1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 4 * 5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 6 * Copyright (C) 2006 David Brownell (convert to new framework) 7 */ 8 9 /* 10 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 11 * That defined the register interface now provided by all PCs, some 12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 13 * integrate an MC146818 clone in their southbridge, and boards use 14 * that instead of discrete clones like the DS12887 or M48T86. There 15 * are also clones that connect using the LPC bus. 16 * 17 * That register API is also used directly by various other drivers 18 * (notably for integrated NVRAM), infrastructure (x86 has code to 19 * bypass the RTC framework, directly reading the RTC during boot 20 * and updating minutes/seconds for systems using NTP synch) and 21 * utilities (like userspace 'hwclock', if no /dev node exists). 22 * 23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 24 * interrupts disabled, holding the global rtc_lock, to exclude those 25 * other drivers and utilities on correctly configured systems. 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/spinlock.h> 35 #include <linux/platform_device.h> 36 #include <linux/log2.h> 37 #include <linux/pm.h> 38 #include <linux/of.h> 39 #include <linux/of_platform.h> 40 #ifdef CONFIG_X86 41 #include <asm/i8259.h> 42 #include <asm/processor.h> 43 #include <linux/dmi.h> 44 #endif 45 46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 47 #include <linux/mc146818rtc.h> 48 49 #ifdef CONFIG_ACPI 50 /* 51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event 52 * 53 * If cleared, ACPI SCI is only used to wake up the system from suspend 54 * 55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup 56 */ 57 58 static bool use_acpi_alarm; 59 module_param(use_acpi_alarm, bool, 0444); 60 61 static inline int cmos_use_acpi_alarm(void) 62 { 63 return use_acpi_alarm; 64 } 65 #else /* !CONFIG_ACPI */ 66 67 static inline int cmos_use_acpi_alarm(void) 68 { 69 return 0; 70 } 71 #endif 72 73 struct cmos_rtc { 74 struct rtc_device *rtc; 75 struct device *dev; 76 int irq; 77 struct resource *iomem; 78 time64_t alarm_expires; 79 80 void (*wake_on)(struct device *); 81 void (*wake_off)(struct device *); 82 83 u8 enabled_wake; 84 u8 suspend_ctrl; 85 86 /* newer hardware extends the original register set */ 87 u8 day_alrm; 88 u8 mon_alrm; 89 u8 century; 90 91 struct rtc_wkalrm saved_wkalrm; 92 }; 93 94 /* both platform and pnp busses use negative numbers for invalid irqs */ 95 #define is_valid_irq(n) ((n) > 0) 96 97 static const char driver_name[] = "rtc_cmos"; 98 99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 102 */ 103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 104 105 static inline int is_intr(u8 rtc_intr) 106 { 107 if (!(rtc_intr & RTC_IRQF)) 108 return 0; 109 return rtc_intr & RTC_IRQMASK; 110 } 111 112 /*----------------------------------------------------------------*/ 113 114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 116 * used in a broken "legacy replacement" mode. The breakage includes 117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 118 * other (better) use. 119 * 120 * When that broken mode is in use, platform glue provides a partial 121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 122 * want to use HPET for anything except those IRQs though... 123 */ 124 #ifdef CONFIG_HPET_EMULATE_RTC 125 #include <asm/hpet.h> 126 #else 127 128 static inline int is_hpet_enabled(void) 129 { 130 return 0; 131 } 132 133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 134 { 135 return 0; 136 } 137 138 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 139 { 140 return 0; 141 } 142 143 static inline int 144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 145 { 146 return 0; 147 } 148 149 static inline int hpet_set_periodic_freq(unsigned long freq) 150 { 151 return 0; 152 } 153 154 static inline int hpet_rtc_dropped_irq(void) 155 { 156 return 0; 157 } 158 159 static inline int hpet_rtc_timer_init(void) 160 { 161 return 0; 162 } 163 164 extern irq_handler_t hpet_rtc_interrupt; 165 166 static inline int hpet_register_irq_handler(irq_handler_t handler) 167 { 168 return 0; 169 } 170 171 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 172 { 173 return 0; 174 } 175 176 #endif 177 178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ 179 static inline int use_hpet_alarm(void) 180 { 181 return is_hpet_enabled() && !cmos_use_acpi_alarm(); 182 } 183 184 /*----------------------------------------------------------------*/ 185 186 #ifdef RTC_PORT 187 188 /* Most newer x86 systems have two register banks, the first used 189 * for RTC and NVRAM and the second only for NVRAM. Caller must 190 * own rtc_lock ... and we won't worry about access during NMI. 191 */ 192 #define can_bank2 true 193 194 static inline unsigned char cmos_read_bank2(unsigned char addr) 195 { 196 outb(addr, RTC_PORT(2)); 197 return inb(RTC_PORT(3)); 198 } 199 200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 201 { 202 outb(addr, RTC_PORT(2)); 203 outb(val, RTC_PORT(3)); 204 } 205 206 #else 207 208 #define can_bank2 false 209 210 static inline unsigned char cmos_read_bank2(unsigned char addr) 211 { 212 return 0; 213 } 214 215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 216 { 217 } 218 219 #endif 220 221 /*----------------------------------------------------------------*/ 222 223 static int cmos_read_time(struct device *dev, struct rtc_time *t) 224 { 225 /* 226 * If pm_trace abused the RTC for storage, set the timespec to 0, 227 * which tells the caller that this RTC value is unusable. 