xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision f3a8b664)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
47 
48 struct cmos_rtc {
49 	struct rtc_device	*rtc;
50 	struct device		*dev;
51 	int			irq;
52 	struct resource		*iomem;
53 	time64_t		alarm_expires;
54 
55 	void			(*wake_on)(struct device *);
56 	void			(*wake_off)(struct device *);
57 
58 	u8			enabled_wake;
59 	u8			suspend_ctrl;
60 
61 	/* newer hardware extends the original register set */
62 	u8			day_alrm;
63 	u8			mon_alrm;
64 	u8			century;
65 
66 	struct rtc_wkalrm	saved_wkalrm;
67 };
68 
69 /* both platform and pnp busses use negative numbers for invalid irqs */
70 #define is_valid_irq(n)		((n) > 0)
71 
72 static const char driver_name[] = "rtc_cmos";
73 
74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
75  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
76  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
77  */
78 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
79 
80 static inline int is_intr(u8 rtc_intr)
81 {
82 	if (!(rtc_intr & RTC_IRQF))
83 		return 0;
84 	return rtc_intr & RTC_IRQMASK;
85 }
86 
87 /*----------------------------------------------------------------*/
88 
89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
90  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
91  * used in a broken "legacy replacement" mode.  The breakage includes
92  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
93  * other (better) use.
94  *
95  * When that broken mode is in use, platform glue provides a partial
96  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
97  * want to use HPET for anything except those IRQs though...
98  */
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #include <asm/hpet.h>
101 #else
102 
103 static inline int is_hpet_enabled(void)
104 {
105 	return 0;
106 }
107 
108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
109 {
110 	return 0;
111 }
112 
113 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
114 {
115 	return 0;
116 }
117 
118 static inline int
119 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
120 {
121 	return 0;
122 }
123 
124 static inline int hpet_set_periodic_freq(unsigned long freq)
125 {
126 	return 0;
127 }
128 
129 static inline int hpet_rtc_dropped_irq(void)
130 {
131 	return 0;
132 }
133 
134 static inline int hpet_rtc_timer_init(void)
135 {
136 	return 0;
137 }
138 
139 extern irq_handler_t hpet_rtc_interrupt;
140 
141 static inline int hpet_register_irq_handler(irq_handler_t handler)
142 {
143 	return 0;
144 }
145 
146 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
147 {
148 	return 0;
149 }
150 
151 #endif
152 
153 /*----------------------------------------------------------------*/
154 
155 #ifdef RTC_PORT
156 
157 /* Most newer x86 systems have two register banks, the first used
158  * for RTC and NVRAM and the second only for NVRAM.  Caller must
159  * own rtc_lock ... and we won't worry about access during NMI.
160  */
161 #define can_bank2	true
162 
163 static inline unsigned char cmos_read_bank2(unsigned char addr)
164 {
165 	outb(addr, RTC_PORT(2));
166 	return inb(RTC_PORT(3));
167 }
168 
169 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
170 {
171 	outb(addr, RTC_PORT(2));
172 	outb(val, RTC_PORT(3));
173 }
174 
175 #else
176 
177 #define can_bank2	false
178 
179 static inline unsigned char cmos_read_bank2(unsigned char addr)
180 {
181 	return 0;
182 }
183 
184 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
185 {
186 }
187 
188 #endif
189 
190 /*----------------------------------------------------------------*/
191 
192 static int cmos_read_time(struct device *dev, struct rtc_time *t)
193 {
194 	/* REVISIT:  if the clock has a "century" register, use
195 	 * that instead of the heuristic in mc146818_get_time().
196 	 * That'll make Y3K compatility (year > 2070) easy!
197 	 */
198 	mc146818_get_time(t);
199 	return 0;
200 }
201 
202 static int cmos_set_time(struct device *dev, struct rtc_time *t)
203 {
204 	/* REVISIT:  set the "century" register if available
205 	 *
206 	 * NOTE: this ignores the issue whereby updating the seconds
207 	 * takes effect exactly 500ms after we write the register.
208 	 * (Also queueing and other delays before we get this far.)
209 	 */
210 	return mc146818_set_time(t);
211 }
212 
213 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
214 {
215 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
216 	unsigned char	rtc_control;
217 
218 	if (!is_valid_irq(cmos->irq))
219 		return -EIO;
220 
221 	/* Basic alarms only support hour, minute, and seconds fields.
222 	 * Some also support day and month, for alarms up to a year in
223 	 * the future.
