xref: /openbmc/linux/drivers/rtc/rtc-ds1305.c (revision 80483c3a)
1 /*
2  * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
3  *
4  * Copyright (C) 2008 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/bcd.h>
14 #include <linux/slab.h>
15 #include <linux/rtc.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/spi/spi.h>
19 #include <linux/spi/ds1305.h>
20 #include <linux/module.h>
21 
22 
23 /*
24  * Registers ... mask DS1305_WRITE into register address to write,
25  * otherwise you're reading it.  All non-bitmask values are BCD.
26  */
27 #define DS1305_WRITE		0x80
28 
29 
30 /* RTC date/time ... the main special cases are that we:
31  *  - Need fancy "hours" encoding in 12hour mode
32  *  - Don't rely on the "day-of-week" field (or tm_wday)
33  *  - Are a 21st-century clock (2000 <= year < 2100)
34  */
35 #define DS1305_RTC_LEN		7		/* bytes for RTC regs */
36 
37 #define DS1305_SEC		0x00		/* register addresses */
38 #define DS1305_MIN		0x01
39 #define DS1305_HOUR		0x02
40 #	define DS1305_HR_12		0x40	/* set == 12 hr mode */
41 #	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
42 #define DS1305_WDAY		0x03
43 #define DS1305_MDAY		0x04
44 #define DS1305_MON		0x05
45 #define DS1305_YEAR		0x06
46 
47 
48 /* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
49  * DS1305_ALM_DISABLE disables a match field (some combos are bad).
50  *
51  * NOTE that since we don't use WDAY, we limit ourselves to alarms
52  * only one day into the future (vs potentially up to a week).
53  *
54  * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
55  * don't currently support them.  We'd either need to do it only when
56  * no alarm is pending (not the standard model), or to use the second
57  * alarm (implying that this is a DS1305 not DS1306, *and* that either
58  * it's wired up a second IRQ we know, or that INTCN is set)
59  */
60 #define DS1305_ALM_LEN		4		/* bytes for ALM regs */
61 #define DS1305_ALM_DISABLE	0x80
62 
63 #define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
64 #define DS1305_ALM1(r)		(0x0b + (r))
65 
66 
67 /* three control registers */
68 #define DS1305_CONTROL_LEN	3		/* bytes of control regs */
69 
70 #define DS1305_CONTROL		0x0f		/* register addresses */
71 #	define DS1305_nEOSC		0x80	/* low enables oscillator */
72 #	define DS1305_WP		0x40	/* write protect */
73 #	define DS1305_INTCN		0x04	/* clear == only int0 used */
74 #	define DS1306_1HZ		0x04	/* enable 1Hz output */
75 #	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
76 #	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
77 #define DS1305_STATUS		0x10
78 /* status has just AEIx bits, mirrored as IRQFx */
79 #define DS1305_TRICKLE		0x11
80 /* trickle bits are defined in <linux/spi/ds1305.h> */
81 
82 /* a bunch of NVRAM */
83 #define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
84 
85 #define DS1305_NVRAM		0x20		/* register addresses */
86 
87 
88 struct ds1305 {
89 	struct spi_device	*spi;
90 	struct rtc_device	*rtc;
91 
92 	struct work_struct	work;
93 
94 	unsigned long		flags;
95 #define FLAG_EXITING	0
96 
97 	bool			hr12;
98 	u8			ctrl[DS1305_CONTROL_LEN];
99 };
100 
101 
102 /*----------------------------------------------------------------------*/
103 
104 /*
105  * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
106  * software (like a bootloader) which may require it.