228 */ 229 if (!pm_trace_rtc_valid()) 230 return -EIO; 231 232 /* REVISIT: if the clock has a "century" register, use 233 * that instead of the heuristic in mc146818_get_time(). 234 * That'll make Y3K compatility (year > 2070) easy! 235 */ 236 mc146818_get_time(t); 237 return 0; 238 } 239 240 static int cmos_set_time(struct device *dev, struct rtc_time *t) 241 { 242 /* REVISIT: set the "century" register if available 243 * 244 * NOTE: this ignores the issue whereby updating the seconds 245 * takes effect exactly 500ms after we write the register. 246 * (Also queueing and other delays before we get this far.) 247 */ 248 return mc146818_set_time(t); 249 } 250 251 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 252 { 253 struct cmos_rtc *cmos = dev_get_drvdata(dev); 254 unsigned char rtc_control; 255 256 /* This not only a rtc_op, but also called directly */ 257 if (!is_valid_irq(cmos->irq)) 258 return -EIO; 259 260 /* Basic alarms only support hour, minute, and seconds fields. 261 * Some also support day and month, for alarms up to a year in 262 * the future. 263 */ 264 265 spin_lock_irq(&rtc_lock); 266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 269 270 if (cmos->day_alrm) { 271 /* ignore upper bits on readback per ACPI spec */ 272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 273 if (!t->time.tm_mday) 274 t->time.tm_mday = -1; 275 276 if (cmos->mon_alrm) { 277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 278 if (!t->time.tm_mon) 279 t->time.tm_mon = -1; 280 } 281 } 282 283 rtc_control = CMOS_READ(RTC_CONTROL); 284 spin_unlock_irq(&rtc_lock); 285 286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 287 if (((unsigned)t->time.tm_sec) < 0x60) 288 t->time.tm_sec = bcd2bin(t->time.tm_sec); 289 else 290 t->time.tm_sec = -1; 291 if (((unsigned)t->time.tm_min) < 0x60) 292 t->time.tm_min = bcd2bin(t->time.tm_min); 293 else 294 t->time.tm_min = -1; 295 if (((unsigned)t->time.tm_hour) < 0x24) 296 t->time.tm_hour = bcd2bin(t->time.tm_hour); 297 else 298 t->time.tm_hour = -1; 299 300 if (cmos->day_alrm) { 301 if (((unsigned)t->time.tm_mday) <= 0x31) 302 t->time.tm_mday = bcd2bin(t->time.tm_mday); 303 else 304 t->time.tm_mday = -1; 305 306 if (cmos->mon_alrm) { 307 if (((unsigned)t->time.tm_mon) <= 0x12) 308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 309 else 310 t->time.tm_mon = -1; 311 } 312 } 313 } 314 315 t->enabled = !!(rtc_control & RTC_AIE); 316 t->pending = 0; 317 318 return 0; 319 } 320 321 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 322 { 323 unsigned char rtc_intr; 324 325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 326 * allegedly some older rtcs need that to handle irqs properly 327 */ 328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 329 330 if (use_hpet_alarm()) 331 return; 332 333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 334 if (is_intr(rtc_intr)) 335 rtc_update_irq(cmos->rtc, 1, rtc_intr); 336 } 337 338 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 339 { 340 unsigned char rtc_control; 341 342 /* flush any pending IRQ status, notably for update irqs, 343 * before we enable new IRQs 344 */ 345 rtc_control = CMOS_READ(RTC_CONTROL); 346 cmos_checkintr(cmos, rtc_control); 347 348 rtc_control |= mask; 349 CMOS_WRITE(rtc_control, RTC_CONTROL); 350 if (use_hpet_alarm()) 351 hpet_set_rtc_irq_bit(mask); 352 353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 354 if (cmos->wake_on) 355 cmos->wake_on(cmos->dev); 356 } 357 358 cmos_checkintr(cmos, rtc_control); 359 } 360 361 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 362 { 363 unsigned char rtc_control; 364 365 rtc_control = CMOS_READ(RTC_CONTROL); 366 rtc_control &= ~mask; 367 CMOS_WRITE(rtc_control, RTC_CONTROL); 368 if (use_hpet_alarm()) 369 hpet_mask_rtc_irq_bit(mask); 370 371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 372 if (cmos->wake_off) 373 cmos->wake_off(cmos->dev); 374 } 375 376 cmos_checkintr(cmos, rtc_control); 377 } 378 379 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) 380 { 381 struct cmos_rtc *cmos = dev_get_drvdata(dev); 382 struct rtc_time now; 383 384 cmos_read_time(dev, &now); 385 386 if (!cmos->day_alrm) { 387 time64_t t_max_date; 388 time64_t t_alrm; 389 390 t_max_date = rtc_tm_to_time64(&now); 391 t_max_date += 24 * 60 * 60 - 1; 392 t_alrm = rtc_tm_to_time64(&t->time); 393 if (t_alrm > t_max_date) { 394 dev_err(dev, 395 "Alarms can be up to one day in the future\n"); 396 return -EINVAL; 397 } 398 } else if (!cmos->mon_alrm) { 399 struct rtc_time max_date = now; 400 time64_t t_max_date; 401 time64_t t_alrm; 402 int max_mday; 403 404 if (max_date.tm_mon == 11) { 405 max_date.tm_mon = 0; 406 max_date.tm_year += 1; 407 } else { 408 max_date.tm_mon += 1; 409 } 410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 411 if (max_date.tm_mday > max_mday) 412 max_date.tm_mday = max_mday; 413 414 t_max_date = rtc_tm_to_time64(&max_date); 415 t_max_date -= 1; 416 t_alrm = rtc_tm_to_time64(&t->time); 417 if (t_alrm > t_max_date) { 418 dev_err(dev, 419 "Alarms can be up to one month in the future\n"); 420 return -EINVAL; 421 } 422 } else { 423 struct rtc_time max_date = now; 424 time64_t t_max_date; 425 time64_t t_alrm; 426 int max_mday; 427 428 max_date.tm_year += 1; 429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 430 if (max_date.tm_mday > max_mday) 431 max_date.tm_mday = max_mday; 432 433 t_max_date = rtc_tm_to_time64(&max_date); 434 t_max_date -= 1; 435 t_alrm = rtc_tm_to_time64(&t->time); 436 if (t_alrm > t_max_date) { 437 dev_err(dev, 438 "Alarms can be up to one year in the future\n"); 439 return -EINVAL; 440 } 441 } 442 443 return 0; 444 } 445 446 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 447 { 448 struct cmos_rtc *cmos = dev_get_drvdata(dev); 449 unsigned char mon, mday, hrs, min, sec, rtc_control; 450 int ret; 451 452 /* This not only a rtc_op, but also called directly */ 453 if (!is_valid_irq(cmos->irq)) 454 return -EIO; 455 456 ret = cmos_validate_alarm(dev, t); 457 if (ret < 0) 458 return ret; 459 460 mon = t->time.tm_mon + 1; 461 mday = t->time.tm_mday; 462 hrs = t->time.tm_hour; 463 min = t->time.tm_min; 464 sec = t->time.tm_sec; 465 466 rtc_control = CMOS_READ(RTC_CONTROL); 467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 468 /* Writing 0xff means "don't care" or "match all". */ 469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 472 min = (min < 60) ? bin2bcd(min) : 0xff; 473 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 474 } 475 476 spin_lock_irq(&rtc_lock); 477 478 /* next rtc irq must not be from previous alarm setting */ 479 cmos_irq_disable(cmos, RTC_AIE); 480 481 /* update alarm */ 482 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 483 CMOS_WRITE(min, RTC_MINUTES_ALARM); 484 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 485 486 /* the system may support an "enhanced" alarm */ 487 if (cmos->day_alrm) { 488 CMOS_WRITE(mday, cmos->day_alrm); 489 if (cmos->mon_alrm) 490 CMOS_WRITE(mon, cmos->mon_alrm); 491 } 492 493 if (use_hpet_alarm()) { 494 /* 495 * FIXME the HPET alarm glue currently ignores day_alrm 496 * and mon_alrm ... 497 */ 498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, 499 t->time.tm_sec); 500 } 501 502 if (t->enabled) 503 cmos_irq_enable(cmos, RTC_AIE); 504 505 spin_unlock_irq(&rtc_lock); 506 507 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 508 509 return 0; 510 } 511 512 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 513 { 514 struct cmos_rtc *cmos = dev_get_drvdata(dev); 515 unsigned long flags; 516 517 spin_lock_irqsave(&rtc_lock, flags); 518 519 if (enabled) 520 cmos_irq_enable(cmos, RTC_AIE); 521 else 522 cmos_irq_disable(cmos, RTC_AIE); 523 524 spin_unlock_irqrestore(&rtc_lock, flags); 525 return 0; 526 } 527 528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 529 530 static int cmos_procfs(struct device *dev, struct seq_file *seq) 531 { 532 struct cmos_rtc *cmos = dev_get_drvdata(dev); 533 unsigned char rtc_control, valid; 534 535 spin_lock_irq(&rtc_lock); 536 rtc_control = CMOS_READ(RTC_CONTROL); 537 valid = CMOS_READ(RTC_VALID); 538 spin_unlock_irq(&rtc_lock); 539 540 /* NOTE: at least ICH6 reports battery status using a different 541 * (non-RTC) bit; and SQWE is ignored on many current systems. 542 */ 543 seq_printf(seq, 544 "periodic_IRQ\t: %s\n" 545 "update_IRQ\t: %s\n" 546 "HPET_emulated\t: %s\n" 547 // "square_wave\t: %s\n" 548 "BCD\t\t: %s\n" 549 "DST_enable\t: %s\n" 550 "periodic_freq\t: %d\n" 551 "batt_status\t: %s\n", 552 (rtc_control & RTC_PIE) ? "yes" : "no", 553 (rtc_control & RTC_UIE) ? "yes" : "no", 554 use_hpet_alarm() ? "yes" : "no", 555 // (rtc_control & RTC_SQWE) ? "yes" : "no", 556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 557 (rtc_control & RTC_DST_EN) ? "yes" : "no", 558 cmos->rtc->irq_freq, 559 (valid & RTC_VRT) ? "okay" : "dead"); 560 561 return 0; 562 } 563 564 #else 565 #define cmos_procfs NULL 566 #endif 567 568 static const struct rtc_class_ops cmos_rtc_ops = { 569 .read_time = cmos_read_time, 570 .set_time = cmos_set_time, 571 .read_alarm = cmos_read_alarm, 572 .set_alarm = cmos_set_alarm, 573 .proc = cmos_procfs, 574 .alarm_irq_enable = cmos_alarm_irq_enable, 575 }; 576 577 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = { 578 .read_time = cmos_read_time, 579 .set_time = cmos_set_time, 580 .proc = cmos_procfs, 581 }; 582 583 /*----------------------------------------------------------------*/ 584 585 /* 586 * All these chips have at least 64 bytes of address space, shared by 587 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 588 * by boot firmware. Modern chips have 128 or 256 bytes. 