224 	 */
225 
226 	spin_lock_irq(&rtc_lock);
227 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
228 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
229 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
230 
231 	if (cmos->day_alrm) {
232 		/* ignore upper bits on readback per ACPI spec */
233 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
234 		if (!t->time.tm_mday)
235 			t->time.tm_mday = -1;
236 
237 		if (cmos->mon_alrm) {
238 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
239 			if (!t->time.tm_mon)
240 				t->time.tm_mon = -1;
241 		}
242 	}
243 
244 	rtc_control = CMOS_READ(RTC_CONTROL);
245 	spin_unlock_irq(&rtc_lock);
246 
247 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
248 		if (((unsigned)t->time.tm_sec) < 0x60)
249 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
250 		else
251 			t->time.tm_sec = -1;
252 		if (((unsigned)t->time.tm_min) < 0x60)
253 			t->time.tm_min = bcd2bin(t->time.tm_min);
254 		else
255 			t->time.tm_min = -1;
256 		if (((unsigned)t->time.tm_hour) < 0x24)
257 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
258 		else
259 			t->time.tm_hour = -1;
260 
261 		if (cmos->day_alrm) {
262 			if (((unsigned)t->time.tm_mday) <= 0x31)
263 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
264 			else
265 				t->time.tm_mday = -1;
266 
267 			if (cmos->mon_alrm) {
268 				if (((unsigned)t->time.tm_mon) <= 0x12)
269 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
270 				else
271 					t->time.tm_mon = -1;
272 			}
273 		}
274 	}
275 
276 	t->enabled = !!(rtc_control & RTC_AIE);
277 	t->pending = 0;
278 
279 	return 0;
280 }
281 
282 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
283 {
284 	unsigned char	rtc_intr;
285 
286 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
287 	 * allegedly some older rtcs need that to handle irqs properly
288 	 */
289 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
290 
291 	if (is_hpet_enabled())
292 		return;
293 
294 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
295 	if (is_intr(rtc_intr))
296 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
297 }
298 
299 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
300 {
301 	unsigned char	rtc_control;
302 
303 	/* flush any pending IRQ status, notably for update irqs,
304 	 * before we enable new IRQs
305 	 */
306 	rtc_control = CMOS_READ(RTC_CONTROL);
307 	cmos_checkintr(cmos, rtc_control);
308 
309 	rtc_control |= mask;
310 	CMOS_WRITE(rtc_control, RTC_CONTROL);
311 	hpet_set_rtc_irq_bit(mask);
312 
313 	cmos_checkintr(cmos, rtc_control);
314 }
315 
316 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
317 {
318 	unsigned char	rtc_control;
319 
320 	rtc_control = CMOS_READ(RTC_CONTROL);
321 	rtc_control &= ~mask;
322 	CMOS_WRITE(rtc_control, RTC_CONTROL);
323 	hpet_mask_rtc_irq_bit(mask);
324 
325 	cmos_checkintr(cmos, rtc_control);
326 }
327 
328 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
329 {
330 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
331 	unsigned char mon, mday, hrs, min, sec, rtc_control;
332 
333 	if (!is_valid_irq(cmos->irq))
334 		return -EIO;
335 
336 	mon = t->time.tm_mon + 1;
337 	mday = t->time.tm_mday;
338 	hrs = t->time.tm_hour;
339 	min = t->time.tm_min;
340 	sec = t->time.tm_sec;
341 
342 	rtc_control = CMOS_READ(RTC_CONTROL);
343 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
344 		/* Writing 0xff means "don't care" or "match all".  */
345 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
346 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
347 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
348 		min = (min < 60) ? bin2bcd(min) : 0xff;
349 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
350 	}
351 
352 	spin_lock_irq(&rtc_lock);
353 
354 	/* next rtc irq must not be from previous alarm setting */
355 	cmos_irq_disable(cmos, RTC_AIE);
356 
357 	/* update alarm */
358 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
359 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
360 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
361 
362 	/* the system may support an "enhanced" alarm */
363 	if (cmos->day_alrm) {
364 		CMOS_WRITE(mday, cmos->day_alrm);
365 		if (cmos->mon_alrm)
366 			CMOS_WRITE(mon, cmos->mon_alrm);
367 	}
368 
369 	/* FIXME the HPET alarm glue currently ignores day_alrm
370 	 * and mon_alrm ...