107  */
108 
109 static unsigned bcd2hour(u8 bcd)
110 {
111 	if (bcd & DS1305_HR_12) {
112 		unsigned	hour = 0;
113 
114 		bcd &= ~DS1305_HR_12;
115 		if (bcd & DS1305_HR_PM) {
116 			hour = 12;
117 			bcd &= ~DS1305_HR_PM;
118 		}
119 		hour += bcd2bin(bcd);
120 		return hour - 1;
121 	}
122 	return bcd2bin(bcd);
123 }
124 
125 static u8 hour2bcd(bool hr12, int hour)
126 {
127 	if (hr12) {
128 		hour++;
129 		if (hour <= 12)
130 			return DS1305_HR_12 | bin2bcd(hour);
131 		hour -= 12;
132 		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
133 	}
134 	return bin2bcd(hour);
135 }
136 
137 /*----------------------------------------------------------------------*/
138 
139 /*
140  * Interface to RTC framework
141  */
142 
143 static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
144 {
145 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
146 	u8		buf[2];
147 	long		err = -EINVAL;
148 
149 	buf[0] = DS1305_WRITE | DS1305_CONTROL;
150 	buf[1] = ds1305->ctrl[0];
151 
152 	if (enabled) {
153 		if (ds1305->ctrl[0] & DS1305_AEI0)
154 			goto done;
155 		buf[1] |= DS1305_AEI0;
156 	} else {
157 		if (!(buf[1] & DS1305_AEI0))
158 			goto done;
159 		buf[1] &= ~DS1305_AEI0;
160 	}
161 	err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
162 	if (err >= 0)
163 		ds1305->ctrl[0] = buf[1];
164 done:
165 	return err;
166 
167 }
168 
169 
170 /*
171  * Get/set of date and time is pretty normal.
172  */
173 
174 static int ds1305_get_time(struct device *dev, struct rtc_time *time)
175 {
176 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
177 	u8		addr = DS1305_SEC;
178 	u8		buf[DS1305_RTC_LEN];
179 	int		status;
180 
181 	/* Use write-then-read to get all the date/time registers
182 	 * since dma from stack is nonportable
183 	 */
184 	status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
185 			buf, sizeof(buf));
186 	if (status < 0)
187 		return status;
188 
189 	dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
190 
191 	/* Decode the registers */
192 	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
193 	time->tm_min = bcd2bin(buf[DS1305_MIN]);
194 	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
195 	time->tm_wday = buf[DS1305_WDAY] - 1;
196 	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
197 	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
198 	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
199 
200 	dev_vdbg(dev, "%s secs=%d, mins=%d, "
201 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
202 		"read", time->tm_sec, time->tm_min,
203 		time->tm_hour, time->tm_mday,
204 		time->tm_mon, time->tm_year, time->tm_wday);
205 
206 	/* Time may not be set */
207 	return rtc_valid_tm(time);
208 }
209 
210 static int ds1305_set_time(struct device *dev, struct rtc_time *time)
211 {
212 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
213 	u8		buf[1 + DS1305_RTC_LEN];
214 	u8		*bp = buf;
215 
216 	dev_vdbg(dev, "%s secs=%d, mins=%d, "
217 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
218 		"write", time->tm_sec, time->tm_min,
219 		time->tm_hour, time->tm_mday,
220 		time->tm_mon, time->tm_year, time->tm_wday);
221 
222 	/* Write registers starting at the first time/date address. */
223 	*bp++ = DS1305_WRITE | DS1305_SEC;
224 
225 	*bp++ = bin2bcd(time->tm_sec);
226 	*bp++ = bin2bcd(time->tm_min);
227 	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
228 	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
229 	*bp++ = bin2bcd(time->tm_mday);
230 	*bp++ = bin2bcd(time->tm_mon + 1);
231 	*bp++ = bin2bcd(time->tm_year - 100);
232 
233 	dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
234 
235 	/* use write-then-read since dma from stack is nonportable */
236 	return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
237 			NULL, 0);
238 }
239 
240 /*
241  * Get/set of alarm is a bit funky:
242  *
243  * - First there's the inherent raciness of getting the (partitioned)
244  *   status of an alarm that could trigger while we're reading parts
245  *   of that status.
246  *
247  * - Second there's its limited range (we could increase it a bit by
248  *   relying on WDAY), which means it will easily roll over.
249  *
250  * - Third there's the choice of two alarms and alarm signals.
251  *   Here we use ALM0 and expect that nINT0 (open drain) is used;
252  *   that's the only real option for DS1306 runtime alarms, and is
253  *   natural on DS1305.
254  *
255  * - Fourth, there's also ALM1, and a second interrupt signal:
256  *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
257  *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
258  *       and it won't work when VCC1 is active.