589 */ 590 591 #define NVRAM_OFFSET (RTC_REG_D + 1) 592 593 static int cmos_nvram_read(void *priv, unsigned int off, void *val, 594 size_t count) 595 { 596 unsigned char *buf = val; 597 int retval; 598 599 off += NVRAM_OFFSET; 600 spin_lock_irq(&rtc_lock); 601 for (retval = 0; count; count--, off++, retval++) { 602 if (off < 128) 603 *buf++ = CMOS_READ(off); 604 else if (can_bank2) 605 *buf++ = cmos_read_bank2(off); 606 else 607 break; 608 } 609 spin_unlock_irq(&rtc_lock); 610 611 return retval; 612 } 613 614 static int cmos_nvram_write(void *priv, unsigned int off, void *val, 615 size_t count) 616 { 617 struct cmos_rtc *cmos = priv; 618 unsigned char *buf = val; 619 int retval; 620 621 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 622 * checksum on part of the NVRAM data. That's currently ignored 623 * here. If userspace is smart enough to know what fields of 624 * NVRAM to update, updating checksums is also part of its job. 625 */ 626 off += NVRAM_OFFSET; 627 spin_lock_irq(&rtc_lock); 628 for (retval = 0; count; count--, off++, retval++) { 629 /* don't trash RTC registers */ 630 if (off == cmos->day_alrm 631 || off == cmos->mon_alrm 632 || off == cmos->century) 633 buf++; 634 else if (off < 128) 635 CMOS_WRITE(*buf++, off); 636 else if (can_bank2) 637 cmos_write_bank2(*buf++, off); 638 else 639 break; 640 } 641 spin_unlock_irq(&rtc_lock); 642 643 return retval; 644 } 645 646 /*----------------------------------------------------------------*/ 647 648 static struct cmos_rtc cmos_rtc; 649 650 static irqreturn_t cmos_interrupt(int irq, void *p) 651 { 652 unsigned long flags; 653 u8 irqstat; 654 u8 rtc_control; 655 656 spin_lock_irqsave(&rtc_lock, flags); 657 658 /* When the HPET interrupt handler calls us, the interrupt 659 * status is passed as arg1 instead of the irq number. But 660 * always clear irq status, even when HPET is in the way. 661 * 662 * Note that HPET and RTC are almost certainly out of phase, 663 * giving different IRQ status ... 664 */ 665 irqstat = CMOS_READ(RTC_INTR_FLAGS); 666 rtc_control = CMOS_READ(RTC_CONTROL); 667 if (use_hpet_alarm()) 668 irqstat = (unsigned long)irq & 0xF0; 669 670 /* If we were suspended, RTC_CONTROL may not be accurate since the 671 * bios may have cleared it. 672 */ 673 if (!cmos_rtc.suspend_ctrl) 674 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 675 else 676 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 677 678 /* All Linux RTC alarms should be treated as if they were oneshot. 679 * Similar code may be needed in system wakeup paths, in case the 680 * alarm woke the system. 681 */ 682 if (irqstat & RTC_AIE) { 683 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 684 rtc_control &= ~RTC_AIE; 685 CMOS_WRITE(rtc_control, RTC_CONTROL); 686 if (use_hpet_alarm()) 687 hpet_mask_rtc_irq_bit(RTC_AIE); 688 CMOS_READ(RTC_INTR_FLAGS); 689 } 690 spin_unlock_irqrestore(&rtc_lock, flags); 691 692 if (is_intr(irqstat)) { 693 rtc_update_irq(p, 1, irqstat); 694 return IRQ_HANDLED; 695 } else 696 return IRQ_NONE; 697 } 698 699 #ifdef CONFIG_PNP 700 #define INITSECTION 701 702 #else 703 #define INITSECTION __init 704 #endif 705 706 static int INITSECTION 707 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 708 { 709 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 710 int retval = 0; 711 unsigned char rtc_control; 712 unsigned address_space; 713 u32 flags = 0; 714 struct nvmem_config nvmem_cfg = { 715 .name = "cmos_nvram", 716 .word_size = 1, 717 .stride = 1, 718 .reg_read = cmos_nvram_read, 719 .reg_write = cmos_nvram_write, 720 .priv = &cmos_rtc, 721 }; 722 723 /* there can be only one ... */ 724 if (cmos_rtc.dev) 725 return -EBUSY; 726 727 if (!ports) 728 return -ENODEV; 729 730 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 731 * 732 * REVISIT non-x86 systems may instead use memory space resources 733 * (needing ioremap etc), not i/o space resources like this ... 734 */ 735 if (RTC_IOMAPPED) 736 ports = request_region(ports->start, resource_size(ports), 737 driver_name); 738 else 739 ports = request_mem_region(ports->start, resource_size(ports), 740 driver_name); 741 if (!ports) { 742 dev_dbg(dev, "i/o registers already in use\n"); 743 return -EBUSY; 744 } 745 746 cmos_rtc.irq = rtc_irq; 747 cmos_rtc.iomem = ports; 748 749 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 750 * driver did, but don't reject unknown configs. Old hardware 751 * won't address 128 bytes. Newer chips have multiple banks, 752 * though they may not be listed in one I/O resource. 753 */ 754 #if defined(CONFIG_ATARI) 755 address_space = 64; 756 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 757 || defined(__sparc__) || defined(__mips__) \ 758 || defined(__powerpc__) 759 address_space = 128; 760 #else 761 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 762 address_space = 128; 763 #endif 764 if (can_bank2 && ports->end > (ports->start + 1)) 765 address_space = 256; 766 767 /* For ACPI systems extension info comes from the FADT. On others, 768 * board specific setup provides it as appropriate. Systems where 769 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 770 * some almost-clones) can provide hooks to make that behave. 771 * 772 * Note that ACPI doesn't preclude putting these registers into 773 * "extended" areas of the chip, including some that we won't yet 774 * expect CMOS_READ and friends to handle. 