371 	 */
372 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
373 
374 	if (t->enabled)
375 		cmos_irq_enable(cmos, RTC_AIE);
376 
377 	spin_unlock_irq(&rtc_lock);
378 
379 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
380 
381 	return 0;
382 }
383 
384 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
385 {
386 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
387 	unsigned long	flags;
388 
389 	if (!is_valid_irq(cmos->irq))
390 		return -EINVAL;
391 
392 	spin_lock_irqsave(&rtc_lock, flags);
393 
394 	if (enabled)
395 		cmos_irq_enable(cmos, RTC_AIE);
396 	else
397 		cmos_irq_disable(cmos, RTC_AIE);
398 
399 	spin_unlock_irqrestore(&rtc_lock, flags);
400 	return 0;
401 }
402 
403 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
404 
405 static int cmos_procfs(struct device *dev, struct seq_file *seq)
406 {
407 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
408 	unsigned char	rtc_control, valid;
409 
410 	spin_lock_irq(&rtc_lock);
411 	rtc_control = CMOS_READ(RTC_CONTROL);
412 	valid = CMOS_READ(RTC_VALID);
413 	spin_unlock_irq(&rtc_lock);
414 
415 	/* NOTE:  at least ICH6 reports battery status using a different
416 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
417 	 */
418 	seq_printf(seq,
419 		   "periodic_IRQ\t: %s\n"
420 		   "update_IRQ\t: %s\n"
421 		   "HPET_emulated\t: %s\n"
422 		   // "square_wave\t: %s\n"
423 		   "BCD\t\t: %s\n"
424 		   "DST_enable\t: %s\n"
425 		   "periodic_freq\t: %d\n"
426 		   "batt_status\t: %s\n",
427 		   (rtc_control & RTC_PIE) ? "yes" : "no",
428 		   (rtc_control & RTC_UIE) ? "yes" : "no",
429 		   is_hpet_enabled() ? "yes" : "no",
430 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
431 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
432 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
433 		   cmos->rtc->irq_freq,
434 		   (valid & RTC_VRT) ? "okay" : "dead");
435 
436 	return 0;
437 }
438 
439 #else
440 #define	cmos_procfs	NULL
441 #endif
442 
443 static const struct rtc_class_ops cmos_rtc_ops = {
444 	.read_time		= cmos_read_time,
445 	.set_time		= cmos_set_time,
446 	.read_alarm		= cmos_read_alarm,
447 	.set_alarm		= cmos_set_alarm,
448 	.proc			= cmos_procfs,
449 	.alarm_irq_enable	= cmos_alarm_irq_enable,
450 };
451 
452 /*----------------------------------------------------------------*/
453 
454 /*
455  * All these chips have at least 64 bytes of address space, shared by
456  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
457  * by boot firmware.  Modern chips have 128 or 256 bytes.
458  */
459 
460 #define NVRAM_OFFSET	(RTC_REG_D + 1)
461 
462 static ssize_t
463 cmos_nvram_read(struct file *filp, struct kobject *kobj,
464 		struct bin_attribute *attr,
465 		char *buf, loff_t off, size_t count)
466 {
467 	int	retval;
468 
469 	off += NVRAM_OFFSET;
470 	spin_lock_irq(&rtc_lock);
471 	for (retval = 0; count; count--, off++, retval++) {
472 		if (off < 128)
473 			*buf++ = CMOS_READ(off);
474 		else if (can_bank2)
475 			*buf++ = cmos_read_bank2(off);
476 		else
477 			break;
478 	}
479 	spin_unlock_irq(&rtc_lock);
480 
481 	return retval;
482 }
483 
484 static ssize_t
485 cmos_nvram_write(struct file *filp, struct kobject *kobj,
486 		struct bin_attribute *attr,
487 		char *buf, loff_t off, size_t count)
488 {
489 	struct cmos_rtc	*cmos;
490 	int		retval;
491 
492 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
493 
494 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
495 	 * checksum on part of the NVRAM data.  That's currently ignored
496 	 * here.  If userspace is smart enough to know what fields of
497 	 * NVRAM to update, updating checksums is also part of its job.
498 	 */
499 	off += NVRAM_OFFSET;
500 	spin_lock_irq(&rtc_lock);
501 	for (retval = 0; count; count--, off++, retval++) {
502 		/* don't trash RTC registers */
503 		if (off == cmos->day_alrm
504 				|| off == cmos->mon_alrm
505 				|| off == cmos->century)
506 			buf++;
507 		else if (off < 128)
508 			CMOS_WRITE(*buf++, off);
509 		else if (can_bank2)
510 			cmos_write_bank2(*buf++, off);
511 		else
512 			break;
513 	}
514 	spin_unlock_irq(&rtc_lock);
515 
516 	return retval;
517 }
518 
519 static struct bin_attribute nvram = {
520 	.attr = {
521 		.name	= "nvram",
522 		.mode	= S_IRUGO | S_IWUSR,
523 	},
524 
525 	.read	= cmos_nvram_read,
526 	.write	= cmos_nvram_write,
527 	/* size gets set up later */
528 };
529 
530 /*----------------------------------------------------------------*/
531 
532 static struct cmos_rtc	cmos_rtc;
533 
534 static irqreturn_t cmos_interrupt(int irq, void *p)
535 {
536 	u8		irqstat;
537 	u8		rtc_control;
538 
539 	spin_lock(&rtc_lock);
540 
541 	/* When the HPET interrupt handler calls us, the interrupt
542 	 * status is passed as arg1 instead of the irq number.  But
543 	 * always clear irq status, even when HPET is in the way.
544 	 *
545 	 * Note that HPET and RTC are almost certainly out of phase,
546 	 * giving different IRQ status ...
547 	 */
548 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
549 	rtc_control = CMOS_READ(RTC_CONTROL);
550 	if (is_hpet_enabled())
551 		irqstat = (unsigned long)irq & 0xF0;
552 
553 	/* If we were suspended, RTC_CONTROL may not be accurate since the
554 	 * bios may have cleared it.