259  *
260  *   So to be most general, we should probably set both alarms to the
261  *   same value, letting ALM1 be the wakeup event source on DS1306
262  *   and handling several wiring options on DS1305.
263  *
264  * - Fifth, we support the polled mode (as well as possible; why not?)
265  *   even when no interrupt line is wired to an IRQ.
266  */
267 
268 /*
269  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
270  */
271 static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
272 {
273 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
274 	struct spi_device *spi = ds1305->spi;
275 	u8		addr;
276 	int		status;
277 	u8		buf[DS1305_ALM_LEN];
278 
279 	/* Refresh control register cache BEFORE reading ALM0 registers,
280 	 * since reading alarm registers acks any pending IRQ.  That
281 	 * makes returning "pending" status a bit of a lie, but that bit
282 	 * of EFI status is at best fragile anyway (given IRQ handlers).
283 	 */
284 	addr = DS1305_CONTROL;
285 	status = spi_write_then_read(spi, &addr, sizeof(addr),
286 			ds1305->ctrl, sizeof(ds1305->ctrl));
287 	if (status < 0)
288 		return status;
289 
290 	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
291 	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
292 
293 	/* get and check ALM0 registers */
294 	addr = DS1305_ALM0(DS1305_SEC);
295 	status = spi_write_then_read(spi, &addr, sizeof(addr),
296 			buf, sizeof(buf));
297 	if (status < 0)
298 		return status;
299 
300 	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
301 		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
302 		buf[DS1305_HOUR], buf[DS1305_WDAY]);
303 
304 	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
305 			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
306 			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
307 		return -EIO;
308 
309 	/* Stuff these values into alm->time and let RTC framework code
310 	 * fill in the rest ... and also handle rollover to tomorrow when
311 	 * that's needed.
312 	 */
313 	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
314 	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
315 	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
316 
317 	return 0;
318 }
319 
320 /*
321  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
322  */
323 static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
324 {
325 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
326 	struct spi_device *spi = ds1305->spi;
327 	unsigned long	now, later;
328 	struct rtc_time	tm;
329 	int		status;
330 	u8		buf[1 + DS1305_ALM_LEN];
331 
332 	/* convert desired alarm to time_t */
333 	status = rtc_tm_to_time(&alm->time, &later);
334 	if (status < 0)
335 		return status;
336 
337 	/* Read current time as time_t */
338 	status = ds1305_get_time(dev, &tm);
339 	if (status < 0)
340 		return status;
341 	status = rtc_tm_to_time(&tm, &now);
342 	if (status < 0)
343 		return status;
344 
345 	/* make sure alarm fires within the next 24 hours */
346 	if (later <= now)
347 		return -EINVAL;
348 	if ((later - now) > 24 * 60 * 60)
349 		return -EDOM;
350 
351 	/* disable alarm if needed */
352 	if (ds1305->ctrl[0] & DS1305_AEI0) {
353 		ds1305->ctrl[0] &= ~DS1305_AEI0;
354 
355 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
356 		buf[1] = ds1305->ctrl[0];
357 		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
358 		if (status < 0)
359 			return status;
360 	}
361 
362 	/* write alarm */
363 	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
364 	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
365 	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
366 	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