775 */ 776 if (info) { 777 if (info->flags) 778 flags = info->flags; 779 if (info->address_space) 780 address_space = info->address_space; 781 782 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 783 cmos_rtc.day_alrm = info->rtc_day_alarm; 784 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 785 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 786 if (info->rtc_century && info->rtc_century < 128) 787 cmos_rtc.century = info->rtc_century; 788 789 if (info->wake_on && info->wake_off) { 790 cmos_rtc.wake_on = info->wake_on; 791 cmos_rtc.wake_off = info->wake_off; 792 } 793 } 794 795 cmos_rtc.dev = dev; 796 dev_set_drvdata(dev, &cmos_rtc); 797 798 cmos_rtc.rtc = devm_rtc_allocate_device(dev); 799 if (IS_ERR(cmos_rtc.rtc)) { 800 retval = PTR_ERR(cmos_rtc.rtc); 801 goto cleanup0; 802 } 803 804 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 805 806 spin_lock_irq(&rtc_lock); 807 808 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 809 /* force periodic irq to CMOS reset default of 1024Hz; 810 * 811 * REVISIT it's been reported that at least one x86_64 ALI 812 * mobo doesn't use 32KHz here ... for portability we might 813 * need to do something about other clock frequencies. 814 */ 815 cmos_rtc.rtc->irq_freq = 1024; 816 if (use_hpet_alarm()) 817 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 818 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 819 } 820 821 /* disable irqs */ 822 if (is_valid_irq(rtc_irq)) 823 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 824 825 rtc_control = CMOS_READ(RTC_CONTROL); 826 827 spin_unlock_irq(&rtc_lock); 828 829 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 830 dev_warn(dev, "only 24-hr supported\n"); 831 retval = -ENXIO; 832 goto cleanup1; 833 } 834 835 if (use_hpet_alarm()) 836 hpet_rtc_timer_init(); 837 838 if (is_valid_irq(rtc_irq)) { 839 irq_handler_t rtc_cmos_int_handler; 840 841 if (use_hpet_alarm()) { 842 rtc_cmos_int_handler = hpet_rtc_interrupt; 843 retval = hpet_register_irq_handler(cmos_interrupt); 844 if (retval) { 845 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 846 dev_warn(dev, "hpet_register_irq_handler " 847 " failed in rtc_init()."); 848 goto cleanup1; 849 } 850 } else 851 rtc_cmos_int_handler = cmos_interrupt; 852 853 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 854 0, dev_name(&cmos_rtc.rtc->dev), 855 cmos_rtc.rtc); 856 if (retval < 0) { 857 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 858 goto cleanup1; 859 } 860 861 cmos_rtc.rtc->ops = &cmos_rtc_ops; 862 } else { 863 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm; 864 } 865 866 cmos_rtc.rtc->nvram_old_abi = true; 867 retval = rtc_register_device(cmos_rtc.rtc); 868 if (retval) 869 goto cleanup2; 870 871 /* Set the sync offset for the periodic 11min update correct */ 872 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2; 873 874 /* export at least the first block of NVRAM */ 875 nvmem_cfg.size = address_space - NVRAM_OFFSET; 876 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg)) 877 dev_err(dev, "nvmem registration failed\n"); 878 879 dev_info(dev, "%s%s, %d bytes nvram%s\n", 880 !is_valid_irq(rtc_irq) ? "no alarms" : 881 cmos_rtc.mon_alrm ? "alarms up to one year" : 882 cmos_rtc.day_alrm ? "alarms up to one month" : 883 "alarms up to one day", 884 cmos_rtc.century ? ", y3k" : "", 885 nvmem_cfg.size, 886 use_hpet_alarm() ? ", hpet irqs" : ""); 887 888 return 0; 889 890 cleanup2: 891 if (is_valid_irq(rtc_irq)) 892 free_irq(rtc_irq, cmos_rtc.rtc); 893 cleanup1: 894 cmos_rtc.dev = NULL; 895 cleanup0: 896 if (RTC_IOMAPPED) 897 release_region(ports->start, resource_size(ports)); 898 else 899 release_mem_region(ports->start, resource_size(ports)); 900 return retval; 901 } 902 903 static void cmos_do_shutdown(int rtc_irq) 904 { 905 spin_lock_irq(&rtc_lock); 906 if (is_valid_irq(rtc_irq)) 907 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 908 spin_unlock_irq(&rtc_lock); 909 } 910 911 static void cmos_do_remove(struct device *dev) 912 { 913 struct cmos_rtc *cmos = dev_get_drvdata(dev); 914 struct resource *ports; 915 916 cmos_do_shutdown(cmos->irq); 917 918 if (is_valid_irq(cmos->irq)) { 919 free_irq(cmos->irq, cmos->rtc); 920 if (use_hpet_alarm()) 921 hpet_unregister_irq_handler(cmos_interrupt); 922 } 923 924 cmos->rtc = NULL; 925 926 ports = cmos->iomem; 927 if (RTC_IOMAPPED) 928 release_region(ports->start, resource_size(ports)); 929 else 930 release_mem_region(ports->start, resource_size(ports)); 931 cmos->iomem = NULL; 932 933 cmos->dev = NULL; 934 } 935 936 static int cmos_aie_poweroff(struct device *dev) 937 { 938 struct cmos_rtc *cmos = dev_get_drvdata(dev); 939 struct rtc_time now; 940 time64_t t_now; 941 int retval = 0; 942 unsigned char rtc_control; 943 944 if (!cmos->alarm_expires) 945 return -EINVAL; 946 947 spin_lock_irq(&rtc_lock); 948 rtc_control = CMOS_READ(RTC_CONTROL); 949 spin_unlock_irq(&rtc_lock); 950 951 /* We only care about the situation where AIE is disabled. */ 952 if (rtc_control & RTC_AIE) 953 return -EBUSY; 954 955 cmos_read_time(dev, &now); 956 t_now = rtc_tm_to_time64(&now); 957 958 /* 959 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 960 * automatically right after shutdown on some buggy boxes. 