xref: /openbmc/linux/drivers/rtc/rtc-cpcap.c (revision 1d27a0be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Motorola CPCAP PMIC RTC driver
4  *
5  * Based on cpcap-regulator.c from Motorola Linux kernel tree
6  * Copyright (C) 2009 Motorola, Inc.
7  *
8  * Rewritten for mainline kernel
9  *  - use DT
10  *  - use regmap
11  *  - use standard interrupt framework
12  *  - use managed device resources
13  *  - remove custom "secure clock daemon" helpers
14  *
15  * Copyright (C) 2017 Sebastian Reichel <sre@kernel.org>
16  */
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/init.h>
21 #include <linux/device.h>
22 #include <linux/platform_device.h>
23 #include <linux/rtc.h>
24 #include <linux/err.h>
25 #include <linux/regmap.h>
26 #include <linux/mfd/motorola-cpcap.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 
30 #define SECS_PER_DAY 86400
31 #define DAY_MASK  0x7FFF
32 #define TOD1_MASK 0x00FF
33 #define TOD2_MASK 0x01FF
34 
35 struct cpcap_time {
36 	int day;
37 	int tod1;
38 	int tod2;
39 };
40 
41 struct cpcap_rtc {
42 	struct regmap *regmap;
43 	struct rtc_device *rtc_dev;
44 	u16 vendor;
45 	int alarm_irq;
46 	bool alarm_enabled;
47 	int update_irq;
48 	bool update_enabled;
49 };
50 
51 static void cpcap2rtc_time(struct rtc_time *rtc, struct cpcap_time *cpcap)
52 {
53 	unsigned long int tod;
54 	unsigned long int time;
55 
56 	tod = (cpcap->tod1 & TOD1_MASK) | ((cpcap->tod2 & TOD2_MASK) << 8);
57 	time = tod + ((cpcap->day & DAY_MASK) * SECS_PER_DAY);
58 
59 	rtc_time64_to_tm(time, rtc);
60 }
61 
62 static void rtc2cpcap_time(struct cpcap_time *cpcap, struct rtc_time *rtc)
63 {
64 	unsigned long time;
65 
66 	time = rtc_tm_to_time64(rtc);
67 
68 	cpcap->day = time / SECS_PER_DAY;
69 	time %= SECS_PER_DAY;
70 	cpcap->tod2 = (time >> 8) & TOD2_MASK;
71 	cpcap->tod1 = time & TOD1_MASK;
72 }
73 
74 static int cpcap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
75 {
76 	struct cpcap_rtc *rtc = dev_get_drvdata(dev);
77 
78 	if (rtc->alarm_enabled == enabled)
79 		return 0;
80 
81 	if (enabled)
82 		enable_irq(rtc->alarm_irq);
83 	else
84 		disable_irq(rtc->alarm_irq);
85 
86 	rtc->alarm_enabled = !!enabled;
87 
88 	return 0;
89 }
90 
91 static int cpcap_rtc_read_time(struct device *dev, struct rtc_time *tm)
92 {
93 	struct cpcap_rtc *rtc;
94 	struct cpcap_time cpcap_tm;
95 	int temp_tod2;
96 	int ret;
97 
98 	rtc = dev_get_drvdata(dev);
99 
100 	ret = regmap_read(rtc->regmap, CPCAP_REG_TOD2, &temp_tod2);
101 	ret |= regmap_read(rtc->regmap, CPCAP_REG_DAY, &cpcap_tm.day);
102 	ret |= regmap_read(rtc->regmap, CPCAP_REG_TOD1, &cpcap_tm.tod1);
103 	ret |= regmap_read(rtc->regmap, CPCAP_REG_TOD2, &cpcap_tm.tod2);
104 
105 	if (temp_tod2 > cpcap_tm.tod2)
106 		ret |= regmap_read(rtc->regmap, CPCAP_REG_DAY, &cpcap_tm.day);
107 
108 	if (ret) {
109 		dev_err(dev, "Failed to read time\n");
110 		return -EIO;
111 	}
112 
113 	cpcap2rtc_time(tm, &cpcap_tm);
114 
115 	return 0;
116 }
117 
118 static int cpcap_rtc_set_time(struct device *dev, struct rtc_time *tm)
119 {
120 	struct cpcap_rtc *rtc;
121 	struct cpcap_time cpcap_tm;
122 	int ret = 0;
123 
124 	rtc = dev_get_drvdata(dev);
125 
126 	rtc2cpcap_time(&cpcap_tm, tm);
127 
128 	if (rtc->alarm_enabled)
129 		disable_irq(rtc->alarm_irq);
130 	if (rtc->update_enabled)
131 		disable_irq(rtc->update_irq);
132 
133 	if (rtc->vendor == CPCAP_VENDOR_ST) {
134 		/* The TOD1 and TOD2 registers MUST be written in this order
135 		 * for the change to properly set.
