 		if (tmp & DS1388_BIT_OSF)
282 			return -EINVAL;
283 		break;
284 	case mcp794xx:
285 		if (!(tmp & MCP794XX_BIT_ST))
286 			return -EINVAL;
287 
288 		break;
289 	default:
290 		break;
291 	}
292 
293 	t->tm_sec = bcd2bin(regs[DS1307_REG_SECS] & 0x7f);
294 	t->tm_min = bcd2bin(regs[DS1307_REG_MIN] & 0x7f);
295 	tmp = regs[DS1307_REG_HOUR] & 0x3f;
296 	t->tm_hour = bcd2bin(tmp);
297 	/* rx8130 is bit position, not BCD */
298 	if (ds1307->type == rx_8130)
299 		t->tm_wday = fls(regs[DS1307_REG_WDAY] & 0x7f);
300 	else
301 		t->tm_wday = bcd2bin(regs[DS1307_REG_WDAY] & 0x07) - 1;
302 	t->tm_mday = bcd2bin(regs[DS1307_REG_MDAY] & 0x3f);
303 	tmp = regs[DS1307_REG_MONTH] & 0x1f;
304 	t->tm_mon = bcd2bin(tmp) - 1;
305 	t->tm_year = bcd2bin(regs[DS1307_REG_YEAR]) + 100;
306 
307 	if (regs[chip->century_reg] & chip->century_bit &&
308 	    IS_ENABLED(CONFIG_RTC_DRV_DS1307_CENTURY))
309 		t->tm_year += 100;
310 
311 	dev_dbg(dev, "%s secs=%d, mins=%d, "
312 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
313 		"read", t->tm_sec, t->tm_min,
314 		t->tm_hour, t->tm_mday,
315 		t->tm_mon, t->tm_year, t->tm_wday);
316 
317 	return 0;
318 }
319 
320 static int ds1307_set_time(struct device *dev, struct rtc_time *t)
321 {
322 	struct ds1307	*ds1307 = dev_get_drvdata(dev);
323 	const struct chip_desc *chip = &chips[ds1307->type];
324 	int		result;
325 	int		tmp;
326 	u8		regs[7];
327 
328 	dev_dbg(dev, "%s secs=%d, mins=%d, "
329 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
330 		"write", t->tm_sec, t->tm_min,
331 		t->tm_hour, t->tm_mday,
332 		t->tm_mon, t->tm_year, t->tm_wday);
333 
334 	if (t->tm_year < 100)
335 		return -EINVAL;
336 
337 #ifdef CONFIG_RTC_DRV_DS1307_CENTURY
338 	if (t->tm_year > (chip->century_bit ? 299 : 199))
339 		return -EINVAL;
340 #else
341 	if (t->tm_year > 199)
342 		return -EINVAL;
343 #endif
344 
345 	regs[DS1307_REG_SECS] = bin2bcd(t->tm_sec);
346 	regs[DS1307_REG_MIN] = bin2bcd(t->tm_min);
347 	regs[DS1307_REG_HOUR] = bin2bcd(t->tm_hour);
348 	/* rx8130 is bit position, not BCD */
349 	if (ds1307->type == rx_8130)
350 		regs[DS1307_REG_WDAY] = 1 << t->tm_wday;
351 	else
352 		regs[DS1307_REG_WDAY] = bin2bcd(t->tm_wday + 1);
353 	regs[DS1307_REG_MDAY] = bin2bcd(t->tm_mday);
354 	regs[DS1307_REG_MONTH] = bin2bcd(t->tm_mon + 1);
355 
356 	/* assume 20YY not 19YY */
357 	tmp = t->tm_year - 100;
358 	regs[DS1307_REG_YEAR] = bin2bcd(tmp);
359 
360 	if (chip->century_enable_bit)
361 		regs[chip->century_reg] |= chip->century_enable_bit;
362 	if (t->tm_year > 199 && chip->century_bit)
363 		regs[chip->century_reg] |= chip->century_bit;
364 
365 	switch (ds1307->type) {
366 	case ds_1308:
367 	case ds_1338:
368 		regmap_update_bits(ds1307->regmap, DS1307_REG_CONTROL,
369 				   DS1338_BIT_OSF, 0);
370 		break;
371 	case ds_1340:
372 		regmap_update_bits(ds1307->regmap, DS1340_REG_FLAG,
373 				   DS1340_BIT_OSF, 0);
374 		break;
375 	case ds_1388:
376 		regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
377 				   DS1388_BIT_OSF, 0);
378 		break;
379 	case mcp794xx:
380 		/*
381 		 * these bits were cleared when preparing the date/time
382 		 * values and need to be set again before writing the
383 		 * regsfer out to the device.
384 		 */
385 		regs[DS1307_REG_SECS] |= MCP794XX_BIT_ST;
386 		regs[DS1307_REG_WDAY] |= MCP794XX_BIT_VBATEN;
387 		break;
388 	default:
389 		break;
390 	}
391 
392 	dev_dbg(dev, "%s: %7ph\n", "write", regs);
393 
394 	result = regmap_bulk_write(ds1307->regmap, chip->offset, regs,
395 				   sizeof(regs));
396 	if (result) {
397 		dev_err(dev, "%s error %d\n", "write", result);
398 		return result;
399 	}
400 
401 	if (ds1307->type == rx_8130) {
402 		/* clear Voltage Loss Flag as data is available now */
403 		result = regmap_write(ds1307->regmap, RX8130_REG_FLAG,
404 				      ~(u8)RX8130_REG_FLAG_VLF);
405 		if (result) {
406 			dev_err(dev, "%s error %d\n", "write", result);
407 			return result;
408 		}
409 	}
410 
411 	return 0;
412 }
413 
414 static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
415 {
416 	struct ds1307		*ds1307 = dev_get_drvdata(dev);
417 	int			ret;
418 	u8			regs[9];
419 
420 	/* read all ALARM1, ALARM2, and status registers at once */
421 	ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS,
422 			       regs, sizeof(regs));
423 	if (ret) {
424 		dev_err(dev, "%s error %d\n", "alarm read", ret);
425 		return ret;
426 	}
427 
428 	dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
429 		&regs[0], &regs[4], &regs[7]);
430 
431 	/*
432 	 * report alarm time (ALARM1); assume 24 hour and day-of-month modes,
433 	 * and that all four fields are checked matches
434 	 */
435 	t->time.tm_sec = bcd2bin(regs[0] & 0x7f);
436 	t->time.tm_min = bcd2bin(regs[1] & 0x7f);
437 	t->time.tm_hour = bcd2bin(regs[2] & 0x3f);
438 	t->time.tm_mday = bcd2bin(regs[3] & 0x3f);
439 
440 	/* ... and status */
441 	t->enabled = !!(regs[7] & DS1337_BIT_A1IE);
442 	t->pending = !!(regs[8] & DS1337_BIT_A1I);
443 
444 	dev_dbg(dev, "%s secs=%d, mins=%d, "
445 		"hours=%d, mday=%d, enabled=%d, pending=%d\n",
446 		"alarm read", t->time.tm_sec, t->time.tm_min,
447 		t->time.tm_hour, t->time.tm_mday,
448 		t->enabled, t->pending);
449 
450 	return 0;
451 }
452 
453 static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
454 {
455 	struct ds1307		*ds1307 = dev_get_drvdata(dev);
456 	unsigned char		regs[9];
457 	u8			control, status;
458 	int			ret;
459 
460 	dev_dbg(dev, "%s secs=%d, mins=%d, "
461 		"hours=%d, mday=%d, enabled=%d, pending=%d\n",
462 		"alarm set", t->time.tm_sec, t->time.tm_min,
463 		t->time.tm_hour, t->time.tm_mday,
464 		t->enabled, t->pending);
465 
466 	/* read current status of both alarms and the chip */
467 	ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
468 			       sizeof(regs));
469 	if (ret) {
470 		dev_err(dev, "%s error %d\n", "alarm write", ret);
471 		return ret;
472 	}
473 	control = regs[7];
474 	status = regs[8];
475 
476 	dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
477 		&regs[0], &regs[4], control, status);
478 
479 	/* set ALARM1, using 24 hour and day-of-month modes */
480 	regs[0] = bin2bcd(t->time.tm_sec);
481 	regs[1] = bin2bcd(t->time.tm_min);