961 * This automatic rebooting issue won't happen when the alarm 962 * time is larger than now+1 seconds. 963 * 964 * If the alarm time is equal to now+1 seconds, the issue can be 965 * prevented by cancelling the alarm. 966 */ 967 if (cmos->alarm_expires == t_now + 1) { 968 struct rtc_wkalrm alarm; 969 970 /* Cancel the AIE timer by configuring the past time. */ 971 rtc_time64_to_tm(t_now - 1, &alarm.time); 972 alarm.enabled = 0; 973 retval = cmos_set_alarm(dev, &alarm); 974 } else if (cmos->alarm_expires > t_now + 1) { 975 retval = -EBUSY; 976 } 977 978 return retval; 979 } 980 981 static int cmos_suspend(struct device *dev) 982 { 983 struct cmos_rtc *cmos = dev_get_drvdata(dev); 984 unsigned char tmp; 985 986 /* only the alarm might be a wakeup event source */ 987 spin_lock_irq(&rtc_lock); 988 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 989 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 990 unsigned char mask; 991 992 if (device_may_wakeup(dev)) 993 mask = RTC_IRQMASK & ~RTC_AIE; 994 else 995 mask = RTC_IRQMASK; 996 tmp &= ~mask; 997 CMOS_WRITE(tmp, RTC_CONTROL); 998 if (use_hpet_alarm()) 999 hpet_mask_rtc_irq_bit(mask); 1000 cmos_checkintr(cmos, tmp); 1001 } 1002 spin_unlock_irq(&rtc_lock); 1003 1004 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) { 1005 cmos->enabled_wake = 1; 1006 if (cmos->wake_on) 1007 cmos->wake_on(dev); 1008 else 1009 enable_irq_wake(cmos->irq); 1010 } 1011 1012 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm)); 1013 cmos_read_alarm(dev, &cmos->saved_wkalrm); 1014 1015 dev_dbg(dev, "suspend%s, ctrl %02x\n", 1016 (tmp & RTC_AIE) ? ", alarm may wake" : "", 1017 tmp); 1018 1019 return 0; 1020 } 1021 1022 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 1023 * after a detour through G3 "mechanical off", although the ACPI spec 1024 * says wakeup should only work from G1/S4 "hibernate". To most users, 1025 * distinctions between S4 and S5 are pointless. So when the hardware 1026 * allows, don't draw that distinction. 1027 */ 1028 static inline int cmos_poweroff(struct device *dev) 1029 { 1030 if (!IS_ENABLED(CONFIG_PM)) 1031 return -ENOSYS; 1032 1033 return cmos_suspend(dev); 1034 } 1035 1036 static void cmos_check_wkalrm(struct device *dev) 1037 { 1038 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1039 struct rtc_wkalrm current_alarm; 1040 time64_t t_now; 1041 time64_t t_current_expires; 1042 time64_t t_saved_expires; 1043 struct rtc_time now; 1044 1045 /* Check if we have RTC Alarm armed */ 1046 if (!(cmos->suspend_ctrl & RTC_AIE)) 1047 return; 1048 1049 cmos_read_time(dev, &now); 1050 t_now = rtc_tm_to_time64(&now); 1051 1052 /* 1053 * ACPI RTC wake event is cleared after resume from STR, 1054 * ACK the rtc irq here 1055 */ 1056 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) { 1057 cmos_interrupt(0, (void *)cmos->rtc); 1058 return; 1059 } 1060 1061 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm)); 1062 cmos_read_alarm(dev, ¤t_alarm); 1063 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 1064 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 1065 if (t_current_expires != t_saved_expires || 1066 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 1067 cmos_set_alarm(dev, &cmos->saved_wkalrm); 1068 } 1069 } 1070 1071 static void cmos_check_acpi_rtc_status(struct device *dev, 1072 unsigned char *rtc_control); 1073 1074 static int __maybe_unused cmos_resume(struct device *dev) 1075 { 1076 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1077 unsigned char tmp; 1078 1079 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) { 1080 if (cmos->wake_off) 1081 cmos->wake_off(dev); 1082 else 1083 disable_irq_wake(cmos->irq); 1084 cmos->enabled_wake = 0; 1085 } 1086 1087 /* The BIOS might have changed the alarm, restore it */ 1088 cmos_check_wkalrm(dev); 1089 1090 spin_lock_irq(&rtc_lock); 1091 tmp = cmos->suspend_ctrl; 1092 cmos->suspend_ctrl = 0; 1093 /* re-enable any irqs previously active */ 1094 if (tmp & RTC_IRQMASK) { 1095 unsigned char mask; 1096 1097 if (device_may_wakeup(dev) && use_hpet_alarm()) 1098 hpet_rtc_timer_init(); 1099 1100 do { 1101 CMOS_WRITE(tmp, RTC_CONTROL); 1102 if (use_hpet_alarm()) 1103 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 1104 1105 mask = CMOS_READ(RTC_INTR_FLAGS); 1106 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 1107 if (!use_hpet_alarm() || !is_intr(mask)) 1108 break; 1109 1110 /* force one-shot behavior if HPET blocked 1111 * the wake alarm's irq 1112 */ 1113 rtc_update_irq(cmos->rtc, 1, mask); 1114 tmp &= ~RTC_AIE; 1115 hpet_mask_rtc_irq_bit(RTC_AIE); 1116 } while (mask & RTC_AIE); 1117 1118 if (tmp & RTC_AIE) 1119 cmos_check_acpi_rtc_status(dev, &tmp); 1120 } 1121 spin_unlock_irq(&rtc_lock); 1122 1123 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 1124 1125 return 0; 1126 } 1127 1128 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 1129 1130 /*----------------------------------------------------------------*/ 1131 1132 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 1133 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 1134 * probably list them in similar PNPBIOS tables; so PNP is more common. 