555 	 */
556 	if (!cmos_rtc.suspend_ctrl)
557 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
558 	else
559 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
560 
561 	/* All Linux RTC alarms should be treated as if they were oneshot.
562 	 * Similar code may be needed in system wakeup paths, in case the
563 	 * alarm woke the system.
564 	 */
565 	if (irqstat & RTC_AIE) {
566 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
567 		rtc_control &= ~RTC_AIE;
568 		CMOS_WRITE(rtc_control, RTC_CONTROL);
569 		hpet_mask_rtc_irq_bit(RTC_AIE);
570 		CMOS_READ(RTC_INTR_FLAGS);
571 	}
572 	spin_unlock(&rtc_lock);
573 
574 	if (is_intr(irqstat)) {
575 		rtc_update_irq(p, 1, irqstat);
576 		return IRQ_HANDLED;
577 	} else
578 		return IRQ_NONE;
579 }
580 
581 #ifdef	CONFIG_PNP
582 #define	INITSECTION
583 
584 #else
585 #define	INITSECTION	__init
586 #endif
587 
588 static int INITSECTION
589 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
590 {
591 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
592 	int				retval = 0;
593 	unsigned char			rtc_control;
594 	unsigned			address_space;
595 	u32				flags = 0;
596 
597 	/* there can be only one ... */
598 	if (cmos_rtc.dev)
599 		return -EBUSY;
600 
601 	if (!ports)
602 		return -ENODEV;
603 
604 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
605 	 *
606 	 * REVISIT non-x86 systems may instead use memory space resources
607 	 * (needing ioremap etc), not i/o space resources like this ...
608 	 */
609 	if (RTC_IOMAPPED)
610 		ports = request_region(ports->start, resource_size(ports),
611 				       driver_name);
612 	else
613 		ports = request_mem_region(ports->start, resource_size(ports),
614 					   driver_name);
615 	if (!ports) {
616 		dev_dbg(dev, "i/o registers already in use\n");
617 		return -EBUSY;
618 	}
619 
620 	cmos_rtc.irq = rtc_irq;
621 	cmos_rtc.iomem = ports;
622 
623 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
624 	 * driver did, but don't reject unknown configs.   Old hardware
625 	 * won't address 128 bytes.  Newer chips have multiple banks,
626 	 * though they may not be listed in one I/O resource.
627 	 */
628 #if	defined(CONFIG_ATARI)
629 	address_space = 64;
630 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
631 			|| defined(__sparc__) || defined(__mips__) \
632 			|| defined(__powerpc__) || defined(CONFIG_MN10300)
633 	address_space = 128;
634 #else
635 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
636 	address_space = 128;
637 #endif
638 	if (can_bank2 && ports->end > (ports->start + 1))
639 		address_space = 256;
640 
641 	/* For ACPI systems extension info comes from the FADT.  On others,
642 	 * board specific setup provides it as appropriate.  Systems where
643 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
644 	 * some almost-clones) can provide hooks to make that behave.
645 	 *
646 	 * Note that ACPI doesn't preclude putting these registers into
647 	 * "extended" areas of the chip, including some that we won't yet
648 	 * expect CMOS_READ and friends to handle.
649 	 */
650 	if (info) {
651 		if (info->flags)
652 			flags = info->flags;
653 		if (info->address_space)
654 			address_space = info->address_space;
655 
656 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
657 			cmos_rtc.day_alrm = info->rtc_day_alarm;
658 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
659 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
660 		if (info->rtc_century && info->rtc_century < 128)
661 			cmos_rtc.century = info->rtc_century;
662 
663 		if (info->wake_on && info->wake_off) {
664 			cmos_rtc.wake_on = info->wake_on;
665 			cmos_rtc.wake_off = info->wake_off;
666 		}
667 	}
668 
669 	cmos_rtc.dev = dev;
670 	dev_set_drvdata(dev, &cmos_rtc);
671 
672 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
673 				&cmos_rtc_ops, THIS_MODULE);
674 	if (IS_ERR(cmos_rtc.rtc)) {
675 		retval = PTR_ERR(cmos_rtc.rtc);
676 		goto cleanup0;
677 	}
678 
679 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
680 
681 	spin_lock_irq(&rtc_lock);
682 
683 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
684 		/* force periodic irq to CMOS reset default of 1024Hz;
685 		 *
686 		 * REVISIT it's been reported that at least one x86_64 ALI
687 		 * mobo doesn't use 32KHz here ... for portability we might
688 		 * need to do something about other clock frequencies.
