xref: /openbmc/linux/drivers/rtc/rtc-ds1305.c (revision a8fe58ce)
1 /*
2  * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
3  *
4  * Copyright (C) 2008 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/bcd.h>
14 #include <linux/slab.h>
15 #include <linux/rtc.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/spi/spi.h>
19 #include <linux/spi/ds1305.h>
20 #include <linux/module.h>
21 
22 
23 /*
24  * Registers ... mask DS1305_WRITE into register address to write,
25  * otherwise you're reading it.  All non-bitmask values are BCD.
26  */
27 #define DS1305_WRITE		0x80
28 
29 
30 /* RTC date/time ... the main special cases are that we:
31  *  - Need fancy "hours" encoding in 12hour mode
32  *  - Don't rely on the "day-of-week" field (or tm_wday)
33  *  - Are a 21st-century clock (2000 <= year < 2100)
34  */
35 #define DS1305_RTC_LEN		7		/* bytes for RTC regs */
36 
37 #define DS1305_SEC		0x00		/* register addresses */
38 #define DS1305_MIN		0x01
39 #define DS1305_HOUR		0x02
40 #	define DS1305_HR_12		0x40	/* set == 12 hr mode */
41 #	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
42 #define DS1305_WDAY		0x03
43 #define DS1305_MDAY		0x04
44 #define DS1305_MON		0x05
45 #define DS1305_YEAR		0x06
46 
47 
48 /* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
49  * DS1305_ALM_DISABLE disables a match field (some combos are bad).
50  *
51  * NOTE that since we don't use WDAY, we limit ourselves to alarms
52  * only one day into the future (vs potentially up to a week).
53  *
54  * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
55  * don't currently support them.  We'd either need to do it only when
56  * no alarm is pending (not the standard model), or to use the second
57  * alarm (implying that this is a DS1305 not DS1306, *and* that either
58  * it's wired up a second IRQ we know, or that INTCN is set)
59  */
60 #define DS1305_ALM_LEN		4		/* bytes for ALM regs */
61 #define DS1305_ALM_DISABLE	0x80
62 
63 #define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
64 #define DS1305_ALM1(r)		(0x0b + (r))
65 
66 
67 /* three control registers */
68 #define DS1305_CONTROL_LEN	3		/* bytes of control regs */
69 
70 #define DS1305_CONTROL		0x0f		/* register addresses */
71 #	define DS1305_nEOSC		0x80	/* low enables oscillator */
72 #	define DS1305_WP		0x40	/* write protect */
73 #	define DS1305_INTCN		0x04	/* clear == only int0 used */
74 #	define DS1306_1HZ		0x04	/* enable 1Hz output */
75 #	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
76 #	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
77 #define DS1305_STATUS		0x10
78 /* status has just AEIx bits, mirrored as IRQFx */
79 #define DS1305_TRICKLE		0x11
80 /* trickle bits are defined in <linux/spi/ds1305.h> */
81 
82 /* a bunch of NVRAM */
83 #define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
84 
85 #define DS1305_NVRAM		0x20		/* register addresses */
86 
87 
88 struct ds1305 {
89 	struct spi_device	*spi;
90 	struct rtc_device	*rtc;
91 
92 	struct work_struct	work;
93 
94 	unsigned long		flags;
95 #define FLAG_EXITING	0
96 
97 	bool			hr12;
98 	u8			ctrl[DS1305_CONTROL_LEN];
99 };
100 
101 
102 /*----------------------------------------------------------------------*/
103 
104 /*
105  * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
106  * software (like a bootloader) which may require it.