482 	regs[2] = bin2bcd(t->time.tm_hour);
483 	regs[3] = bin2bcd(t->time.tm_mday);
484 
485 	/* set ALARM2 to non-garbage */
486 	regs[4] = 0;
487 	regs[5] = 0;
488 	regs[6] = 0;
489 
490 	/* disable alarms */
491 	regs[7] = control & ~(DS1337_BIT_A1IE | DS1337_BIT_A2IE);
492 	regs[8] = status & ~(DS1337_BIT_A1I | DS1337_BIT_A2I);
493 
494 	ret = regmap_bulk_write(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
495 				sizeof(regs));
496 	if (ret) {
497 		dev_err(dev, "can't set alarm time\n");
498 		return ret;
499 	}
500 
501 	/* optionally enable ALARM1 */
502 	if (t->enabled) {
503 		dev_dbg(dev, "alarm IRQ armed\n");
504 		regs[7] |= DS1337_BIT_A1IE;	/* only ALARM1 is used */
505 		regmap_write(ds1307->regmap, DS1337_REG_CONTROL, regs[7]);
506 	}
507 
508 	return 0;
509 }
510 
511 static int ds1307_alarm_irq_enable(struct device *dev, unsigned int enabled)
512 {
513 	struct ds1307		*ds1307 = dev_get_drvdata(dev);
514 
515 	return regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
516 				  DS1337_BIT_A1IE,
517 				  enabled ? DS1337_BIT_A1IE : 0);
518 }
519 
520 static u8 do_trickle_setup_ds1339(struct ds1307 *ds1307, u32 ohms, bool diode)
521 {
522 	u8 setup = (diode) ? DS1307_TRICKLE_CHARGER_DIODE :
523 		DS1307_TRICKLE_CHARGER_NO_DIODE;
524 
525 	setup |= DS13XX_TRICKLE_CHARGER_MAGIC;
526 
527 	switch (ohms) {
528 	case 250:
529 		setup |= DS1307_TRICKLE_CHARGER_250_OHM;
530 		break;
531 	case 2000:
532 		setup |= DS1307_TRICKLE_CHARGER_2K_OHM;
533 		break;
534 	case 4000:
535 		setup |= DS1307_TRICKLE_CHARGER_4K_OHM;
536 		break;
537 	default:
538 		dev_warn(ds1307->dev,
539 			 "Unsupported ohm value %u in dt\n", ohms);
540 		return 0;
541 	}
542 	return setup;
543 }
544 
545 static u8 do_trickle_setup_rx8130(struct ds1307 *ds1307, u32 ohms, bool diode)
546 {
547 	/* make sure that the backup battery is enabled */
548 	u8 setup = RX8130_REG_CONTROL1_INIEN;
549 	if (diode)
550 		setup |= RX8130_REG_CONTROL1_CHGEN;
551 
552 	return setup;
553 }
554 
555 static irqreturn_t rx8130_irq(int irq, void *dev_id)
556 {
557 	struct ds1307           *ds1307 = dev_id;
558 	u8 ctl[3];
559 	int ret;
560 
561 	rtc_lock(ds1307->rtc);
562 
563 	/* Read control registers. */
564 	ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
565 			       sizeof(ctl));
566 	if (ret < 0)
567 		goto out;
568 	if (!(ctl[1] & RX8130_REG_FLAG_AF))
569 		goto out;
570 	ctl[1] &= ~RX8130_REG_FLAG_AF;
571 	ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
572 
573 	ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
574 				sizeof(ctl));
575 	if (ret < 0)
576 		goto out;
577 
578 	rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
579 
580 out:
581 	rtc_unlock(ds1307->rtc);
582 
583 	return IRQ_HANDLED;
584 }
585 
586 static int rx8130_read_alarm(struct device *dev, struct rtc_wkalrm *t)
587 {
588 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
589 	u8 ald[3], ctl[3];
590 	int ret;
591 
592 	/* Read alarm registers. */
593 	ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
594 			       sizeof(ald));
595 	if (ret < 0)
596 		return ret;
597 
598 	/* Read control registers. */
599 	ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
600 			       sizeof(ctl));
601 	if (ret < 0)
602 		return ret;
603 
604 	t->enabled = !!(ctl[2] & RX8130_REG_CONTROL0_AIE);
605 	t->pending = !!(ctl[1] & RX8130_REG_FLAG_AF);
606 
607 	/* Report alarm 0 time assuming 24-hour and day-of-month modes. */
608 	t->time.tm_sec = -1;
609 	t->time.tm_min = bcd2bin(ald[0] & 0x7f);
610 	t->time.tm_hour = bcd2bin(ald[1] & 0x7f);
611 	t->time.tm_wday = -1;
612 	t->time.tm_mday = bcd2bin(ald[2] & 0x7f);
613 	t->time.tm_mon = -1;
614 	t->time.tm_year = -1;
615 	t->time.tm_yday = -1;
616 	t->time.tm_isdst = -1;
617 
618 	dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d enabled=%d\n",
619 		__func__, t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
620 		t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled);
621 
622 	return 0;
623 }
624 
625 static int rx8130_set_alarm(struct device *dev, struct rtc_wkalrm *t)
626 {
627 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
628 	u8 ald[3], ctl[3];
629 	int ret;
630 
631 	dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
632 		"enabled=%d pending=%d\n", __func__,
633 		t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
634 		t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
635 		t->enabled, t->pending);
636 
637 	/* Read control registers. */
638 	ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
639 			       sizeof(ctl));
640 	if (ret < 0)
641 		return ret;
642 
643 	ctl[0] &= RX8130_REG_EXTENSION_WADA;
644 	ctl[1] &= ~RX8130_REG_FLAG_AF;
645 	ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
646 
647 	ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
648 				sizeof(ctl));
649 	if (ret < 0)
650 		return ret;
651 
652 	/* Hardware alarm precision is 1 minute! */
653 	ald[0] = bin2bcd(t->time.tm_min);
654 	ald[1] = bin2bcd(t->time.tm_hour);
655 	ald[2] = bin2bcd(t->time.tm_mday);
656 
657 	ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
658 				sizeof(ald));
659 	if (ret < 0)
660 		return ret;
661 
662 	if (!t->enabled)
663 		return 0;
664 
665 	ctl[2] |= RX8130_REG_CONTROL0_AIE;
666 
667 	return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, ctl[2]);
668 }
669 
670 static int rx8130_alarm_irq_enable(struct device *dev, unsigned int enabled)
671 {
672 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
673 	int ret, reg;
674 
675 	ret = regmap_read(ds1307->regmap, RX8130_REG_CONTROL0, &reg);
676 	if (ret < 0)
677 		return ret;
678 
679 	if (enabled)
680 		reg |= RX8130_REG_CONTROL0_AIE;
681 	else
682 		reg &= ~RX8130_REG_CONTROL0_AIE;
683 
684 	return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, reg);
685 }
686 
687 static irqreturn_t mcp794xx_irq(int irq, void *dev_id)
688 {
689 	struct ds1307           *ds1307 = dev_id;
690 	struct mutex            *lock = &ds1307->rtc->ops_lock;
691 	int reg, ret;
692 
693 	mutex_lock(lock);
694 
695 	/* Check and clear alarm 0 interrupt flag. */
696 	ret = regmap_read(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, &reg);