367 	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
368 
369 	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
370 		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
371 		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
372 
373 	status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
374 	if (status < 0)
375 		return status;
376 
377 	/* enable alarm if requested */
378 	if (alm->enabled) {
379 		ds1305->ctrl[0] |= DS1305_AEI0;
380 
381 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
382 		buf[1] = ds1305->ctrl[0];
383 		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
384 	}
385 
386 	return status;
387 }
388 
389 #ifdef CONFIG_PROC_FS
390 
391 static int ds1305_proc(struct device *dev, struct seq_file *seq)
392 {
393 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
394 	char		*diodes = "no";
395 	char		*resistors = "";
396 
397 	/* ctrl[2] is treated as read-only; no locking needed */
398 	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
399 		switch (ds1305->ctrl[2] & 0x0c) {
400 		case DS1305_TRICKLE_DS2:
401 			diodes = "2 diodes, ";
402 			break;
403 		case DS1305_TRICKLE_DS1:
404 			diodes = "1 diode, ";
405 			break;
406 		default:
407 			goto done;
408 		}
409 		switch (ds1305->ctrl[2] & 0x03) {
410 		case DS1305_TRICKLE_2K:
411 			resistors = "2k Ohm";
412 			break;
413 		case DS1305_TRICKLE_4K:
414 			resistors = "4k Ohm";
415 			break;
416 		case DS1305_TRICKLE_8K:
417 			resistors = "8k Ohm";
418 			break;
419 		default:
420 			diodes = "no";
421 			break;
422 		}
423 	}
424 
425 done:
426 	seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
427 
428 	return 0;
429 }
430 
431 #else
432 #define ds1305_proc	NULL
433 #endif
434 
435 static const struct rtc_class_ops ds1305_ops = {
436 	.read_time	= ds1305_get_time,
437 	.set_time	= ds1305_set_time,
438 	.read_alarm	= ds1305_get_alarm,
439 	.set_alarm	= ds1305_set_alarm,
440 	.proc		= ds1305_proc,
441 	.alarm_irq_enable = ds1305_alarm_irq_enable,
442 };
443 
444 static void ds1305_work(struct work_struct *work)
445 {
446 	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
447 	struct mutex	*lock = &ds1305->rtc->ops_lock;
448 	struct spi_device *spi = ds1305->spi;
449 	u8		buf[3];
450 	int		status;
451 
452 	/* lock to protect ds1305->ctrl */
453 	mutex_lock(lock);
454 
455 	/* Disable the IRQ, and clear its status ... for now, we "know"
456 	 * that if more than one alarm is active, they're in sync.
457 	 * Note that reading ALM data registers also clears IRQ status.
458 	 */
459 	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
460 	ds1305->ctrl[1] = 0;
461 
462 	buf[0] = DS1305_WRITE | DS1305_CONTROL;
463 	buf[1] = ds1305->ctrl[0];
464 	buf[2] = 0;
465 
466 	status = spi_write_then_read(spi, buf, sizeof(buf),
467 			NULL, 0);
468 	if (status < 0)
469 		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
470 
471 	mutex_unlock(lock);
472 
473 	if (!test_bit(FLAG_EXITING, &ds1305->flags))
474 		enable_irq(spi->irq);
475 
476 	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
477 }
478 
479 /*
480  * This "real" IRQ handler hands off to a workqueue mostly to allow
481  * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
482  * I/O requests in IRQ context (to clear the IRQ status).
483  */
484 static irqreturn_t ds1305_irq(int irq, void *p)
485 {
486 	struct ds1305		*ds1305 = p;
487 
488 	disable_irq(irq);
489 	schedule_work(&ds1305->work);
490 	return IRQ_HANDLED;
491 }
492 
493 /*----------------------------------------------------------------------*/
494 
495 /*
496  * Interface for NVRAM
497  */
498 
499 static void msg_init(struct spi_message *m, struct spi_transfer *x,