107  */
108 
109 static unsigned bcd2hour(u8 bcd)
110 {
111 	if (bcd & DS1305_HR_12) {
112 		unsigned	hour = 0;
113 
114 		bcd &= ~DS1305_HR_12;
115 		if (bcd & DS1305_HR_PM) {
116 			hour = 12;
117 			bcd &= ~DS1305_HR_PM;
118 		}
119 		hour += bcd2bin(bcd);
120 		return hour - 1;
121 	}
122 	return bcd2bin(bcd);
123 }
124 
125 static u8 hour2bcd(bool hr12, int hour)
126 {
127 	if (hr12) {
128 		hour++;
129 		if (hour <= 12)
130 			return DS1305_HR_12 | bin2bcd(hour);
131 		hour -= 12;
132 		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
133 	}
134 	return bin2bcd(hour);
135 }
136 
137 /*----------------------------------------------------------------------*/
138 
139 /*
140  * Interface to RTC framework
141  */
142 
143 static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
144 {
145 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
146 	u8		buf[2];
147 	long		err = -EINVAL;
148 
149 	buf[0] = DS1305_WRITE | DS1305_CONTROL;
150 	buf[1] = ds1305->ctrl[0];
151 
152 	if (enabled) {
153 		if (ds1305->ctrl[0] & DS1305_AEI0)
154 			goto done;
155 		buf[1] |= DS1305_AEI0;
156 	} else {
157 		if (!(buf[1] & DS1305_AEI0))
158 			goto done;
159 		buf[1] &= ~DS1305_AEI0;
160 	}
161 	err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
162 	if (err >= 0)
163 		ds1305->ctrl[0] = buf[1];
164 done:
165 	return err;
166 
167 }
168 
169 
170 /*
171  * Get/set of date and time is pretty normal.
172  */
173 
174 static int ds1305_get_time(struct device *dev, struct rtc_time *time)
175 {
176 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
177 	u8		addr = DS1305_SEC;
178 	u8		buf[DS1305_RTC_LEN];
179 	int		status;
180 
181 	/* Use write-then-read to get all the date/time registers
182 	 * since dma from stack is nonportable
183 	 */
184 	status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
185 			buf, sizeof(buf));
186 	if (status < 0)
187 		return status;
188 
189 	dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
190 
191 	/* Decode the registers */
192 	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
193 	time->tm_min = bcd2bin(buf[DS1305_MIN]);
194 	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
195 	time->tm_wday = buf[DS1305_WDAY] - 1;
196 	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
197 	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
198 	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
199 
200 	dev_vdbg(dev, "%s secs=%d, mins=%d, "
201 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
202 		"read", time->tm_sec, time->tm_min,
203 		time->tm_hour, time->tm_mday,
204 		time->tm_mon, time->tm_year, time->tm_wday);
205 
206 	/* Time may not be set */
207 	return rtc_valid_tm(time);
208 }
209 
210 static int ds1305_set_time(struct device *dev, struct rtc_time *time)
211 {
212 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
213 	u8		buf[1 + DS1305_RTC_LEN];
214 	u8		*bp = buf;
215 
216 	dev_vdbg(dev, "%s secs=%d, mins=%d, "
217 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
218 		"write", time->tm_sec, time->tm_min,
219 		time->tm_hour, time->tm_mday,
220 		time->tm_mon, time->tm_year, time->tm_wday);
221 
222 	/* Write registers starting at the first time/date address. */
223 	*bp++ = DS1305_WRITE | DS1305_SEC;
224 
225 	*bp++ = bin2bcd(time->tm_sec);
226 	*bp++ = bin2bcd(time->tm_min);
227 	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
228 	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
229 	*bp++ = bin2bcd(time->tm_mday);
230 	*bp++ = bin2bcd(time->tm_mon + 1);
231 	*bp++ = bin2bcd(time->tm_year - 100);
232 
233 	dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
234 
235 	/* use write-then-read since dma from stack is nonportable */
236 	return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
237 			NULL, 0);
238 }
239 
240 /*
241  * Get/set of alarm is a bit funky:
242  *
243  * - First there's the inherent raciness of getting the (partitioned)
244  *   status of an alarm that could trigger while we're reading parts
245  *   of that status.
246  *
247  * - Second there's its limited range (we could increase it a bit by
248  *   relying on WDAY), which means it will easily roll over.
249  *
250  * - Third there's the choice of two alarms and alarm signals.
251  *   Here we use ALM0 and expect that nINT0 (open drain) is used;
252  *   that's the only real option for DS1306 runtime alarms, and is
253  *   natural on DS1305.
254  *
255  * - Fourth, there's also ALM1, and a second interrupt signal:
256  *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
257  *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
258  *       and it won't work when VCC1 is active.