697 	if (ret)
698 		goto out;
699 	if (!(reg & MCP794XX_BIT_ALMX_IF))
700 		goto out;
701 	reg &= ~MCP794XX_BIT_ALMX_IF;
702 	ret = regmap_write(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, reg);
703 	if (ret)
704 		goto out;
705 
706 	/* Disable alarm 0. */
707 	ret = regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
708 				 MCP794XX_BIT_ALM0_EN, 0);
709 	if (ret)
710 		goto out;
711 
712 	rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
713 
714 out:
715 	mutex_unlock(lock);
716 
717 	return IRQ_HANDLED;
718 }
719 
720 static int mcp794xx_read_alarm(struct device *dev, struct rtc_wkalrm *t)
721 {
722 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
723 	u8 regs[10];
724 	int ret;
725 
726 	/* Read control and alarm 0 registers. */
727 	ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
728 			       sizeof(regs));
729 	if (ret)
730 		return ret;
731 
732 	t->enabled = !!(regs[0] & MCP794XX_BIT_ALM0_EN);
733 
734 	/* Report alarm 0 time assuming 24-hour and day-of-month modes. */
735 	t->time.tm_sec = bcd2bin(regs[3] & 0x7f);
736 	t->time.tm_min = bcd2bin(regs[4] & 0x7f);
737 	t->time.tm_hour = bcd2bin(regs[5] & 0x3f);
738 	t->time.tm_wday = bcd2bin(regs[6] & 0x7) - 1;
739 	t->time.tm_mday = bcd2bin(regs[7] & 0x3f);
740 	t->time.tm_mon = bcd2bin(regs[8] & 0x1f) - 1;
741 	t->time.tm_year = -1;
742 	t->time.tm_yday = -1;
743 	t->time.tm_isdst = -1;
744 
745 	dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
746 		"enabled=%d polarity=%d irq=%d match=%lu\n", __func__,
747 		t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
748 		t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled,
749 		!!(regs[6] & MCP794XX_BIT_ALMX_POL),
750 		!!(regs[6] & MCP794XX_BIT_ALMX_IF),
751 		(regs[6] & MCP794XX_MSK_ALMX_MATCH) >> 4);
752 
753 	return 0;
754 }
755 
756 /*
757  * We may have a random RTC weekday, therefore calculate alarm weekday based
758  * on current weekday we read from the RTC timekeeping regs
759  */
760 static int mcp794xx_alm_weekday(struct device *dev, struct rtc_time *tm_alarm)
761 {
762 	struct rtc_time tm_now;
763 	int days_now, days_alarm, ret;
764 
765 	ret = ds1307_get_time(dev, &tm_now);
766 	if (ret)
767 		return ret;
768 
769 	days_now = div_s64(rtc_tm_to_time64(&tm_now), 24 * 60 * 60);
770 	days_alarm = div_s64(rtc_tm_to_time64(tm_alarm), 24 * 60 * 60);
771 
772 	return (tm_now.tm_wday + days_alarm - days_now) % 7 + 1;
773 }
774 
775 static int mcp794xx_set_alarm(struct device *dev, struct rtc_wkalrm *t)
776 {
777 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
778 	unsigned char regs[10];
779 	int wday, ret;
780 
781 	wday = mcp794xx_alm_weekday(dev, &t->time);
782 	if (wday < 0)
783 		return wday;
784 
785 	dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
786 		"enabled=%d pending=%d\n", __func__,
787 		t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
788 		t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
789 		t->enabled, t->pending);
790 
791 	/* Read control and alarm 0 registers. */
792 	ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
793 			       sizeof(regs));
794 	if (ret)
795 		return ret;
796 
797 	/* Set alarm 0, using 24-hour and day-of-month modes. */
798 	regs[3] = bin2bcd(t->time.tm_sec);
799 	regs[4] = bin2bcd(t->time.tm_min);
800 	regs[5] = bin2bcd(t->time.tm_hour);
801 	regs[6] = wday;
802 	regs[7] = bin2bcd(t->time.tm_mday);
803 	regs[8] = bin2bcd(t->time.tm_mon + 1);
804 
805 	/* Clear the alarm 0 interrupt flag. */
806 	regs[6] &= ~MCP794XX_BIT_ALMX_IF;
807 	/* Set alarm match: second, minute, hour, day, date, month. */
808 	regs[6] |= MCP794XX_MSK_ALMX_MATCH;
809 	/* Disable interrupt. We will not enable until completely programmed */
810 	regs[0] &= ~MCP794XX_BIT_ALM0_EN;
811 
812 	ret = regmap_bulk_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
813 				sizeof(regs));
814 	if (ret)
815 		return ret;
816 
817 	if (!t->enabled)
818 		return 0;
819 	regs[0] |= MCP794XX_BIT_ALM0_EN;
820 	return regmap_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs[0]);
821 }
822 
823 static int mcp794xx_alarm_irq_enable(struct device *dev, unsigned int enabled)
824 {
825 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
826 
827 	return regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
828 				  MCP794XX_BIT_ALM0_EN,
829 				  enabled ? MCP794XX_BIT_ALM0_EN : 0);
830 }
831 
832 static int m41txx_rtc_read_offset(struct device *dev, long *offset)
833 {
834 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
835 	unsigned int ctrl_reg;
836 	u8 val;
837 
838 	regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
839 
840 	val = ctrl_reg & M41TXX_M_CALIBRATION;
841 
842 	/* check if positive */
843 	if (ctrl_reg & M41TXX_BIT_CALIB_SIGN)
844 		*offset = (val * M41TXX_POS_OFFSET_STEP_PPB);
845 	else
846 		*offset = -(val * M41TXX_NEG_OFFSET_STEP_PPB);
847 
848 	return 0;
849 }
850 
851 static int m41txx_rtc_set_offset(struct device *dev, long offset)
852 {
853 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
854 	unsigned int ctrl_reg;
855 
856 	if ((offset < M41TXX_MIN_OFFSET) || (offset > M41TXX_MAX_OFFSET))
857 		return -ERANGE;
858 
859 	if (offset >= 0) {
860 		ctrl_reg = DIV_ROUND_CLOSEST(offset,
861 					     M41TXX_POS_OFFSET_STEP_PPB);
862 		ctrl_reg |= M41TXX_BIT_CALIB_SIGN;
863 	} else {
864 		ctrl_reg = DIV_ROUND_CLOSEST(abs(offset),
865 					     M41TXX_NEG_OFFSET_STEP_PPB);
866 	}
867 
868 	return regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL,
869 				  M41TXX_M_CALIBRATION | M41TXX_BIT_CALIB_SIGN,
870 				  ctrl_reg);
871 }
872 
873 #ifdef CONFIG_WATCHDOG_CORE
874 static int ds1388_wdt_start(struct watchdog_device *wdt_dev)
875 {
876 	struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
877 	u8 regs[2];
878 	int ret;
879 
880 	ret = regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
881 				 DS1388_BIT_WF, 0);
882 	if (ret)
883 		return ret;
884 
885 	ret = regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
886 				 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
887 	if (ret)
888 		return ret;
889 
890 	/*
891 	 * watchdog timeouts are measured in seconds. So ignore hundredths of
892 	 * seconds field.