500 		u8 *addr, size_t count, char *tx, char *rx)
501 {
502 	spi_message_init(m);
503 	memset(x, 0, 2 * sizeof(*x));
504 
505 	x->tx_buf = addr;
506 	x->len = 1;
507 	spi_message_add_tail(x, m);
508 
509 	x++;
510 
511 	x->tx_buf = tx;
512 	x->rx_buf = rx;
513 	x->len = count;
514 	spi_message_add_tail(x, m);
515 }
516 
517 static ssize_t
518 ds1305_nvram_read(struct file *filp, struct kobject *kobj,
519 		struct bin_attribute *attr,
520 		char *buf, loff_t off, size_t count)
521 {
522 	struct spi_device	*spi;
523 	u8			addr;
524 	struct spi_message	m;
525 	struct spi_transfer	x[2];
526 	int			status;
527 
528 	spi = to_spi_device(kobj_to_dev(kobj));
529 
530 	addr = DS1305_NVRAM + off;
531 	msg_init(&m, x, &addr, count, NULL, buf);
532 
533 	status = spi_sync(spi, &m);
534 	if (status < 0)
535 		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
536 	return (status < 0) ? status : count;
537 }
538 
539 static ssize_t
540 ds1305_nvram_write(struct file *filp, struct kobject *kobj,
541 		struct bin_attribute *attr,
542 		char *buf, loff_t off, size_t count)
543 {
544 	struct spi_device	*spi;
545 	u8			addr;
546 	struct spi_message	m;
547 	struct spi_transfer	x[2];
548 	int			status;
549 
550 	spi = to_spi_device(kobj_to_dev(kobj));
551 
552 	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
553 	msg_init(&m, x, &addr, count, buf, NULL);
554 
555 	status = spi_sync(spi, &m);
556 	if (status < 0)
557 		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
558 	return (status < 0) ? status : count;
559 }
560 
561 static struct bin_attribute nvram = {
562 	.attr.name	= "nvram",
563 	.attr.mode	= S_IRUGO | S_IWUSR,
564 	.read		= ds1305_nvram_read,
565 	.write		= ds1305_nvram_write,
566 	.size		= DS1305_NVRAM_LEN,
567 };
568 
569 /*----------------------------------------------------------------------*/
570 
571 /*
572  * Interface to SPI stack
573  */
574 
575 static int ds1305_probe(struct spi_device *spi)
576 {
577 	struct ds1305			*ds1305;
578 	int				status;
579 	u8				addr, value;
580 	struct ds1305_platform_data	*pdata = dev_get_platdata(&spi->dev);
581 	bool				write_ctrl = false;
582 
583 	/* Sanity check board setup data.  This may be hooked up
584 	 * in 3wire mode, but we don't care.  Note that unless
585 	 * there's an inverter in place, this needs SPI_CS_HIGH!
586 	 */
587 	if ((spi->bits_per_word && spi->bits_per_word != 8)
588 			|| (spi->max_speed_hz > 2000000)
589 			|| !(spi->mode & SPI_CPHA))
590 		return -EINVAL;
591 
592 	/* set up driver data */
593 	ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
594 	if (!ds1305)
595 		return -ENOMEM;
596 	ds1305->spi = spi;
597 	spi_set_drvdata(spi, ds1305);
598 
599 	/* read and cache control registers */
600 	addr = DS1305_CONTROL;
601 	status = spi_write_then_read(spi, &addr, sizeof(addr),
602 			ds1305->ctrl, sizeof(ds1305->ctrl));
603 	if (status < 0) {
604 		dev_dbg(&spi->dev, "can't %s, %d\n",
605 				"read", status);
606 		return status;
607 	}
608 
609 	dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
610 
611 	/* Sanity check register values ... partially compensating for the
612 	 * fact that SPI has no device handshake.  A pullup on MISO would
613 	 * make these tests fail; but not all systems will have one.  If
614 	 * some register is neither 0x00 nor 0xff, a chip is likely there.
615 	 */
616 	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
617 		dev_dbg(&spi->dev, "RTC chip is not present\n");
618 		return -ENODEV;
619 	}
620 	if (ds1305->ctrl[2] == 0)
621 		dev_dbg(&spi->dev, "chip may not be present\n");
622 
623 	/* enable writes if needed ... if we were paranoid it would
624 	 * make sense to enable them only when absolutely necessary.