259  *
260  *   So to be most general, we should probably set both alarms to the
261  *   same value, letting ALM1 be the wakeup event source on DS1306
262  *   and handling several wiring options on DS1305.
263  *
264  * - Fifth, we support the polled mode (as well as possible; why not?)
265  *   even when no interrupt line is wired to an IRQ.
266  */
267 
268 /*
269  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
270  */
271 static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
272 {
273 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
274 	struct spi_device *spi = ds1305->spi;
275 	u8		addr;
276 	int		status;
277 	u8		buf[DS1305_ALM_LEN];
278 
279 	/* Refresh control register cache BEFORE reading ALM0 registers,
280 	 * since reading alarm registers acks any pending IRQ.  That
281 	 * makes returning "pending" status a bit of a lie, but that bit
282 	 * of EFI status is at best fragile anyway (given IRQ handlers).
283 	 */
284 	addr = DS1305_CONTROL;
285 	status = spi_write_then_read(spi, &addr, sizeof(addr),
286 			ds1305->ctrl, sizeof(ds1305->ctrl));
287 	if (status < 0)
288 		return status;
289 
290 	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
291 	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
292 
293 	/* get and check ALM0 registers */
294 	addr = DS1305_ALM0(DS1305_SEC);
295 	status = spi_write_then_read(spi, &addr, sizeof(addr),
296 			buf, sizeof(buf));
297 	if (status < 0)
298 		return status;
299 
300 	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
301 		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
302 		buf[DS1305_HOUR], buf[DS1305_WDAY]);
303 
304 	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
305 			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
306 			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
307 		return -EIO;
308 
309 	/* Stuff these values into alm->time and let RTC framework code
310 	 * fill in the rest ... and also handle rollover to tomorrow when
311 	 * that's needed.
312 	 */
313 	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
314 	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
315 	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
316 	alm->time.tm_mday = -1;
317 	alm->time.tm_mon = -1;
318 	alm->time.tm_year = -1;
319 	/* next three fields are unused by Linux */
320 	alm->time.tm_wday = -1;
321 	alm->time.tm_mday = -1;
322 	alm->time.tm_isdst = -1;
323 
324 	return 0;
325 }
326 
327 /*
328  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
329  */
330 static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
331 {
332 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
333 	struct spi_device *spi = ds1305->spi;
334 	unsigned long	now, later;
335 	struct rtc_time	tm;
336 	int		status;
337 	u8		buf[1 + DS1305_ALM_LEN];
338 
339 	/* convert desired alarm to time_t */
340 	status = rtc_tm_to_time(&alm->time, &later);
341 	if (status < 0)
342 		return status;
343 
344 	/* Read current time as time_t */
345 	status = ds1305_get_time(dev, &tm);
346 	if (status < 0)
347 		return status;
348 	status = rtc_tm_to_time(&tm, &now);
349 	if (status < 0)
350 		return status;
351 
352 	/* make sure alarm fires within the next 24 hours */
353 	if (later <= now)
354 		return -EINVAL;
355 	if ((later - now) > 24 * 60 * 60)
356 		return -EDOM;
357 
358 	/* disable alarm if needed */
359 	if (ds1305->ctrl[0] & DS1305_AEI0) {
360 		ds1305->ctrl[0] &= ~DS1305_AEI0;
361 
362 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
363 		buf[1] = ds1305->ctrl[0];
364 		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
365 		if (status < 0)
366 			return status;
367 	}
368 
369 	/* write alarm */
370 	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
371 	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