893 	 */
894 	regs[0] = 0;
895 	regs[1] = bin2bcd(wdt_dev->timeout);
896 
897 	ret = regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
898 				sizeof(regs));
899 	if (ret)
900 		return ret;
901 
902 	return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
903 				  DS1388_BIT_WDE | DS1388_BIT_RST,
904 				  DS1388_BIT_WDE | DS1388_BIT_RST);
905 }
906 
907 static int ds1388_wdt_stop(struct watchdog_device *wdt_dev)
908 {
909 	struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
910 
911 	return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
912 				  DS1388_BIT_WDE | DS1388_BIT_RST, 0);
913 }
914 
915 static int ds1388_wdt_ping(struct watchdog_device *wdt_dev)
916 {
917 	struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
918 	u8 regs[2];
919 
920 	return regmap_bulk_read(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
921 				sizeof(regs));
922 }
923 
924 static int ds1388_wdt_set_timeout(struct watchdog_device *wdt_dev,
925 				  unsigned int val)
926 {
927 	struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
928 	u8 regs[2];
929 
930 	wdt_dev->timeout = val;
931 	regs[0] = 0;
932 	regs[1] = bin2bcd(wdt_dev->timeout);
933 
934 	return regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
935 				 sizeof(regs));
936 }
937 #endif
938 
939 static const struct rtc_class_ops rx8130_rtc_ops = {
940 	.read_time      = ds1307_get_time,
941 	.set_time       = ds1307_set_time,
942 	.read_alarm     = rx8130_read_alarm,
943 	.set_alarm      = rx8130_set_alarm,
944 	.alarm_irq_enable = rx8130_alarm_irq_enable,
945 };
946 
947 static const struct rtc_class_ops mcp794xx_rtc_ops = {
948 	.read_time      = ds1307_get_time,
949 	.set_time       = ds1307_set_time,
950 	.read_alarm     = mcp794xx_read_alarm,
951 	.set_alarm      = mcp794xx_set_alarm,
952 	.alarm_irq_enable = mcp794xx_alarm_irq_enable,
953 };
954 
955 static const struct rtc_class_ops m41txx_rtc_ops = {
956 	.read_time      = ds1307_get_time,
957 	.set_time       = ds1307_set_time,
958 	.read_alarm	= ds1337_read_alarm,
959 	.set_alarm	= ds1337_set_alarm,
960 	.alarm_irq_enable = ds1307_alarm_irq_enable,
961 	.read_offset	= m41txx_rtc_read_offset,
962 	.set_offset	= m41txx_rtc_set_offset,
963 };
964 
965 static const struct chip_desc chips[last_ds_type] = {
966 	[ds_1307] = {
967 		.nvram_offset	= 8,
968 		.nvram_size	= 56,
969 	},
970 	[ds_1308] = {
971 		.nvram_offset	= 8,
972 		.nvram_size	= 56,
973 	},
974 	[ds_1337] = {
975 		.alarm		= 1,
976 		.century_reg	= DS1307_REG_MONTH,
977 		.century_bit	= DS1337_BIT_CENTURY,
978 	},
979 	[ds_1338] = {
980 		.nvram_offset	= 8,
981 		.nvram_size	= 56,
982 	},
983 	[ds_1339] = {
984 		.alarm		= 1,
985 		.century_reg	= DS1307_REG_MONTH,
986 		.century_bit	= DS1337_BIT_CENTURY,
987 		.bbsqi_bit	= DS1339_BIT_BBSQI,
988 		.trickle_charger_reg = 0x10,
989 		.do_trickle_setup = &do_trickle_setup_ds1339,
990 		.requires_trickle_resistor = true,
991 		.charge_default = true,
992 	},
993 	[ds_1340] = {
994 		.century_reg	= DS1307_REG_HOUR,
995 		.century_enable_bit = DS1340_BIT_CENTURY_EN,
996 		.century_bit	= DS1340_BIT_CENTURY,
997 		.do_trickle_setup = &do_trickle_setup_ds1339,
998 		.trickle_charger_reg = 0x08,
999 		.requires_trickle_resistor = true,
1000 		.charge_default = true,
1001 	},
1002 	[ds_1341] = {
1003 		.century_reg	= DS1307_REG_MONTH,
1004 		.century_bit	= DS1337_BIT_CENTURY,
1005 	},
1006 	[ds_1388] = {
1007 		.offset		= 1,
1008 		.trickle_charger_reg = 0x0a,
1009 	},
1010 	[ds_3231] = {
1011 		.alarm		= 1,
1012 		.century_reg	= DS1307_REG_MONTH,
1013 		.century_bit	= DS1337_BIT_CENTURY,
1014 		.bbsqi_bit	= DS3231_BIT_BBSQW,
1015 	},
1016 	[rx_8130] = {
1017 		.alarm		= 1,
1018 		/* this is battery backed SRAM */
1019 		.nvram_offset	= 0x20,
1020 		.nvram_size	= 4,	/* 32bit (4 word x 8 bit) */
1021 		.offset		= 0x10,
1022 		.irq_handler = rx8130_irq,
1023 		.rtc_ops = &rx8130_rtc_ops,
1024 		.trickle_charger_reg = RX8130_REG_CONTROL1,
1025 		.do_trickle_setup = &do_trickle_setup_rx8130,
1026 	},
1027 	[m41t0] = {
1028 		.rtc_ops	= &m41txx_rtc_ops,
1029 	},
1030 	[m41t00] = {
1031 		.rtc_ops	= &m41txx_rtc_ops,
1032 	},
1033 	[m41t11] = {
1034 		/* this is battery backed SRAM */
1035 		.nvram_offset	= 8,
1036 		.nvram_size	= 56,
1037 		.rtc_ops	= &m41txx_rtc_ops,
1038 	},
1039 	[mcp794xx] = {
1040 		.alarm		= 1,
1041 		/* this is battery backed SRAM */
1042 		.nvram_offset	= 0x20,
1043 		.nvram_size	= 0x40,
1044 		.irq_handler = mcp794xx_irq,
1045 		.rtc_ops = &mcp794xx_rtc_ops,
1046 	},
1047 };
1048 
1049 static const struct i2c_device_id ds1307_id[] = {
1050 	{ "ds1307", ds_1307 },
1051 	{ "ds1308", ds_1308 },
1052 	{ "ds1337", ds_1337 },
1053 	{ "ds1338", ds_1338 },
1054 	{ "ds1339", ds_1339 },
1055 	{ "ds1388", ds_1388 },
1056 	{ "ds1340", ds_1340 },
1057 	{ "ds1341", ds_1341 },
1058 	{ "ds3231", ds_3231 },
1059 	{ "m41t0", m41t0 },
1060 	{ "m41t00", m41t00 },
1061 	{ "m41t11", m41t11 },
1062 	{ "mcp7940x", mcp794xx },
1063 	{ "mcp7941x", mcp794xx },
1064 	{ "pt7c4338", ds_1307 },
1065 	{ "rx8025", rx_8025 },
1066 	{ "isl12057", ds_1337 },
1067 	{ "rx8130", rx_8130 },
1068 	{ }
1069 };
1070 MODULE_DEVICE_TABLE(i2c, ds1307_id);
1071 
1072 static const struct of_device_id ds1307_of_match[] = {
1073 	{
1074 		.compatible = "dallas,ds1307",
1075 		.data = (void *)ds_1307
1076 	},
1077 	{
1078 		.compatible = "dallas,ds1308",
1079 		.data = (void *)ds_1308
1080 	},
1081 	{
1082 		.compatible = "dallas,ds1337",
1083 		.data = (void *)ds_1337
1084 	},
1085 	{
1086 		.compatible = "dallas,ds1338",
1087 		.data = (void *)ds_1338
1088 	},
1089 	{
1090 		.compatible = "dallas,ds1339",
1091 		.data = (void *)ds_1339
1092 	},
1093 	{
1094 		.compatible = "dallas,ds1388",
1095 		.data = (void *)ds_1388
1096 	},
1097 	{
1098 		.compatible = "dallas,ds1340",
1099 		.data = (void *)ds_1340
1100 	},
1101 	{
1102 		.compatible = "dallas,ds1341",
1103 		.data = (void *)ds_1341
1104 	},
1105 	{
1106 		.compatible = "maxim,ds3231",
1107 		.data = (void *)ds_3231
1108 	},
1109 	{
1110 		.compatible = "st,m41t0",
1111 		.data = (void *)m41t0
1112 	},
1113 	{
1114 		.compatible = "st,m41t00",
1115 		.data = (void *)m41t00
1116 	},
1117 	{
1118 		.compatible = "st,m41t11",
1119 		.data = (void *)m41t11
1120 	},
1121 	{
1122 		.compatible = "microchip,mcp7940x",
1123 		.data = (void *)mcp794xx
1124 	},
1125 	{
1126 		.compatible = "microchip,mcp7941x",
1127 		.data = (void *)mcp794xx
1128 	},
1129 	{
1130 		.compatible = "pericom,pt7c4338",
1131 		.data = (void *)ds_1307
1132 	},
1133 	{
1134 		.compatible = "epson,rx8025",
1135 		.data = (void *)rx_8025
1136 	},
1137 	{
1138 		.compatible = "isil,isl12057",
1139 		.data = (void *)ds_1337
1140 	},
1141 	{
1142 		.compatible = "epson,rx8130",
1143 		.data = (void *)rx_8130
1144 	},
1145 	{ }
1146 };
1147 MODULE_DEVICE_TABLE(of, ds1307_of_match);
1148 
1149 /*
1150  * The ds1337 and ds1339 both have two alarms, but we only use the first
1151  * one (with a "seconds" field).  For ds1337 we expect nINTA is our alarm
1152  * signal; ds1339 chips have only one alarm signal.