689 		 */
690 		cmos_rtc.rtc->irq_freq = 1024;
691 		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
692 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
693 	}
694 
695 	/* disable irqs */
696 	if (is_valid_irq(rtc_irq))
697 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
698 
699 	rtc_control = CMOS_READ(RTC_CONTROL);
700 
701 	spin_unlock_irq(&rtc_lock);
702 
703 	/* FIXME:
704 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
705 	 */
706 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
707 		dev_warn(dev, "only 24-hr supported\n");
708 		retval = -ENXIO;
709 		goto cleanup1;
710 	}
711 
712 	hpet_rtc_timer_init();
713 
714 	if (is_valid_irq(rtc_irq)) {
715 		irq_handler_t rtc_cmos_int_handler;
716 
717 		if (is_hpet_enabled()) {
718 			rtc_cmos_int_handler = hpet_rtc_interrupt;
719 			retval = hpet_register_irq_handler(cmos_interrupt);
720 			if (retval) {
721 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
722 				dev_warn(dev, "hpet_register_irq_handler "
723 						" failed in rtc_init().");
724 				goto cleanup1;
725 			}
726 		} else
727 			rtc_cmos_int_handler = cmos_interrupt;
728 
729 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
730 				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
731 				cmos_rtc.rtc);
732 		if (retval < 0) {
733 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
734 			goto cleanup1;
735 		}
736 	}
737 
738 	/* export at least the first block of NVRAM */
739 	nvram.size = address_space - NVRAM_OFFSET;
740 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
741 	if (retval < 0) {
742 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
743 		goto cleanup2;
744 	}
745 
746 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
747 		!is_valid_irq(rtc_irq) ? "no alarms" :
748 			cmos_rtc.mon_alrm ? "alarms up to one year" :
749 			cmos_rtc.day_alrm ? "alarms up to one month" :
750 			"alarms up to one day",
751 		cmos_rtc.century ? ", y3k" : "",
752 		nvram.size,
753 		is_hpet_enabled() ? ", hpet irqs" : "");
754 
755 	return 0;
756 
757 cleanup2:
758 	if (is_valid_irq(rtc_irq))
759 		free_irq(rtc_irq, cmos_rtc.rtc);
760 cleanup1:
761 	cmos_rtc.dev = NULL;
762 	rtc_device_unregister(cmos_rtc.rtc);
763 cleanup0:
764 	if (RTC_IOMAPPED)
765 		release_region(ports->start, resource_size(ports));
766 	else
767 		release_mem_region(ports->start, resource_size(ports));
768 	return retval;
769 }
770 
771 static void cmos_do_shutdown(int rtc_irq)
772 {
773 	spin_lock_irq(&rtc_lock);
774 	if (is_valid_irq(rtc_irq))
775 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
776 	spin_unlock_irq(&rtc_lock);
777 }
778 
779 static void __exit cmos_do_remove(struct device *dev)
780 {
781 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
782 	struct resource *ports;
783 
784 	cmos_do_shutdown(cmos->irq);
785 
786 	sysfs_remove_bin_file(&dev->kobj, &nvram);
787 
788 	if (is_valid_irq(cmos->irq)) {
789 		free_irq(cmos->irq, cmos->rtc);
790 		hpet_unregister_irq_handler(cmos_interrupt);
791 	}
792 
793 	rtc_device_unregister(cmos->rtc);
794 	cmos->rtc = NULL;
795 
796 	ports = cmos->iomem;
797 	if (RTC_IOMAPPED)
798 		release_region(ports->start, resource_size(ports));
799 	else
800 		release_mem_region(ports->start, resource_size(ports));
801 	cmos->iomem = NULL;
802 
803 	cmos->dev = NULL;
804 }
805 
806 static int cmos_aie_poweroff(struct device *dev)
807 {
808 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
809 	struct rtc_time now;
810 	time64_t t_now;
811 	int retval = 0;
812 	unsigned char rtc_control;
813 
814 	if (!cmos->alarm_expires)
815 		return -EINVAL;
816 
817 	spin_lock_irq(&rtc_lock);
818 	rtc_control = CMOS_READ(RTC_CONTROL);
819 	spin_unlock_irq(&rtc_lock);
820 
821 	/* We only care about the situation where AIE is disabled. */
822 	if (rtc_control & RTC_AIE)
823 		return -EBUSY;
824 
825 	cmos_read_time(dev, &now);
826 	t_now = rtc_tm_to_time64(&now);
827 
828 	/*
829 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
830 	 * automatically right after shutdown on some buggy boxes.
831 	 * This automatic rebooting issue won't happen when the alarm
832 	 * time is larger than now+1 seconds.
833 	 *
834 	 * If the alarm time is equal to now+1 seconds, the issue can be
835 	 * prevented by cancelling the alarm.