372 	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
373 	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
374 	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
375 
376 	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
377 		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
378 		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
379 
380 	status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
381 	if (status < 0)
382 		return status;
383 
384 	/* enable alarm if requested */
385 	if (alm->enabled) {
386 		ds1305->ctrl[0] |= DS1305_AEI0;
387 
388 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
389 		buf[1] = ds1305->ctrl[0];
390 		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
391 	}
392 
393 	return status;
394 }
395 
396 #ifdef CONFIG_PROC_FS
397 
398 static int ds1305_proc(struct device *dev, struct seq_file *seq)
399 {
400 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
401 	char		*diodes = "no";
402 	char		*resistors = "";
403 
404 	/* ctrl[2] is treated as read-only; no locking needed */
405 	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
406 		switch (ds1305->ctrl[2] & 0x0c) {
407 		case DS1305_TRICKLE_DS2:
408 			diodes = "2 diodes, ";
409 			break;
410 		case DS1305_TRICKLE_DS1:
411 			diodes = "1 diode, ";
412 			break;
413 		default:
414 			goto done;
415 		}
416 		switch (ds1305->ctrl[2] & 0x03) {
417 		case DS1305_TRICKLE_2K:
418 			resistors = "2k Ohm";
419 			break;
420 		case DS1305_TRICKLE_4K:
421 			resistors = "4k Ohm";
422 			break;
423 		case DS1305_TRICKLE_8K:
424 			resistors = "8k Ohm";
425 			break;
426 		default:
427 			diodes = "no";
428 			break;
429 		}
430 	}
431 
432 done:
433 	seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
434 
435 	return 0;
436 }
437 
438 #else
439 #define ds1305_proc	NULL
440 #endif
441 
442 static const struct rtc_class_ops ds1305_ops = {
443 	.read_time	= ds1305_get_time,
444 	.set_time	= ds1305_set_time,
445 	.read_alarm	= ds1305_get_alarm,
446 	.set_alarm	= ds1305_set_alarm,
447 	.proc		= ds1305_proc,
448 	.alarm_irq_enable = ds1305_alarm_irq_enable,
449 };
450 
451 static void ds1305_work(struct work_struct *work)
452 {
453 	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
454 	struct mutex	*lock = &ds1305->rtc->ops_lock;
455 	struct spi_device *spi = ds1305->spi;
456 	u8		buf[3];
457 	int		status;
458 
459 	/* lock to protect ds1305->ctrl */
460 	mutex_lock(lock);
461 
462 	/* Disable the IRQ, and clear its status ... for now, we "know"
463 	 * that if more than one alarm is active, they're in sync.
464 	 * Note that reading ALM data registers also clears IRQ status.
465 	 */
466 	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
467 	ds1305->ctrl[1] = 0;
468 
469 	buf[0] = DS1305_WRITE | DS1305_CONTROL;
470 	buf[1] = ds1305->ctrl[0];
471 	buf[2] = 0;
472 
473 	status = spi_write_then_read(spi, buf, sizeof(buf),
474 			NULL, 0);
475 	if (status < 0)
476 		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
477 
478 	mutex_unlock(lock);
479 
480 	if (!test_bit(FLAG_EXITING, &ds1305->flags))
481 		enable_irq(spi->irq);
482 
483 	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
484 }
485 
486 /*
487  * This "real" IRQ handler hands off to a workqueue mostly to allow
488  * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
489  * I/O requests in IRQ context (to clear the IRQ status).
490  */
491 static irqreturn_t ds1305_irq(int irq, void *p)
492 {
493 	struct ds1305		*ds1305 = p;
494 
495 	disable_irq(irq);
496 	schedule_work(&ds1305->work);
497 	return IRQ_HANDLED;
498 }
499 
500 /*----------------------------------------------------------------------*/
501 
502 /*
503  * Interface for NVRAM
504  */
505 