1153  */
1154 static irqreturn_t ds1307_irq(int irq, void *dev_id)
1155 {
1156 	struct ds1307		*ds1307 = dev_id;
1157 	struct mutex		*lock = &ds1307->rtc->ops_lock;
1158 	int			stat, ret;
1159 
1160 	mutex_lock(lock);
1161 	ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &stat);
1162 	if (ret)
1163 		goto out;
1164 
1165 	if (stat & DS1337_BIT_A1I) {
1166 		stat &= ~DS1337_BIT_A1I;
1167 		regmap_write(ds1307->regmap, DS1337_REG_STATUS, stat);
1168 
1169 		ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1170 					 DS1337_BIT_A1IE, 0);
1171 		if (ret)
1172 			goto out;
1173 
1174 		rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
1175 	}
1176 
1177 out:
1178 	mutex_unlock(lock);
1179 
1180 	return IRQ_HANDLED;
1181 }
1182 
1183 /*----------------------------------------------------------------------*/
1184 
1185 static const struct rtc_class_ops ds13xx_rtc_ops = {
1186 	.read_time	= ds1307_get_time,
1187 	.set_time	= ds1307_set_time,
1188 	.read_alarm	= ds1337_read_alarm,
1189 	.set_alarm	= ds1337_set_alarm,
1190 	.alarm_irq_enable = ds1307_alarm_irq_enable,
1191 };
1192 
1193 static ssize_t frequency_test_store(struct device *dev,
1194 				    struct device_attribute *attr,
1195 				    const char *buf, size_t count)
1196 {
1197 	struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1198 	bool freq_test_en;
1199 	int ret;
1200 
1201 	ret = kstrtobool(buf, &freq_test_en);
1202 	if (ret) {
1203 		dev_err(dev, "Failed to store RTC Frequency Test attribute\n");
1204 		return ret;
1205 	}
1206 
1207 	regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL, M41TXX_BIT_FT,
1208 			   freq_test_en ? M41TXX_BIT_FT : 0);
1209 
1210 	return count;
1211 }
1212 
1213 static ssize_t frequency_test_show(struct device *dev,
1214 				   struct device_attribute *attr,
1215 				   char *buf)
1216 {
1217 	struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1218 	unsigned int ctrl_reg;
1219 
1220 	regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
1221 
1222 	return sysfs_emit(buf, (ctrl_reg & M41TXX_BIT_FT) ? "on\n" : "off\n");
1223 }
1224 
1225 static DEVICE_ATTR_RW(frequency_test);
1226 
1227 static struct attribute *rtc_freq_test_attrs[] = {
1228 	&dev_attr_frequency_test.attr,
1229 	NULL,
1230 };
1231 
1232 static const struct attribute_group rtc_freq_test_attr_group = {
1233 	.attrs		= rtc_freq_test_attrs,
1234 };
1235 
1236 static int ds1307_add_frequency_test(struct ds1307 *ds1307)
1237 {
1238 	int err;
1239 
1240 	switch (ds1307->type) {
1241 	case m41t0:
1242 	case m41t00:
1243 	case m41t11:
1244 		err = rtc_add_group(ds1307->rtc, &rtc_freq_test_attr_group);
1245 		if (err)
1246 			return err;
1247 		break;
1248 	default:
1249 		break;
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 /*----------------------------------------------------------------------*/
1256 
1257 static int ds1307_nvram_read(void *priv, unsigned int offset, void *val,
1258 			     size_t bytes)
1259 {
1260 	struct ds1307 *ds1307 = priv;
1261 	const struct chip_desc *chip = &chips[ds1307->type];
1262 
1263 	return regmap_bulk_read(ds1307->regmap, chip->nvram_offset + offset,
1264 				val, bytes);
1265 }
1266 
1267 static int ds1307_nvram_write(void *priv, unsigned int offset, void *val,
1268 			      size_t bytes)
1269 {
1270 	struct ds1307 *ds1307 = priv;
1271 	const struct chip_desc *chip = &chips[ds1307->type];
1272 
1273 	return regmap_bulk_write(ds1307->regmap, chip->nvram_offset + offset,
1274 				 val, bytes);
1275 }
1276 
1277 /*----------------------------------------------------------------------*/
1278 
1279 static u8 ds1307_trickle_init(struct ds1307 *ds1307,
1280 			      const struct chip_desc *chip)
1281 {
1282 	u32 ohms, chargeable;
1283 	bool diode = chip->charge_default;
1284 
1285 	if (!chip->do_trickle_setup)
1286 		return 0;
1287 
1288 	if (device_property_read_u32(ds1307->dev, "trickle-resistor-ohms",
1289 				     &ohms) && chip->requires_trickle_resistor)
1290 		return 0;
1291 
1292 	/* aux-voltage-chargeable takes precedence over the deprecated
1293 	 * trickle-diode-disable
1294 	 */
1295 	if (!device_property_read_u32(ds1307->dev, "aux-voltage-chargeable",
1296 				     &chargeable)) {
1297 		switch (chargeable) {
1298 		case 0:
1299 			diode = false;
1300 			break;
1301 		case 1:
1302 			diode = true;
1303 			break;
1304 		default:
1305 			dev_warn(ds1307->dev,
1306 				 "unsupported aux-voltage-chargeable value\n");
1307 			break;
1308 		}
1309 	} else if (device_property_read_bool(ds1307->dev,
1310 					     "trickle-diode-disable")) {
1311 		diode = false;
1312 	}
1313 
1314 	return chip->do_trickle_setup(ds1307, ohms, diode);
1315 }
1316 
1317 /*----------------------------------------------------------------------*/
1318 
1319 #if IS_REACHABLE(CONFIG_HWMON)
1320 
1321 /*
1322  * Temperature sensor support for ds3231 devices.
1323  */
1324 
1325 #define DS3231_REG_TEMPERATURE	0x11
1326 
1327 /*
1328  * A user-initiated temperature conversion is not started by this function,
1329  * so the temperature is updated once every 64 seconds.
1330  */
1331 static int ds3231_hwmon_read_temp(struct device *dev, s32 *mC)
1332 {
1333 	struct ds1307 *ds1307 = dev_get_drvdata(dev);
1334 	u8 temp_buf[2];
1335 	s16 temp;
1336 	int ret;
1337 
1338 	ret = regmap_bulk_read(ds1307->regmap, DS3231_REG_TEMPERATURE,
1339 			       temp_buf, sizeof(temp_buf));
1340 	if (ret)
1341 		return ret;
1342 	/*
1343 	 * Temperature is represented as a 10-bit code with a resolution of
1344 	 * 0.25 degree celsius and encoded in two's complement format.