1135 * 1136 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 1137 * predate even PNPBIOS should set up platform_bus devices. 1138 */ 1139 1140 #ifdef CONFIG_ACPI 1141 1142 #include <linux/acpi.h> 1143 1144 static u32 rtc_handler(void *context) 1145 { 1146 struct device *dev = context; 1147 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1148 unsigned char rtc_control = 0; 1149 unsigned char rtc_intr; 1150 unsigned long flags; 1151 1152 1153 /* 1154 * Always update rtc irq when ACPI is used as RTC Alarm. 1155 * Or else, ACPI SCI is enabled during suspend/resume only, 1156 * update rtc irq in that case. 1157 */ 1158 if (cmos_use_acpi_alarm()) 1159 cmos_interrupt(0, (void *)cmos->rtc); 1160 else { 1161 /* Fix me: can we use cmos_interrupt() here as well? */ 1162 spin_lock_irqsave(&rtc_lock, flags); 1163 if (cmos_rtc.suspend_ctrl) 1164 rtc_control = CMOS_READ(RTC_CONTROL); 1165 if (rtc_control & RTC_AIE) { 1166 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 1167 CMOS_WRITE(rtc_control, RTC_CONTROL); 1168 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 1169 rtc_update_irq(cmos->rtc, 1, rtc_intr); 1170 } 1171 spin_unlock_irqrestore(&rtc_lock, flags); 1172 } 1173 1174 pm_wakeup_hard_event(dev); 1175 acpi_clear_event(ACPI_EVENT_RTC); 1176 acpi_disable_event(ACPI_EVENT_RTC, 0); 1177 return ACPI_INTERRUPT_HANDLED; 1178 } 1179 1180 static inline void rtc_wake_setup(struct device *dev) 1181 { 1182 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 1183 /* 1184 * After the RTC handler is installed, the Fixed_RTC event should 1185 * be disabled. Only when the RTC alarm is set will it be enabled. 1186 */ 1187 acpi_clear_event(ACPI_EVENT_RTC); 1188 acpi_disable_event(ACPI_EVENT_RTC, 0); 1189 } 1190 1191 static void rtc_wake_on(struct device *dev) 1192 { 1193 acpi_clear_event(ACPI_EVENT_RTC); 1194 acpi_enable_event(ACPI_EVENT_RTC, 0); 1195 } 1196 1197 static void rtc_wake_off(struct device *dev) 1198 { 1199 acpi_disable_event(ACPI_EVENT_RTC, 0); 1200 } 1201 1202 #ifdef CONFIG_X86 1203 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */ 1204 static void use_acpi_alarm_quirks(void) 1205 { 1206 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 1207 return; 1208 1209 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0)) 1210 return; 1211 1212 if (!is_hpet_enabled()) 1213 return; 1214 1215 if (dmi_get_bios_year() < 2015) 1216 return; 1217 1218 use_acpi_alarm = true; 1219 } 1220 #else 1221 static inline void use_acpi_alarm_quirks(void) { } 1222 #endif 1223 1224 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1225 * its device node and pass extra config data. This helps its driver use 1226 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1227 * that this board's RTC is wakeup-capable (per ACPI spec). 1228 */ 1229 static struct cmos_rtc_board_info acpi_rtc_info; 1230 1231 static void cmos_wake_setup(struct device *dev) 1232 { 1233 if (acpi_disabled) 1234 return; 1235 1236 use_acpi_alarm_quirks(); 1237 1238 rtc_wake_setup(dev); 1239 acpi_rtc_info.wake_on = rtc_wake_on; 1240 acpi_rtc_info.wake_off = rtc_wake_off; 1241 1242 /* workaround bug in some ACPI tables */ 1243 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1244 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1245 acpi_gbl_FADT.month_alarm); 1246 acpi_gbl_FADT.month_alarm = 0; 1247 } 1248 1249 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1250 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1251 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1252 1253 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1254 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1255 dev_info(dev, "RTC can wake from S4\n"); 1256 1257 dev->platform_data = &acpi_rtc_info; 1258 1259 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1260 device_init_wakeup(dev, 1); 1261 } 1262 1263 static void cmos_check_acpi_rtc_status(struct device *dev, 1264 unsigned char *rtc_control) 1265 { 1266 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1267 acpi_event_status rtc_status; 1268 acpi_status status; 1269 1270 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 1271 return; 1272 1273 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 1274 if (ACPI_FAILURE(status)) { 1275 dev_err(dev, "Could not get RTC status\n"); 1276 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 1277 unsigned char mask; 1278 *rtc_control &= ~RTC_AIE; 1279 CMOS_WRITE(*rtc_control, RTC_CONTROL); 1280 mask = CMOS_READ(RTC_INTR_FLAGS); 1281 rtc_update_irq(cmos->rtc, 1, mask); 1282 } 1283 } 1284 1285 #else 1286 1287 static void cmos_wake_setup(struct device *dev) 1288 { 1289 } 1290 1291 static void cmos_check_acpi_rtc_status(struct device *dev, 1292 unsigned char *rtc_control) 1293 { 1294 } 1295 1296 #endif 1297 1298 #ifdef CONFIG_PNP 1299 1300 #include <linux/pnp.h> 1301 1302 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1303 { 1304 cmos_wake_setup(&pnp->dev); 1305 1306 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { 1307 unsigned int