836 	 */
837 	if (cmos->alarm_expires == t_now + 1) {
838 		struct rtc_wkalrm alarm;
839 
840 		/* Cancel the AIE timer by configuring the past time. */
841 		rtc_time64_to_tm(t_now - 1, &alarm.time);
842 		alarm.enabled = 0;
843 		retval = cmos_set_alarm(dev, &alarm);
844 	} else if (cmos->alarm_expires > t_now + 1) {
845 		retval = -EBUSY;
846 	}
847 
848 	return retval;
849 }
850 
851 static int cmos_suspend(struct device *dev)
852 {
853 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
854 	unsigned char	tmp;
855 
856 	/* only the alarm might be a wakeup event source */
857 	spin_lock_irq(&rtc_lock);
858 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
859 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
860 		unsigned char	mask;
861 
862 		if (device_may_wakeup(dev))
863 			mask = RTC_IRQMASK & ~RTC_AIE;
864 		else
865 			mask = RTC_IRQMASK;
866 		tmp &= ~mask;
867 		CMOS_WRITE(tmp, RTC_CONTROL);
868 		hpet_mask_rtc_irq_bit(mask);
869 
870 		cmos_checkintr(cmos, tmp);
871 	}
872 	spin_unlock_irq(&rtc_lock);
873 
874 	if (tmp & RTC_AIE) {
875 		cmos->enabled_wake = 1;
876 		if (cmos->wake_on)
877 			cmos->wake_on(dev);
878 		else
879 			enable_irq_wake(cmos->irq);
880 	}
881 
882 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
883 
884 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
885 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
886 			tmp);
887 
888 	return 0;
889 }
890 
891 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
892  * after a detour through G3 "mechanical off", although the ACPI spec
893  * says wakeup should only work from G1/S4 "hibernate".  To most users,
894  * distinctions between S4 and S5 are pointless.  So when the hardware
895  * allows, don't draw that distinction.
896  */
897 static inline int cmos_poweroff(struct device *dev)
898 {
899 	if (!IS_ENABLED(CONFIG_PM))
900 		return -ENOSYS;
901 
902 	return cmos_suspend(dev);
903 }
904 
905 static void cmos_check_wkalrm(struct device *dev)
906 {
907 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
908 	struct rtc_wkalrm current_alarm;
909 	time64_t t_current_expires;
910 	time64_t t_saved_expires;
911 
912 	cmos_read_alarm(dev, &current_alarm);
913 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
914 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
915 	if (t_current_expires != t_saved_expires ||
916 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
917 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
918 	}
919 }
920 
921 static void cmos_check_acpi_rtc_status(struct device *dev,
922 				       unsigned char *rtc_control);
923 
924 static int __maybe_unused cmos_resume(struct device *dev)
925 {
926 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
927 	unsigned char tmp;
928 
929 	if (cmos->enabled_wake) {
930 		if (cmos->wake_off)
931 			cmos->wake_off(dev);
932 		else
933 			disable_irq_wake(cmos->irq);
934 		cmos->enabled_wake = 0;
935 	}
936 
937 	/* The BIOS might have changed the alarm, restore it */
938 	cmos_check_wkalrm(dev);
939 
940 	spin_lock_irq(&rtc_lock);
941 	tmp = cmos->suspend_ctrl;
942 	cmos->suspend_ctrl = 0;
943 	/* re-enable any irqs previously active */
944 	if (tmp & RTC_IRQMASK) {
945 		unsigned char	mask;
946 
947 		if (device_may_wakeup(dev))
948 			hpet_rtc_timer_init();
949 
950 		do {
951 			CMOS_WRITE(tmp, RTC_CONTROL);
952 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
953 
954 			mask = CMOS_READ(RTC_INTR_FLAGS);
955 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
956 			if (!is_hpet_enabled() || !is_intr(mask))
957 				break;
958 
959 			/* force one-shot behavior if HPET blocked
960 			 * the wake alarm's irq
961 			 */
962 			rtc_update_irq(cmos->rtc, 1, mask);
963 			tmp &= ~RTC_AIE;
964 			hpet_mask_rtc_irq_bit(RTC_AIE);
965 		} while (mask & RTC_AIE);
966 
967 		if (tmp & RTC_AIE)
968 			cmos_check_acpi_rtc_status(dev, &tmp);
969 	}
970 	spin_unlock_irq(&rtc_lock);
971 
972 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
973 
974 	return 0;
975 }
976 
977 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
978 
979 /*----------------------------------------------------------------*/
980 
981 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
982  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
983  * probably list them in similar PNPBIOS tables; so PNP is more common.
984  *
985  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
986  * predate even PNPBIOS should set up platform_bus devices.