1345 	 */
1346 	temp = (temp_buf[0] << 8) | temp_buf[1];
1347 	temp >>= 6;
1348 	*mC = temp * 250;
1349 
1350 	return 0;
1351 }
1352 
1353 static ssize_t ds3231_hwmon_show_temp(struct device *dev,
1354 				      struct device_attribute *attr, char *buf)
1355 {
1356 	int ret;
1357 	s32 temp;
1358 
1359 	ret = ds3231_hwmon_read_temp(dev, &temp);
1360 	if (ret)
1361 		return ret;
1362 
1363 	return sprintf(buf, "%d\n", temp);
1364 }
1365 static SENSOR_DEVICE_ATTR(temp1_input, 0444, ds3231_hwmon_show_temp,
1366 			  NULL, 0);
1367 
1368 static struct attribute *ds3231_hwmon_attrs[] = {
1369 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1370 	NULL,
1371 };
1372 ATTRIBUTE_GROUPS(ds3231_hwmon);
1373 
1374 static void ds1307_hwmon_register(struct ds1307 *ds1307)
1375 {
1376 	struct device *dev;
1377 
1378 	if (ds1307->type != ds_3231)
1379 		return;
1380 
1381 	dev = devm_hwmon_device_register_with_groups(ds1307->dev, ds1307->name,
1382 						     ds1307,
1383 						     ds3231_hwmon_groups);
1384 	if (IS_ERR(dev)) {
1385 		dev_warn(ds1307->dev, "unable to register hwmon device %ld\n",
1386 			 PTR_ERR(dev));
1387 	}
1388 }
1389 
1390 #else
1391 
1392 static void ds1307_hwmon_register(struct ds1307 *ds1307)
1393 {
1394 }
1395 
1396 #endif /* CONFIG_RTC_DRV_DS1307_HWMON */
1397 
1398 /*----------------------------------------------------------------------*/
1399 
1400 /*
1401  * Square-wave output support for DS3231
1402  * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
1403  */
1404 #ifdef CONFIG_COMMON_CLK
1405 
1406 enum {
1407 	DS3231_CLK_SQW = 0,
1408 	DS3231_CLK_32KHZ,
1409 };
1410 
1411 #define clk_sqw_to_ds1307(clk)	\
1412 	container_of(clk, struct ds1307, clks[DS3231_CLK_SQW])
1413 #define clk_32khz_to_ds1307(clk)	\
1414 	container_of(clk, struct ds1307, clks[DS3231_CLK_32KHZ])
1415 
1416 static int ds3231_clk_sqw_rates[] = {
1417 	1,
1418 	1024,
1419 	4096,
1420 	8192,
1421 };
1422 
1423 static int ds1337_write_control(struct ds1307 *ds1307, u8 mask, u8 value)
1424 {
1425 	struct mutex *lock = &ds1307->rtc->ops_lock;
1426 	int ret;
1427 
1428 	mutex_lock(lock);
1429 	ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1430 				 mask, value);
1431 	mutex_unlock(lock);
1432 
1433 	return ret;
1434 }
1435 
1436 static unsigned long ds3231_clk_sqw_recalc_rate(struct clk_hw *hw,
1437 						unsigned long parent_rate)
1438 {
1439 	struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1440 	int control, ret;
1441 	int rate_sel = 0;
1442 
1443 	ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1444 	if (ret)
1445 		return ret;
1446 	if (control & DS1337_BIT_RS1)
1447 		rate_sel += 1;
1448 	if (control & DS1337_BIT_RS2)
1449 		rate_sel += 2;
1450 
1451 	return ds3231_clk_sqw_rates[rate_sel];
1452 }
1453 
1454 static long ds3231_clk_sqw_round_rate(struct clk_hw *hw, unsigned long rate,
1455 				      unsigned long *prate)
1456 {
1457 	int i;
1458 
1459 	for (i = ARRAY_SIZE(ds3231_clk_sqw_rates) - 1; i >= 0; i--) {
1460 		if (ds3231_clk_sqw_rates[i] <= rate)
1461 			return ds3231_clk_sqw_rates[i];
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int ds3231_clk_sqw_set_rate(struct clk_hw *hw, unsigned long rate,
1468 				   unsigned long parent_rate)
1469 {
1470 	struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1471 	int control = 0;
1472 	int rate_sel;
1473 
1474 	for (rate_sel = 0; rate_sel < ARRAY_SIZE(ds3231_clk_sqw_rates);
1475 			rate_sel++) {
1476 		if (ds3231_clk_sqw_rates[rate_sel] == rate)
1477 			break;
1478 	}
1479 
1480 	if (rate_sel == ARRAY_SIZE(ds3231_clk_sqw_rates))
1481 		return -EINVAL;
1482 
1483 	if (rate_sel & 1)
1484 		control |= DS1337_BIT_RS1;
1485 	if (rate_sel & 2)
1486 		control |= DS1337_BIT_RS2;
1487 
1488 	return ds1337_write_control(ds1307, DS1337_BIT_RS1 | DS1337_BIT_RS2,
1489 				control);
1490 }
1491 
1492 static int ds3231_clk_sqw_prepare(struct clk_hw *hw)
1493 {
1494 	struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1495 
1496 	return ds1337_write_control(ds1307, DS1337_BIT_INTCN, 0);
1497 }
1498 
1499 static void ds3231_clk_sqw_unprepare(struct clk_hw *hw)
1500 {
1501 	struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1502 
1503 	ds1337_write_control(ds1307, DS1337_BIT_INTCN, DS1337_BIT_INTCN);
1504 }
1505 
1506 static int ds3231_clk_sqw_is_prepared(struct clk_hw *hw)
1507 {
1508 	struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1509 	int control, ret;
1510 
1511 	ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1512 	if (ret)
1513 		return ret;
1514 
1515 	return !(control & DS1337_BIT_INTCN);
1516 }
1517 
1518 static const struct clk_ops ds3231_clk_sqw_ops = {
1519 	.prepare = ds3231_clk_sqw_prepare,
1520 	.unprepare = ds3231_clk_sqw_unprepare,
1521 	.is_prepared = ds3231_clk_sqw_is_prepared,
1522 	.recalc_rate = ds3231_clk_sqw_recalc_rate,
1523 	.round_rate = ds3231_clk_sqw_round_rate,
1524 	.set_rate = ds3231_clk_sqw_set_rate,
1525 };
1526 
1527 static unsigned long ds3231_clk_32khz_recalc_rate(struct clk_hw *hw,
1528 						  unsigned long parent_rate)
1529 {
1530 	return 32768;
1531 }
1532 
1533 static int ds3231_clk_32khz_control(struct ds1307 *ds1307, bool enable)
1534 {
1535 	struct mutex *lock = &ds1307->rtc->ops_lock;
1536 	int ret;
1537 
1538 	mutex_lock(lock);
1539 	ret = regmap_update_bits(ds1307->regmap, DS1337_REG_STATUS,
1540 				 DS3231_BIT_EN32KHZ,
1541 				 enable ? DS3231_BIT_EN32KHZ : 0);
1542 	mutex_unlock(lock);
1543 
1544 	return ret;
1545 }
1546 
1547 static int ds3231_clk_32khz_prepare(struct clk_hw *hw)
1548 {
1549 	struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1550 
1551 	return ds3231_clk_32khz_control(ds1307, true);
1552 }
1553 
1554 static void ds3231_clk_32khz_unprepare(struct clk_hw *hw)
1555 {
1556 	struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1557 
1558 	ds3231_clk_32khz_control(ds1307, false);
1559 }
1560 
1561 static int ds3231_clk_32khz_is_prepared(struct clk_hw *hw)
1562 {
1563 	struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1564 	int status, ret;
1565 
1566 	ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &status);
1567 	if (ret)
1568 		return ret;
1569 
1570 	return !!(status & DS3231_BIT_EN32KHZ);
1571 }
1572 
1573 static const struct clk_ops ds3231_clk_32khz_ops = {
1574 	.prepare = ds3231_clk_32khz_prepare,
1575 	.unprepare = ds3231_clk_32khz_unprepare,
1576 	.is_prepared = ds3231_clk_32khz_is_prepared,
1577 	.recalc_rate = ds3231_clk_32khz_recalc_rate,
1578 };
1579 
1580 static const char *ds3231_clks_names[] = {
1581 	[DS3231_CLK_SQW] = "ds3231_clk_sqw",
1582 	[DS3231_CLK_32KHZ] = "ds3231_clk_32khz",
1583 };
1584 
1585 static struct clk_init_data ds3231_clks_init[] = {
1586 	[DS3231_CLK_SQW] = {
1587 		.ops = &ds3231_clk_sqw_ops,
1588 	},
1589 	[DS3231_CLK_32KHZ] = {
1590 		.ops = &ds3231_clk_32khz_ops,
1591 	},
1592 };
1593 
1594 static int ds3231_clks_register(struct ds1307 *ds1307)
1595 {
1596 	struct device_node *node = ds1307->dev->of_node;
1597 	struct clk_onecell_data	*onecell;
1598 	int i;
1599 
1600 	onecell = devm_kzalloc(ds1307->dev, sizeof(*onecell), GFP_KERNEL);
1601 	if (!onecell)
1602 		return -ENOMEM;
1603 
1604 	onecell->clk_num = ARRAY_SIZE(ds3231_clks_init);
1605 	onecell->clks = devm_kcalloc(ds1307->dev, onecell->clk_num,
1606 				     sizeof(onecell->clks[0]), GFP_KERNEL);
1607 	if (!onecell->clks)
1608 		return -ENOMEM;
1609 
1610 	/* optional override of the clockname */
1611 	device_property_read_string_array(ds1307->dev, "clock-output-names",
1612 					  ds3231_clks_names,
1613 					  ARRAY_SIZE(ds3231_clks_names));
1614 
1615 	for (i = 0; i < ARRAY_SIZE(ds3231_clks_init); i++) {
1616 		struct clk_init_data init = ds3231_clks_init[i];
1617 
1618 		/*
1619 		 * Interrupt signal due to alarm conditions and square-wave
1620 		 * output share same pin, so don't initialize both.