506 static void msg_init(struct spi_message *m, struct spi_transfer *x,
507 		u8 *addr, size_t count, char *tx, char *rx)
508 {
509 	spi_message_init(m);
510 	memset(x, 0, 2 * sizeof(*x));
511 
512 	x->tx_buf = addr;
513 	x->len = 1;
514 	spi_message_add_tail(x, m);
515 
516 	x++;
517 
518 	x->tx_buf = tx;
519 	x->rx_buf = rx;
520 	x->len = count;
521 	spi_message_add_tail(x, m);
522 }
523 
524 static ssize_t
525 ds1305_nvram_read(struct file *filp, struct kobject *kobj,
526 		struct bin_attribute *attr,
527 		char *buf, loff_t off, size_t count)
528 {
529 	struct spi_device	*spi;
530 	u8			addr;
531 	struct spi_message	m;
532 	struct spi_transfer	x[2];
533 	int			status;
534 
535 	spi = container_of(kobj, struct spi_device, dev.kobj);
536 
537 	addr = DS1305_NVRAM + off;
538 	msg_init(&m, x, &addr, count, NULL, buf);
539 
540 	status = spi_sync(spi, &m);
541 	if (status < 0)
542 		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
543 	return (status < 0) ? status : count;
544 }
545 
546 static ssize_t
547 ds1305_nvram_write(struct file *filp, struct kobject *kobj,
548 		struct bin_attribute *attr,
549 		char *buf, loff_t off, size_t count)
550 {
551 	struct spi_device	*spi;
552 	u8			addr;
553 	struct spi_message	m;
554 	struct spi_transfer	x[2];
555 	int			status;
556 
557 	spi = container_of(kobj, struct spi_device, dev.kobj);
558 
559 	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
560 	msg_init(&m, x, &addr, count, buf, NULL);
561 
562 	status = spi_sync(spi, &m);
563 	if (status < 0)
564 		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
565 	return (status < 0) ? status : count;
566 }
567 
568 static struct bin_attribute nvram = {
569 	.attr.name	= "nvram",
570 	.attr.mode	= S_IRUGO | S_IWUSR,
571 	.read		= ds1305_nvram_read,
572 	.write		= ds1305_nvram_write,
573 	.size		= DS1305_NVRAM_LEN,
574 };
575 
576 /*----------------------------------------------------------------------*/
577 
578 /*
579  * Interface to SPI stack
580  */
581 
582 static int ds1305_probe(struct spi_device *spi)
583 {
584 	struct ds1305			*ds1305;
585 	int				status;
586 	u8				addr, value;
587 	struct ds1305_platform_data	*pdata = dev_get_platdata(&spi->dev);
588 	bool				write_ctrl = false;
589 
590 	/* Sanity check board setup data.  This may be hooked up
591 	 * in 3wire mode, but we don't care.  Note that unless
592 	 * there's an inverter in place, this needs SPI_CS_HIGH!
593 	 */
594 	if ((spi->bits_per_word && spi->bits_per_word != 8)
595 			|| (spi->max_speed_hz > 2000000)
596 			|| !(spi->mode & SPI_CPHA))
597 		return -EINVAL;
598 
599 	/* set up driver data */
600 	ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
601 	if (!ds1305)
602 		return -ENOMEM;
603 	ds1305->spi = spi;
604 	spi_set_drvdata(spi, ds1305);
605 
606 	/* read and cache control registers */
607 	addr = DS1305_CONTROL;
608 	status = spi_write_then_read(spi, &addr, sizeof(addr),
609 			ds1305->ctrl, sizeof(ds1305->ctrl));
610 	if (status < 0) {
611 		dev_dbg(&spi->dev, "can't %s, %d\n",
612 				"read", status);
613 		return status;
614 	}
615 
616 	dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
617 
618 	/* Sanity check register values ... partially compensating for the
619 	 * fact that SPI has no device handshake.  A pullup on MISO would
620 	 * make these tests fail; but not all systems will have one.  If
621 	 * some register is neither 0x00 nor 0xff, a chip is likely there.
622 	 */
623 	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
624 		dev_dbg(&spi->dev, "RTC chip is not present\n");
625 		return -ENODEV;
626 	}
627 	if (ds1305->ctrl[2] == 0)
628 		dev_dbg(&spi->dev, "chip may not be present\n");
629 
630 	/* enable writes if needed ... if we were paranoid it would
631 	 * make sense to enable them only when absolutely necessary.