irq = 0; 1308 #ifdef CONFIG_X86 1309 /* Some machines contain a PNP entry for the RTC, but 1310 * don't define the IRQ. It should always be safe to 1311 * hardcode it on systems with a legacy PIC. 1312 */ 1313 if (nr_legacy_irqs()) 1314 irq = RTC_IRQ; 1315 #endif 1316 return cmos_do_probe(&pnp->dev, 1317 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); 1318 } else { 1319 return cmos_do_probe(&pnp->dev, 1320 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1321 pnp_irq(pnp, 0)); 1322 } 1323 } 1324 1325 static void cmos_pnp_remove(struct pnp_dev *pnp) 1326 { 1327 cmos_do_remove(&pnp->dev); 1328 } 1329 1330 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1331 { 1332 struct device *dev = &pnp->dev; 1333 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1334 1335 if (system_state == SYSTEM_POWER_OFF) { 1336 int retval = cmos_poweroff(dev); 1337 1338 if (cmos_aie_poweroff(dev) < 0 && !retval) 1339 return; 1340 } 1341 1342 cmos_do_shutdown(cmos->irq); 1343 } 1344 1345 static const struct pnp_device_id rtc_ids[] = { 1346 { .id = "PNP0b00", }, 1347 { .id = "PNP0b01", }, 1348 { .id = "PNP0b02", }, 1349 { }, 1350 }; 1351 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1352 1353 static struct pnp_driver cmos_pnp_driver = { 1354 .name = driver_name, 1355 .id_table = rtc_ids, 1356 .probe = cmos_pnp_probe, 1357 .remove = cmos_pnp_remove, 1358 .shutdown = cmos_pnp_shutdown, 1359 1360 /* flag ensures resume() gets called, and stops syslog spam */ 1361 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1362 .driver = { 1363 .pm = &cmos_pm_ops, 1364 }, 1365 }; 1366 1367 #endif /* CONFIG_PNP */ 1368 1369 #ifdef CONFIG_OF 1370 static const struct of_device_id of_cmos_match[] = { 1371 { 1372 .compatible = "motorola,mc146818", 1373 }, 1374 { }, 1375 }; 1376 MODULE_DEVICE_TABLE(of, of_cmos_match); 1377 1378 static __init void cmos_of_init(struct platform_device *pdev) 1379 { 1380 struct device_node *node = pdev->dev.of_node; 1381 const __be32 *val; 1382 1383 if (!node) 1384 return; 1385 1386 val = of_get_property(node, "ctrl-reg", NULL); 1387 if (val) 1388 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1389 1390 val = of_get_property(node, "freq-reg", NULL); 1391 if (val) 1392 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1393 } 1394 #else 1395 static inline void cmos_of_init(struct platform_device *pdev) {} 1396 #endif 1397 /*----------------------------------------------------------------*/ 1398 1399 /* Platform setup should have set up an RTC device, when PNP is 1400 * unavailable ... this could happen even on (older) PCs. 1401 */ 1402 1403 static int __init cmos_platform_probe(struct platform_device *pdev) 1404 { 1405 struct resource *resource; 1406 int irq; 1407 1408 cmos_of_init(pdev); 1409 cmos_wake_setup(&pdev->dev); 1410 1411 if (RTC_IOMAPPED) 1412 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1413 else 1414 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1415 irq = platform_get_irq(pdev, 0); 1416 if (irq < 0) 1417 irq = -1; 1418 1419 return cmos_do_probe(&pdev->dev, resource, irq); 1420 } 1421 1422 static int cmos_platform_remove(struct platform_device *pdev) 1423 { 1424 cmos_do_remove(&pdev->dev); 1425 return 0; 1426 } 1427 1428 static void cmos_platform_shutdown(struct platform_device *pdev) 1429 { 1430 struct device *dev = &pdev->dev; 1431 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1432 1433 if (system_state == SYSTEM_POWER_OFF) { 1434 int retval = cmos_poweroff(dev); 1435 1436 if (cmos_aie_poweroff(dev) < 0 && !retval) 1437 return; 1438 } 1439 1440 cmos_do_shutdown(cmos->irq); 1441 } 1442 1443 /* work with hotplug and coldplug */ 1444 MODULE_ALIAS("platform:rtc_cmos"); 1445 1446 static struct platform_driver cmos_platform_driver = { 1447 .remove = cmos_platform_remove, 1448 .shutdown = cmos_platform_shutdown, 1449 .driver = { 1450 .name = driver_name, 1451 .pm = &cmos_pm_ops, 1452 .of_match_table = of_match_ptr(of_cmos_match), 1453 } 1454 }; 1455 1456 #ifdef CONFIG_PNP 1457 static bool pnp_driver_registered; 1458 #endif 1459 static bool platform_driver_registered; 1460 1461 static int __init cmos_init(void) 1462 { 1463 int retval = 0; 1464 1465 #ifdef CONFIG_PNP 1466 retval = pnp_register_driver(&cmos_pnp_driver); 1467 if (retval == 0) 1468 pnp_driver_registered = true; 1469 #endif 1470 1471 if (!cmos_rtc.dev) { 1472 retval = platform_driver_probe(&cmos_platform_driver, 1473 cmos_platform_probe); 1474 if (retval == 0) 1475 platform_driver_registered = true; 1476 } 1477 1478 if (retval == 0) 1479 return 0; 1480 1481 #ifdef CONFIG_PNP 1482 if (pnp_driver_registered) 1483 pnp_unregister_driver(&cmos_pnp_driver); 1484 #endif 1485 return retval; 1486 } 1487 module_init(cmos_init); 1488 1489 static void __exit cmos_exit(void) 1490 { 1491 #ifdef CONFIG_PNP 1492 if (pnp_driver_registered) 1493 pnp_unregister_driver(&cmos_pnp_driver); 1494 #endif 1495 if (platform_driver_registered) 1496 platform_driver_unregister(&cmos_platform_driver); 1497 } 1498 module_exit(cmos_exit); 1499 1500 1501 MODULE_AUTHOR("David Brownell"); 1502 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1503 MODULE_LICENSE("GPL"); 1504