136 		 */
137 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
138 					  TOD1_MASK, cpcap_tm.tod1);
139 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD2,
140 					  TOD2_MASK, cpcap_tm.tod2);
141 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_DAY,
142 					  DAY_MASK, cpcap_tm.day);
143 	} else {
144 		/* Clearing the upper lower 8 bits of the TOD guarantees that
145 		 * the upper half of TOD (TOD2) will not increment for 0xFF RTC
146 		 * ticks (255 seconds).  During this time we can safely write
147 		 * to DAY, TOD2, then TOD1 (in that order) and expect RTC to be
148 		 * synchronized to the exact time requested upon the final write
149 		 * to TOD1.
150 		 */
151 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
152 					  TOD1_MASK, 0);
153 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_DAY,
154 					  DAY_MASK, cpcap_tm.day);
155 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD2,
156 					  TOD2_MASK, cpcap_tm.tod2);
157 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
158 					  TOD1_MASK, cpcap_tm.tod1);
159 	}
160 
161 	if (rtc->update_enabled)
162 		enable_irq(rtc->update_irq);
163 	if (rtc->alarm_enabled)
164 		enable_irq(rtc->alarm_irq);
165 
166 	return ret;
167 }
168 
169 static int cpcap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
170 {
171 	struct cpcap_rtc *rtc;
172 	struct cpcap_time cpcap_tm;
173 	int ret;
174 
175 	rtc = dev_get_drvdata(dev);
176 
177 	alrm->enabled = rtc->alarm_enabled;
178 
179 	ret = regmap_read(rtc->regmap, CPCAP_REG_DAYA, &cpcap_tm.day);
180 	ret |= regmap_read(rtc->regmap, CPCAP_REG_TODA2, &cpcap_tm.tod2);
181 	ret |= regmap_read(rtc->regmap, CPCAP_REG_TODA1, &cpcap_tm.tod1);
182 
183 	if (ret) {
184 		dev_err(dev, "Failed to read time\n");
185 		return -EIO;
186 	}
187 
188 	cpcap2rtc_time(&alrm->time, &cpcap_tm);
189 	return rtc_valid_tm(&alrm->time);
190 }
191 
192 static int cpcap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
193 {
194 	struct cpcap_rtc *rtc;
195 	struct cpcap_time cpcap_tm;
196 	int ret;
197 
198 	rtc = dev_get_drvdata(dev);
199 
200 	rtc2cpcap_time(&cpcap_tm, &alrm->time);
201 
202 	if (rtc->alarm_enabled)
203 		disable_irq(rtc->alarm_irq);
204 
205 	ret = regmap_update_bits(rtc->regmap, CPCAP_REG_DAYA, DAY_MASK,
206 				 cpcap_tm.day);
207 	ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TODA2, TOD2_MASK,
208 				  cpcap_tm.tod2);
209 	ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TODA1, TOD1_MASK,
210 				  cpcap_tm.tod1);
211 
212 	if (!ret) {
213 		enable_irq(rtc->alarm_irq);
214 		rtc->alarm_enabled = true;
215 	}
216 
217 	return ret;
218 }
219 
220 static const struct rtc_class_ops cpcap_rtc_ops = {
221 	.read_time		= cpcap_rtc_read_time,
222 	.set_time		= cpcap_rtc_set_time,
223 	.read_alarm		= cpcap_rtc_read_alarm,
224 	.set_alarm		= cpcap_rtc_set_alarm,
225 	.alarm_irq_enable	= cpcap_rtc_alarm_irq_enable,
226 };
227 