632 	 */
633 	if (ds1305->ctrl[0] & DS1305_WP) {
634 		u8		buf[2];
635 
636 		ds1305->ctrl[0] &= ~DS1305_WP;
637 
638 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
639 		buf[1] = ds1305->ctrl[0];
640 		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
641 
642 		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
643 		if (status < 0)
644 			return status;
645 	}
646 
647 	/* on DS1305, maybe start oscillator; like most low power
648 	 * oscillators, it may take a second to stabilize
649 	 */
650 	if (ds1305->ctrl[0] & DS1305_nEOSC) {
651 		ds1305->ctrl[0] &= ~DS1305_nEOSC;
652 		write_ctrl = true;
653 		dev_warn(&spi->dev, "SET TIME!\n");
654 	}
655 
656 	/* ack any pending IRQs */
657 	if (ds1305->ctrl[1]) {
658 		ds1305->ctrl[1] = 0;
659 		write_ctrl = true;
660 	}
661 
662 	/* this may need one-time (re)init */
663 	if (pdata) {
664 		/* maybe enable trickle charge */
665 		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
666 			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
667 						| pdata->trickle;
668 			write_ctrl = true;
669 		}
670 
671 		/* on DS1306, configure 1 Hz signal */
672 		if (pdata->is_ds1306) {
673 			if (pdata->en_1hz) {
674 				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
675 					ds1305->ctrl[0] |= DS1306_1HZ;
676 					write_ctrl = true;
677 				}
678 			} else {
679 				if (ds1305->ctrl[0] & DS1306_1HZ) {
680 					ds1305->ctrl[0] &= ~DS1306_1HZ;
681 					write_ctrl = true;
682 				}
683 			}
684 		}
685 	}
686 
687 	if (write_ctrl) {
688 		u8		buf[4];
689 
690 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
691 		buf[1] = ds1305->ctrl[0];
692 		buf[2] = ds1305->ctrl[1];
693 		buf[3] = ds1305->ctrl[2];
694 		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
695 		if (status < 0) {
696 			dev_dbg(&spi->dev, "can't %s, %d\n",
697 					"write", status);
698 			return status;
699 		}
700 
701 		dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
702 	}
703 
704 	/* see if non-Linux software set up AM/PM mode */
705 	addr = DS1305_HOUR;
706 	status = spi_write_then_read(spi, &addr, sizeof(addr),
707 				&value, sizeof(value));
708 	if (status < 0) {
709 		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
710 		return status;
711 	}
712 
713 	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
714 	if (ds1305->hr12)
715 		dev_dbg(&spi->dev, "AM/PM\n");
716 
717 	/* register RTC ... from here on, ds1305->ctrl needs locking */
718 	ds1305->rtc = devm_rtc_device_register(&spi->dev, "ds1305",
719 			&ds1305_ops, THIS_MODULE);
720 	if (IS_ERR(ds1305->rtc)) {
721 		status = PTR_ERR(ds1305->rtc);
722 		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
723 		return status;
724 	}
725 
726 	/* Maybe set up alarm IRQ; be ready to handle it triggering right
727 	 * away.  NOTE that we don't share this.  The signal is active low,
728 	 * and we can't ack it before a SPI message delay.  We temporarily
729 	 * disable the IRQ until it's acked, which lets us work with more
730 	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
731 	 */
732 	if (spi->irq) {
733 		INIT_WORK(&ds1305->work, ds1305_work);
734 		status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
735 				0, dev_name(&ds1305->rtc->dev), ds1305);
736 		if (status < 0) {
737 			dev_err(&spi->dev, "request_irq %d --> %d\n",
738 					spi->irq, status);
739 		} else {
740 			device_set_wakeup_capable(&spi->dev, 1);
741 		}
742 	}
743 
744 	/* export NVRAM */
745 	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
746 	if (status < 0) {
747 		dev_err(&spi->dev, "register nvram --> %d\n", status);
748 	}
749 
750 	return 0;
751 }
752 
753 static int ds1305_remove(struct spi_device *spi)
754 {
755 	struct ds1305 *ds1305 = spi_get_drvdata(spi);
756 
757 	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
758 
759 	/* carefully shut down irq and workqueue, if present */
760 	if (spi->irq) {
761 		set_bit(FLAG_EXITING, &ds1305->flags);
762 		devm_free_irq(&spi->dev, spi->irq, ds1305);
763 		cancel_work_sync(&ds1305->work);
764 	}
765 
766 	return 0;
767 }
768 
769 static struct spi_driver ds1305_driver = {
770 	.driver.name	= "rtc-ds1305",
771 	.probe		= ds1305_probe,
772 	.remove		= ds1305_remove,
773 	/* REVISIT add suspend/resume */
774 };
775 
776 module_spi_driver(ds1305_driver);
777 
778 MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
779 MODULE_LICENSE("GPL");
780 MODULE_ALIAS("spi:rtc-ds1305");
781