1621 		 */
1622 		if (i == DS3231_CLK_SQW && test_bit(RTC_FEATURE_ALARM, ds1307->rtc->features))
1623 			continue;
1624 
1625 		init.name = ds3231_clks_names[i];
1626 		ds1307->clks[i].init = &init;
1627 
1628 		onecell->clks[i] = devm_clk_register(ds1307->dev,
1629 						     &ds1307->clks[i]);
1630 		if (IS_ERR(onecell->clks[i]))
1631 			return PTR_ERR(onecell->clks[i]);
1632 	}
1633 
1634 	if (node)
1635 		of_clk_add_provider(node, of_clk_src_onecell_get, onecell);
1636 
1637 	return 0;
1638 }
1639 
1640 static void ds1307_clks_register(struct ds1307 *ds1307)
1641 {
1642 	int ret;
1643 
1644 	if (ds1307->type != ds_3231)
1645 		return;
1646 
1647 	ret = ds3231_clks_register(ds1307);
1648 	if (ret) {
1649 		dev_warn(ds1307->dev, "unable to register clock device %d\n",
1650 			 ret);
1651 	}
1652 }
1653 
1654 #else
1655 
1656 static void ds1307_clks_register(struct ds1307 *ds1307)
1657 {
1658 }
1659 
1660 #endif /* CONFIG_COMMON_CLK */
1661 
1662 #ifdef CONFIG_WATCHDOG_CORE
1663 static const struct watchdog_info ds1388_wdt_info = {
1664 	.options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE,
1665 	.identity = "DS1388 watchdog",
1666 };
1667 
1668 static const struct watchdog_ops ds1388_wdt_ops = {
1669 	.owner = THIS_MODULE,
1670 	.start = ds1388_wdt_start,
1671 	.stop = ds1388_wdt_stop,
1672 	.ping = ds1388_wdt_ping,
1673 	.set_timeout = ds1388_wdt_set_timeout,
1674 
1675 };
1676 
1677 static void ds1307_wdt_register(struct ds1307 *ds1307)
1678 {
1679 	struct watchdog_device	*wdt;
1680 	int err;
1681 	int val;
1682 
1683 	if (ds1307->type != ds_1388)
1684 		return;
1685 
1686 	wdt = devm_kzalloc(ds1307->dev, sizeof(*wdt), GFP_KERNEL);
1687 	if (!wdt)
1688 		return;
1689 
1690 	err = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &val);
1691 	if (!err && val & DS1388_BIT_WF)
1692 		wdt->bootstatus = WDIOF_CARDRESET;
1693 
1694 	wdt->info = &ds1388_wdt_info;
1695 	wdt->ops = &ds1388_wdt_ops;
1696 	wdt->timeout = 99;
1697 	wdt->max_timeout = 99;
1698 	wdt->min_timeout = 1;
1699 
1700 	watchdog_init_timeout(wdt, 0, ds1307->dev);
1701 	watchdog_set_drvdata(wdt, ds1307);
1702 	devm_watchdog_register_device(ds1307->dev, wdt);
1703 }
1704 #else
1705 static void ds1307_wdt_register(struct ds1307 *ds1307)
1706 {
1707 }
1708 #endif /* CONFIG_WATCHDOG_CORE */
1709 
1710 static const struct regmap_config regmap_config = {
1711 	.reg_bits = 8,
1712 	.val_bits = 8,
1713 };
1714 
1715 static int ds1307_probe(struct i2c_client *client)
1716 {
1717 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
1718 	struct ds1307		*ds1307;
1719 	const void		*match;
1720 	int			err = -ENODEV;
1721 	int			tmp;
1722 	const struct chip_desc	*chip;
1723 	bool			want_irq;
1724 	bool			ds1307_can_wakeup_device = false;
1725 	unsigned char		regs[8];
1726 	struct ds1307_platform_data *pdata = dev_get_platdata(&client->dev);
1727 	u8			trickle_charger_setup = 0;
1728 
1729 	ds1307 = devm_kzalloc(&client->dev, sizeof(struct ds1307), GFP_KERNEL);
1730 	if (!ds1307)
1731 		return -ENOMEM;
1732 
1733 	dev_set_drvdata(&client->dev, ds1307);
1734 	ds1307->dev = &client->dev;
1735 	ds1307->name = client->name;
1736 
1737 	ds1307->regmap = devm_regmap_init_i2c(client, &regmap_config);
1738 	if (IS_ERR(ds1307->regmap)) {
1739 		dev_err(ds1307->dev, "regmap allocation failed\n");
1740 		return PTR_ERR(ds1307->regmap);
1741 	}
1742 
1743 	i2c_set_clientdata(client, ds1307);
1744 
1745 	match = device_get_match_data(&client->dev);
1746 	if (match) {
1747 		ds1307->type = (enum ds_type)match;
1748 		chip = &chips[ds1307->type];
1749 	} else if (id) {
1750 		chip = &chips[id->driver_data];
1751 		ds1307->type = id->driver_data;
1752 	} else {
1753 		return -ENODEV;
1754 	}
1755 
1756 	want_irq = client->irq > 0 && chip->alarm;
1757 
1758 	if (!pdata)
1759 		trickle_charger_setup = ds1307_trickle_init(ds1307, chip);
1760 	else if (pdata->trickle_charger_setup)
1761 		trickle_charger_setup = pdata->trickle_charger_setup;
1762 
1763 	if (trickle_charger_setup && chip->trickle_charger_reg) {
1764 		dev_dbg(ds1307->dev,
1765 			"writing trickle charger info 0x%x to 0x%x\n",
1766 			trickle_charger_setup, chip->trickle_charger_reg);
1767 		regmap_write(ds1307->regmap, chip->trickle_charger_reg,
1768 			     trickle_charger_setup);
1769 	}
1770 
1771 /*
1772  * For devices with no IRQ directly connected to the SoC, the RTC chip
1773  * can be forced as a wakeup source by stating that explicitly in
1774  * the device's .dts file using the "wakeup-source" boolean property.
1775  * If the "wakeup-source" property is set, don't request an IRQ.
1776  * This will guarantee the 'wakealarm' sysfs entry is available on the device,
1777  * if supported by the RTC.
1778  */
1779 	if (chip->alarm && device_property_read_bool(&client->dev, "wakeup-source"))
1780 		ds1307_can_wakeup_device = true;
1781 
1782 	switch (ds1307->type) {
1783 	case ds_1337:
1784 	case ds_1339:
1785 	case ds_1341:
1786 	case ds_3231:
1787 		/* get registers that the "rtc" read below won't read... */
1788 		err = regmap_bulk_read(ds1307->regmap, DS1337_REG_CONTROL,
1789 				       regs, 2);
1790 		if (err) {
1791 			dev_dbg(ds1307->dev, "read error %d\n", err);
1792 			goto exit;
1793 		}
1794 
1795 		/* oscillator off?  turn it on, so clock can tick. */
1796 		if (regs[0] & DS1337_BIT_nEOSC)
1797 			regs[0] &= ~DS1337_BIT_nEOSC;
1798 
1799 		/*
1800 		 * Using IRQ or defined as wakeup-source?
1801 		 * Disable the square wave and both alarms.