987  */
988 
989 #ifdef	CONFIG_ACPI
990 
991 #include <linux/acpi.h>
992 
993 static u32 rtc_handler(void *context)
994 {
995 	struct device *dev = context;
996 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
997 	unsigned char rtc_control = 0;
998 	unsigned char rtc_intr;
999 
1000 	spin_lock_irq(&rtc_lock);
1001 	if (cmos_rtc.suspend_ctrl)
1002 		rtc_control = CMOS_READ(RTC_CONTROL);
1003 	if (rtc_control & RTC_AIE) {
1004 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1005 		CMOS_WRITE(rtc_control, RTC_CONTROL);
1006 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1007 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1008 	}
1009 	spin_unlock_irq(&rtc_lock);
1010 
1011 	pm_wakeup_event(dev, 0);
1012 	acpi_clear_event(ACPI_EVENT_RTC);
1013 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1014 	return ACPI_INTERRUPT_HANDLED;
1015 }
1016 
1017 static inline void rtc_wake_setup(struct device *dev)
1018 {
1019 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1020 	/*
1021 	 * After the RTC handler is installed, the Fixed_RTC event should
1022 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1023 	 */
1024 	acpi_clear_event(ACPI_EVENT_RTC);
1025 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1026 }
1027 
1028 static void rtc_wake_on(struct device *dev)
1029 {
1030 	acpi_clear_event(ACPI_EVENT_RTC);
1031 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1032 }
1033 
1034 static void rtc_wake_off(struct device *dev)
1035 {
1036 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1037 }
1038 
1039 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1040  * its device node and pass extra config data.  This helps its driver use
1041  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1042  * that this board's RTC is wakeup-capable (per ACPI spec).
1043  */
1044 static struct cmos_rtc_board_info acpi_rtc_info;
1045 
1046 static void cmos_wake_setup(struct device *dev)
1047 {
1048 	if (acpi_disabled)
1049 		return;
1050 
1051 	rtc_wake_setup(dev);
1052 	acpi_rtc_info.wake_on = rtc_wake_on;
1053 	acpi_rtc_info.wake_off = rtc_wake_off;
1054 
1055 	/* workaround bug in some ACPI tables */
1056 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1057 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1058 			acpi_gbl_FADT.month_alarm);
1059 		acpi_gbl_FADT.month_alarm = 0;
1060 	}
1061 
1062 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1063 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1064 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1065 
1066 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1067 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1068 		dev_info(dev, "RTC can wake from S4\n");
1069 
1070 	dev->platform_data = &acpi_rtc_info;
1071 
1072 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1073 	device_init_wakeup(dev, 1);
1074 }
1075 
1076 static void cmos_check_acpi_rtc_status(struct device *dev,
1077 				       unsigned char *rtc_control)
1078 {
1079 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1080 	acpi_event_status rtc_status;
1081 	acpi_status status;
1082 
1083 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1084 		return;
1085 
1086 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1087 	if (ACPI_FAILURE(status)) {
1088 		dev_err(dev, "Could not get RTC status\n");
1089 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1090 		unsigned char mask;
1091 		*rtc_control &= ~RTC_AIE;
1092 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1093 		mask = CMOS_READ(RTC_INTR_FLAGS);
1094 		rtc_update_irq(cmos->rtc, 1, mask);
1095 	}
1096 }
1097 
1098 #else
1099 
1100 static void cmos_wake_setup(struct device *dev)
1101 {
1102 }
1103 
1104 static void cmos_check_acpi_rtc_status(struct device *dev,
1105 				       unsigned char *rtc_control)
1106 {
1107 }
1108 
1109 #endif
1110 
1111 #ifdef	CONFIG_PNP
1112 
1113 #include <linux/pnp.h>
1114 
1115 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1116 {
1117 	cmos_wake_setup(&pnp->dev);
1118 
1119 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1120 		/* Some machines contain a PNP entry for the RTC, but
1121 		 * don't define the IRQ. It should always be safe to
1122 		 * hardcode it in these cases
1123 		 */
1124 		return cmos_do_probe(&pnp->dev,
1125 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1126 	else
1127 		return cmos_do_probe(&pnp->dev,
1128 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1129 				pnp_irq(pnp, 0));
1130 }
1131 
1132 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1133 {
1134 	cmos_do_remove(&pnp->dev);
1135 }
1136 
1137 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1138 {
1139 	struct device *dev = &pnp->dev;
1140 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1141 
1142 	if (system_state == SYSTEM_POWER_OFF) {