625 	 */
626 	if (ds1305->ctrl[0] & DS1305_WP) {
627 		u8		buf[2];
628 
629 		ds1305->ctrl[0] &= ~DS1305_WP;
630 
631 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
632 		buf[1] = ds1305->ctrl[0];
633 		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
634 
635 		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
636 		if (status < 0)
637 			return status;
638 	}
639 
640 	/* on DS1305, maybe start oscillator; like most low power
641 	 * oscillators, it may take a second to stabilize
642 	 */
643 	if (ds1305->ctrl[0] & DS1305_nEOSC) {
644 		ds1305->ctrl[0] &= ~DS1305_nEOSC;
645 		write_ctrl = true;
646 		dev_warn(&spi->dev, "SET TIME!\n");
647 	}
648 
649 	/* ack any pending IRQs */
650 	if (ds1305->ctrl[1]) {
651 		ds1305->ctrl[1] = 0;
652 		write_ctrl = true;
653 	}
654 
655 	/* this may need one-time (re)init */
656 	if (pdata) {
657 		/* maybe enable trickle charge */
658 		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
659 			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
660 						| pdata->trickle;
661 			write_ctrl = true;
662 		}
663 
664 		/* on DS1306, configure 1 Hz signal */
665 		if (pdata->is_ds1306) {
666 			if (pdata->en_1hz) {
667 				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
668 					ds1305->ctrl[0] |= DS1306_1HZ;
669 					write_ctrl = true;
670 				}
671 			} else {
672 				if (ds1305->ctrl[0] & DS1306_1HZ) {
673 					ds1305->ctrl[0] &= ~DS1306_1HZ;
674 					write_ctrl = true;
675 				}
676 			}
677 		}
678 	}
679 
680 	if (write_ctrl) {
681 		u8		buf[4];
682 
683 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
684 		buf[1] = ds1305->ctrl[0];
685 		buf[2] = ds1305->ctrl[1];
686 		buf[3] = ds1305->ctrl[2];
687 		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
688 		if (status < 0) {
689 			dev_dbg(&spi->dev, "can't %s, %d\n",
690 					"write", status);
691 			return status;
692 		}
693 
694 		dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
695 	}
696 
697 	/* see if non-Linux software set up AM/PM mode */
698 	addr = DS1305_HOUR;
699 	status = spi_write_then_read(spi, &addr, sizeof(addr),
700 				&value, sizeof(value));
701 	if (status < 0) {
702 		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
703 		return status;
704 	}
705 
706 	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
707 	if (ds1305->hr12)
708 		dev_dbg(&spi->dev, "AM/PM\n");
709 
710 	/* register RTC ... from here on, ds1305->ctrl needs locking */
711 	ds1305->rtc = devm_rtc_device_register(&spi->dev, "ds1305",
712 			&ds1305_ops, THIS_MODULE);
713 	if (IS_ERR(ds1305->rtc)) {
714 		status = PTR_ERR(ds1305->rtc);
715 		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
716 		return status;
717 	}
718 
719 	/* Maybe set up alarm IRQ; be ready to handle it triggering right
720 	 * away.  NOTE that we don't share this.  The signal is active low,
721 	 * and we can't ack it before a SPI message delay.  We temporarily
722 	 * disable the IRQ until it's acked, which lets us work with more
723 	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
724 	 */
725 	if (spi->irq) {
726 		INIT_WORK(&ds1305->work, ds1305_work);
727 		status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
728 				0, dev_name(&ds1305->rtc->dev), ds1305);
729 		if (status < 0) {
730 			dev_err(&spi->dev, "request_irq %d --> %d\n",
731 					spi->irq, status);
732 		} else {
733 			device_set_wakeup_capable(&spi->dev, 1);
734 		}
735 	}
736 
737 	/* export NVRAM */
738 	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
739 	if (status < 0) {
740 		dev_err(&spi->dev, "register nvram --> %d\n", status);
741 	}
742 
743 	return 0;
744 }
745 
746 static int ds1305_remove(struct spi_device *spi)
747 {
748 	struct ds1305 *ds1305 = spi_get_drvdata(spi);
749 
750 	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
751 
752 	/* carefully shut down irq and workqueue, if present */
753 	if (spi->irq) {
754 		set_bit(FLAG_EXITING, &ds1305->flags);
755 		devm_free_irq(&spi->dev, spi->irq, ds1305);
756 		cancel_work_sync(&ds1305->work);
757 	}
758 
759 	return 0;
760 }
761 
762 static struct spi_driver ds1305_driver = {
763 	.driver.name	= "rtc-ds1305",
764 	.probe		= ds1305_probe,
765 	.remove		= ds1305_remove,
766 	/* REVISIT add suspend/resume */
767 };
768 
769 module_spi_driver(ds1305_driver);
770 
771 MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
772 MODULE_LICENSE("GPL");
773 MODULE_ALIAS("spi:rtc-ds1305");
774