1802 		 * For some variants, be sure alarms can trigger when we're
1803 		 * running on Vbackup (BBSQI/BBSQW)
1804 		 */
1805 		if (want_irq || ds1307_can_wakeup_device) {
1806 			regs[0] |= DS1337_BIT_INTCN | chip->bbsqi_bit;
1807 			regs[0] &= ~(DS1337_BIT_A2IE | DS1337_BIT_A1IE);
1808 		}
1809 
1810 		regmap_write(ds1307->regmap, DS1337_REG_CONTROL,
1811 			     regs[0]);
1812 
1813 		/* oscillator fault?  clear flag, and warn */
1814 		if (regs[1] & DS1337_BIT_OSF) {
1815 			regmap_write(ds1307->regmap, DS1337_REG_STATUS,
1816 				     regs[1] & ~DS1337_BIT_OSF);
1817 			dev_warn(ds1307->dev, "SET TIME!\n");
1818 		}
1819 		break;
1820 
1821 	case rx_8025:
1822 		err = regmap_bulk_read(ds1307->regmap,
1823 				       RX8025_REG_CTRL1 << 4 | 0x08, regs, 2);
1824 		if (err) {
1825 			dev_dbg(ds1307->dev, "read error %d\n", err);
1826 			goto exit;
1827 		}
1828 
1829 		/* oscillator off?  turn it on, so clock can tick. */
1830 		if (!(regs[1] & RX8025_BIT_XST)) {
1831 			regs[1] |= RX8025_BIT_XST;
1832 			regmap_write(ds1307->regmap,
1833 				     RX8025_REG_CTRL2 << 4 | 0x08,
1834 				     regs[1]);
1835 			dev_warn(ds1307->dev,
1836 				 "oscillator stop detected - SET TIME!\n");
1837 		}
1838 
1839 		if (regs[1] & RX8025_BIT_PON) {
1840 			regs[1] &= ~RX8025_BIT_PON;
1841 			regmap_write(ds1307->regmap,
1842 				     RX8025_REG_CTRL2 << 4 | 0x08,
1843 				     regs[1]);
1844 			dev_warn(ds1307->dev, "power-on detected\n");
1845 		}
1846 
1847 		if (regs[1] & RX8025_BIT_VDET) {
1848 			regs[1] &= ~RX8025_BIT_VDET;
1849 			regmap_write(ds1307->regmap,
1850 				     RX8025_REG_CTRL2 << 4 | 0x08,
1851 				     regs[1]);
1852 			dev_warn(ds1307->dev, "voltage drop detected\n");
1853 		}
1854 
1855 		/* make sure we are running in 24hour mode */
1856 		if (!(regs[0] & RX8025_BIT_2412)) {
1857 			u8 hour;
1858 
1859 			/* switch to 24 hour mode */
1860 			regmap_write(ds1307->regmap,
1861 				     RX8025_REG_CTRL1 << 4 | 0x08,
1862 				     regs[0] | RX8025_BIT_2412);
1863 
1864 			err = regmap_bulk_read(ds1307->regmap,
1865 					       RX8025_REG_CTRL1 << 4 | 0x08,
1866 					       regs, 2);
1867 			if (err) {
1868 				dev_dbg(ds1307->dev, "read error %d\n", err);
1869 				goto exit;
1870 			}
1871 
1872 			/* correct hour */
1873 			hour = bcd2bin(regs[DS1307_REG_HOUR]);
1874 			if (hour == 12)
1875 				hour = 0;
1876 			if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1877 				hour += 12;
1878 
1879 			regmap_write(ds1307->regmap,
1880 				     DS1307_REG_HOUR << 4 | 0x08, hour);
1881 		}
1882 		break;
1883 	case ds_1388:
1884 		err = regmap_read(ds1307->regmap, DS1388_REG_CONTROL, &tmp);
1885 		if (err) {
1886 			dev_dbg(ds1307->dev, "read error %d\n", err);
1887 			goto exit;
1888 		}
1889 
1890 		/* oscillator off?  turn it on, so clock can tick. */
1891 		if (tmp & DS1388_BIT_nEOSC) {
1892 			tmp &= ~DS1388_BIT_nEOSC;
1893 			regmap_write(ds1307->regmap, DS1388_REG_CONTROL, tmp);
1894 		}
1895 		break;
1896 	default:
1897 		break;
1898 	}
1899 
1900 	/* read RTC registers */
1901 	err = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
1902 			       sizeof(regs));
1903 	if (err) {
1904 		dev_dbg(ds1307->dev, "read error %d\n", err);
1905 		goto exit;
1906 	}
1907 
1908 	if (ds1307->type == mcp794xx &&
1909 	    !(regs[DS1307_REG_WDAY] & MCP794XX_BIT_VBATEN)) {
1910 		regmap_write(ds1307->regmap, DS1307_REG_WDAY,
1911 			     regs[DS1307_REG_WDAY] |
1912 			     MCP794XX_BIT_VBATEN);
1913 	}
1914 
1915 	tmp = regs[DS1307_REG_HOUR];
1916 	switch (ds1307->type) {
1917 	case ds_1340:
1918 	case m41t0:
1919 	case m41t00:
1920 	case m41t11:
1921 		/*
1922 		 * NOTE: ignores century bits; fix before deploying
1923 		 * systems that will run through year 2100.
1924 		 */
1925 		break;
1926 	case rx_8025:
1927 		break;
1928 	default:
1929 		if (!(tmp & DS1307_BIT_12HR))
1930 			break;
1931 
1932 		/*
1933 		 * Be sure we're in 24 hour mode.  Multi-master systems
1934 		 * take note...
1935 		 */
1936 		tmp = bcd2bin(tmp & 0x1f);
1937 		if (tmp == 12)
1938 			tmp = 0;
1939 		if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1940 			tmp += 12;
1941 		regmap_write(ds1307->regmap, chip->offset + DS1307_REG_HOUR,
1942 			     bin2bcd(tmp));
1943 	}
1944 
1945 	ds1307->rtc = devm_rtc_allocate_device(ds1307->dev);
1946 	if (IS_ERR(ds1307->rtc))
1947 		return PTR_ERR(ds1307->rtc);
1948 
1949 	if (want_irq || ds1307_can_wakeup_device)
1950 		device_set_wakeup_capable(ds1307->dev, true);
1951 	else
1952 		clear_bit(RTC_FEATURE_ALARM, ds1307->rtc->features);
1953 
1954 	if (ds1307_can_wakeup_device && !want_irq) {
1955 		dev_info(ds1307->dev,
1956 			 "'wakeup-source' is set, request for an IRQ is disabled!\n");
1957 		/* We cannot support UIE mode if we do not have an IRQ line */
1958 		clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, ds1307->rtc->features);
1959 	}
1960 
1961 	if (want_irq) {
1962 		err = devm_request_threaded_irq(ds1307->dev, client->irq, NULL,
1963 						chip->irq_handler ?: ds1307_irq,
1964 						IRQF_SHARED | IRQF_ONESHOT,
1965 						ds1307->name, ds1307);
1966 		if (err) {
1967 			client->irq = 0;
1968 			device_set_wakeup_capable(ds1307->dev, false);
1969 			clear_bit(RTC_FEATURE_ALARM, ds1307->rtc->features);
1970 			dev_err(ds1307->dev, "unable to request IRQ!\n");
1971 		} else {
1972 			dev_dbg(ds1307->dev, "got IRQ %d\n", client->irq);
1973 		}
1974 	}
1975 
1976 	ds1307->rtc->ops = chip->rtc_ops ?: &ds13xx_rtc_ops;
1977 	err = ds1307_add_frequency_test(ds1307);
1978 	if (err)
1979 		return err;
1980 
1981 	err = devm_rtc_register_device(ds1307->rtc);
1982 	if (err)
1983 		return err;
1984 
1985 	if (chip->nvram_size) {
1986 		struct nvmem_config nvmem_cfg = {
1987 			.name = "ds1307_nvram",
1988 			.word_size = 1,
1989 			.stride = 1,
1990 			.size = chip->nvram_size,
1991 			.reg_read = ds1307_nvram_read,
1992 			.reg_write = ds1307_nvram_write,
1993 			.priv = ds1307,
1994 		};
1995 
1996 		devm_rtc_nvmem_register(ds1307->rtc, &nvmem_cfg);
1997 	}
1998 
1999 	ds1307_hwmon_register(ds1307);
2000 	ds1307_clks_register(ds1307);
2001 	ds1307_wdt_register(ds1307);
2002 
2003 	return 0;
2004 
2005 exit:
2006 	return err;
2007 }
2008 
2009 static struct i2c_driver ds1307_driver = {
2010 	.driver = {
2011 		.name	= "rtc-ds1307",
2012 		.of_match_table = ds1307_of_match,
2013 	},
2014 	.probe		= ds1307_probe,
2015 	.id_table	= ds1307_id,
2016 };
2017 
2018 module_i2c_driver(ds1307_driver);
2019 
2020 MODULE_DESCRIPTION("RTC driver for DS1307 and similar chips");
2021 MODULE_LICENSE("GPL");
2022