1143 		int retval = cmos_poweroff(dev);
1144 
1145 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1146 			return;
1147 	}
1148 
1149 	cmos_do_shutdown(cmos->irq);
1150 }
1151 
1152 static const struct pnp_device_id rtc_ids[] = {
1153 	{ .id = "PNP0b00", },
1154 	{ .id = "PNP0b01", },
1155 	{ .id = "PNP0b02", },
1156 	{ },
1157 };
1158 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1159 
1160 static struct pnp_driver cmos_pnp_driver = {
1161 	.name		= (char *) driver_name,
1162 	.id_table	= rtc_ids,
1163 	.probe		= cmos_pnp_probe,
1164 	.remove		= __exit_p(cmos_pnp_remove),
1165 	.shutdown	= cmos_pnp_shutdown,
1166 
1167 	/* flag ensures resume() gets called, and stops syslog spam */
1168 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1169 	.driver		= {
1170 			.pm = &cmos_pm_ops,
1171 	},
1172 };
1173 
1174 #endif	/* CONFIG_PNP */
1175 
1176 #ifdef CONFIG_OF
1177 static const struct of_device_id of_cmos_match[] = {
1178 	{
1179 		.compatible = "motorola,mc146818",
1180 	},
1181 	{ },
1182 };
1183 MODULE_DEVICE_TABLE(of, of_cmos_match);
1184 
1185 static __init void cmos_of_init(struct platform_device *pdev)
1186 {
1187 	struct device_node *node = pdev->dev.of_node;
1188 	struct rtc_time time;
1189 	int ret;
1190 	const __be32 *val;
1191 
1192 	if (!node)
1193 		return;
1194 
1195 	val = of_get_property(node, "ctrl-reg", NULL);
1196 	if (val)
1197 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1198 
1199 	val = of_get_property(node, "freq-reg", NULL);
1200 	if (val)
1201 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1202 
1203 	cmos_read_time(&pdev->dev, &time);
1204 	ret = rtc_valid_tm(&time);
1205 	if (ret) {
1206 		struct rtc_time def_time = {
1207 			.tm_year = 1,
1208 			.tm_mday = 1,
1209 		};
1210 		cmos_set_time(&pdev->dev, &def_time);
1211 	}
1212 }
1213 #else
1214 static inline void cmos_of_init(struct platform_device *pdev) {}
1215 #endif
1216 /*----------------------------------------------------------------*/
1217 
1218 /* Platform setup should have set up an RTC device, when PNP is
1219  * unavailable ... this could happen even on (older) PCs.
1220  */
1221 
1222 static int __init cmos_platform_probe(struct platform_device *pdev)
1223 {
1224 	struct resource *resource;
1225 	int irq;
1226 
1227 	cmos_of_init(pdev);
1228 	cmos_wake_setup(&pdev->dev);
1229 
1230 	if (RTC_IOMAPPED)
1231 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1232 	else
1233 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1234 	irq = platform_get_irq(pdev, 0);
1235 	if (irq < 0)
1236 		irq = -1;
1237 
1238 	return cmos_do_probe(&pdev->dev, resource, irq);
1239 }
1240 
1241 static int __exit cmos_platform_remove(struct platform_device *pdev)
1242 {
1243 	cmos_do_remove(&pdev->dev);
1244 	return 0;
1245 }
1246 
1247 static void cmos_platform_shutdown(struct platform_device *pdev)
1248 {
1249 	struct device *dev = &pdev->dev;
1250 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1251 
1252 	if (system_state == SYSTEM_POWER_OFF) {
1253 		int retval = cmos_poweroff(dev);
1254 
1255 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1256 			return;
1257 	}
1258 
1259 	cmos_do_shutdown(cmos->irq);
1260 }
1261 
1262 /* work with hotplug and coldplug */
1263 MODULE_ALIAS("platform:rtc_cmos");
1264 
1265 static struct platform_driver cmos_platform_driver = {
1266 	.remove		= __exit_p(cmos_platform_remove),
1267 	.shutdown	= cmos_platform_shutdown,
1268 	.driver = {
1269 		.name		= driver_name,
1270 		.pm		= &cmos_pm_ops,
1271 		.of_match_table = of_match_ptr(of_cmos_match),
1272 	}
1273 };
1274 
1275 #ifdef CONFIG_PNP
1276 static bool pnp_driver_registered;
1277 #endif
1278 static bool platform_driver_registered;
1279 
1280 static int __init cmos_init(void)
1281 {
1282 	int retval = 0;
1283 
1284 #ifdef	CONFIG_PNP
1285 	retval = pnp_register_driver(&cmos_pnp_driver);
1286 	if (retval == 0)
1287 		pnp_driver_registered = true;
1288 #endif
1289 
1290 	if (!cmos_rtc.dev) {
1291 		retval = platform_driver_probe(&cmos_platform_driver,
1292 					       cmos_platform_probe);
1293 		if (retval == 0)
1294 			platform_driver_registered = true;
1295 	}
1296 
1297 	if (retval == 0)
1298 		return 0;
1299 
1300 #ifdef	CONFIG_PNP
1301 	if (pnp_driver_registered)
1302 		pnp_unregister_driver(&cmos_pnp_driver);
1303 #endif
1304 	return retval;
1305 }
1306 module_init(cmos_init);
1307 
1308 static void __exit cmos_exit(void)
1309 {
1310 #ifdef	CONFIG_PNP
1311 	if (pnp_driver_registered)
1312 		pnp_unregister_driver(&cmos_pnp_driver);
1313 #endif
1314 	if (platform_driver_registered)
1315 		platform_driver_unregister(&cmos_platform_driver);
1316 }
1317 module_exit(cmos_exit);
1318 
1319 
1320 MODULE_AUTHOR("David Brownell");
1321 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1322 MODULE_LICENSE("GPL");
1323