228 static irqreturn_t cpcap_rtc_alarm_irq(int irq, void *data)
229 {
230 	struct cpcap_rtc *rtc = data;
231 
232 	rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
233 	return IRQ_HANDLED;
234 }
235 
236 static irqreturn_t cpcap_rtc_update_irq(int irq, void *data)
237 {
238 	struct cpcap_rtc *rtc = data;
239 
240 	rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
241 	return IRQ_HANDLED;
242 }
243 
244 static int cpcap_rtc_probe(struct platform_device *pdev)
245 {
246 	struct device *dev = &pdev->dev;
247 	struct cpcap_rtc *rtc;
248 	int err;
249 
250 	rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
251 	if (!rtc)
252 		return -ENOMEM;
253 
254 	rtc->regmap = dev_get_regmap(dev->parent, NULL);
255 	if (!rtc->regmap)
256 		return -ENODEV;
257 
258 	platform_set_drvdata(pdev, rtc);
259 	rtc->rtc_dev = devm_rtc_allocate_device(dev);
260 	if (IS_ERR(rtc->rtc_dev))
261 		return PTR_ERR(rtc->rtc_dev);
262 
263 	rtc->rtc_dev->ops = &cpcap_rtc_ops;
264 	rtc->rtc_dev->range_max = (1 << 14) * SECS_PER_DAY - 1;
265 
266 	err = cpcap_get_vendor(dev, rtc->regmap, &rtc->vendor);
267 	if (err)
268 		return err;
269 
270 	rtc->alarm_irq = platform_get_irq(pdev, 0);
271 	err = devm_request_threaded_irq(dev, rtc->alarm_irq, NULL,
272 					cpcap_rtc_alarm_irq, IRQF_TRIGGER_NONE,
273 					"rtc_alarm", rtc);
274 	if (err) {
275 		dev_err(dev, "Could not request alarm irq: %d\n", err);
276 		return err;
277 	}
278 	disable_irq(rtc->alarm_irq);
279 
280 	/* Stock Android uses the 1 Hz interrupt for "secure clock daemon",
281 	 * which is not supported by the mainline kernel. The mainline kernel
282 	 * does not use the irq at the moment, but we explicitly request and
283 	 * disable it, so that its masked and does not wake up the processor
284 	 * every second.
285 	 */
286 	rtc->update_irq = platform_get_irq(pdev, 1);
287 	err = devm_request_threaded_irq(dev, rtc->update_irq, NULL,
288 					cpcap_rtc_update_irq, IRQF_TRIGGER_NONE,
289 					"rtc_1hz", rtc);
290 	if (err) {
291 		dev_err(dev, "Could not request update irq: %d\n", err);
292 		return err;
293 	}
294 	disable_irq(rtc->update_irq);
295 
296 	err = device_init_wakeup(dev, 1);
297 	if (err) {
298 		dev_err(dev, "wakeup initialization failed (%d)\n", err);
299 		/* ignore error and continue without wakeup support */
300 	}
301 
302 	return rtc_register_device(rtc->rtc_dev);
303 }
304 
305 static const struct of_device_id cpcap_rtc_of_match[] = {
306 	{ .compatible = "motorola,cpcap-rtc", },
307 	{},
308 };
309 MODULE_DEVICE_TABLE(of, cpcap_rtc_of_match);
310 
311 static struct platform_driver cpcap_rtc_driver = {
312 	.probe		= cpcap_rtc_probe,
313 	.driver		= {
314 		.name	= "cpcap-rtc",
315 		.of_match_table = cpcap_rtc_of_match,
316 	},
317 };
318 
319 module_platform_driver(cpcap_rtc_driver);
320 
321 MODULE_ALIAS("platform:cpcap-rtc");
322 MODULE_DESCRIPTION("CPCAP RTC driver");
323 MODULE_AUTHOR("Sebastian Reichel <sre@kernel.org>");
324 MODULE_LICENSE("GPL");
325