xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision f220d3eb)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
49 
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
52 
53 /*
54  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
55  *
56  * If cleared, ACPI SCI is only used to wake up the system from suspend
57  *
58  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
59  */
60 
61 static bool use_acpi_alarm;
62 module_param(use_acpi_alarm, bool, 0444);
63 
64 struct cmos_rtc {
65 	struct rtc_device	*rtc;
66 	struct device		*dev;
67 	int			irq;
68 	struct resource		*iomem;
69 	time64_t		alarm_expires;
70 
71 	void			(*wake_on)(struct device *);
72 	void			(*wake_off)(struct device *);
73 
74 	u8			enabled_wake;
75 	u8			suspend_ctrl;
76 
77 	/* newer hardware extends the original register set */
78 	u8			day_alrm;
79 	u8			mon_alrm;
80 	u8			century;
81 
82 	struct rtc_wkalrm	saved_wkalrm;
83 };
84 
85 /* both platform and pnp busses use negative numbers for invalid irqs */
86 #define is_valid_irq(n)		((n) > 0)
87 
88 static const char driver_name[] = "rtc_cmos";
89 
90 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
91  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
92  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
93  */
94 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
95 
96 static inline int is_intr(u8 rtc_intr)
97 {
98 	if (!(rtc_intr & RTC_IRQF))
99 		return 0;
100 	return rtc_intr & RTC_IRQMASK;
101 }
102 
103 /*----------------------------------------------------------------*/
104 
105 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
106  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
107  * used in a broken "legacy replacement" mode.  The breakage includes
108  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
109  * other (better) use.
110  *
111  * When that broken mode is in use, platform glue provides a partial
112  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
113  * want to use HPET for anything except those IRQs though...
114  */
115 #ifdef CONFIG_HPET_EMULATE_RTC
116 #include <asm/hpet.h>
117 #else
118 
119 static inline int is_hpet_enabled(void)
120 {
121 	return 0;
122 }
123 
124 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
125 {
126 	return 0;
127 }
128 
129 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
130 {
131 	return 0;
132 }
133 
134 static inline int
135 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
136 {
137 	return 0;
138 }
139 
140 static inline int hpet_set_periodic_freq(unsigned long freq)
141 {
142 	return 0;
143 }
144 
145 static inline int hpet_rtc_dropped_irq(void)
146 {
147 	return 0;
148 }
149 
150 static inline int hpet_rtc_timer_init(void)
151 {
152 	return 0;
153 }
154 
155 extern irq_handler_t hpet_rtc_interrupt;
156 
157 static inline int hpet_register_irq_handler(irq_handler_t handler)
158 {
159 	return 0;
160 }
161 
162 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
163 {
164 	return 0;
165 }
166 
167 #endif
168 
169 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
170 static int use_hpet_alarm(void)
171 {
172 	return is_hpet_enabled() && !use_acpi_alarm;
173 }
174 
175 /*----------------------------------------------------------------*/
176 
177 #ifdef RTC_PORT
178 
179 /* Most newer x86 systems have two register banks, the first used
180  * for RTC and NVRAM and the second only for NVRAM.  Caller must
181  * own rtc_lock ... and we won't worry about access during NMI.
182  */
183 #define can_bank2	true
184 
185 static inline unsigned char cmos_read_bank2(unsigned char addr)
186 {
187 	outb(addr, RTC_PORT(2));
188 	return inb(RTC_PORT(3));
189 }
190 
191 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
192 {
193 	outb(addr, RTC_PORT(2));
194 	outb(val, RTC_PORT(3));
195 }
196 
197 #else
198 
199 #define can_bank2	false
200 
201 static inline unsigned char cmos_read_bank2(unsigned char addr)
202 {
203 	return 0;
204 }
205 
206 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
207 {
208 }
209 
210 #endif
211 
212 /*----------------------------------------------------------------*/
213 
214 static int cmos_read_time(struct device *dev, struct rtc_time *t)
215 {
216 	/*
217 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
218 	 * which tells the caller that this RTC value is unusable.
219 	 */
220 	if (!pm_trace_rtc_valid())
221 		return -EIO;
222 
223 	/* REVISIT:  if the clock has a "century" register, use
224 	 * that instead of the heuristic in mc146818_get_time().
225 	 * That'll make Y3K compatility (year > 2070) easy!
226 	 */
227 	mc146818_get_time(t);
228 	return 0;
229 }
230 
231 static int cmos_set_time(struct device *dev, struct rtc_time *t)
232 {
233 	/* REVISIT:  set the "century" register if available
234 	 *
235 	 * NOTE: this ignores the issue whereby updating the seconds
236 	 * takes effect exactly 500ms after we write the register.
237 	 * (Also queueing and other delays before we get this far.)
238 	 */
239 	return mc146818_set_time(t);
240 }
241 
242 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
243 {
244 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
245 	unsigned char	rtc_control;
246 
247 	if (!is_valid_irq(cmos->irq))
248 		return -EIO;
249 
250 	/* Basic alarms only support hour, minute, and seconds fields.
251 	 * Some also support day and month, for alarms up to a year in
252 	 * the future.
253 	 */
254 
255 	spin_lock_irq(&rtc_lock);
256 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
257 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
258 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
259 
260 	if (cmos->day_alrm) {
261 		/* ignore upper bits on readback per ACPI spec */
262 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
263 		if (!t->time.tm_mday)
264 			t->time.tm_mday = -1;
265 
266 		if (cmos->mon_alrm) {
267 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
268 			if (!t->time.tm_mon)
269 				t->time.tm_mon = -1;
270 		}
271 	}
272 
273 	rtc_control = CMOS_READ(RTC_CONTROL);
274 	spin_unlock_irq(&rtc_lock);
275 
276 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
277 		if (((unsigned)t->time.tm_sec) < 0x60)
278 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
279 		else
280 			t->time.tm_sec = -1;
281 		if (((unsigned)t->time.tm_min) < 0x60)
282 			t->time.tm_min = bcd2bin(t->time.tm_min);
283 		else
284 			t->time.tm_min = -1;
285 		if (((unsigned)t->time.tm_hour) < 0x24)
286 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
287 		else
288 			t->time.tm_hour = -1;
289 
290 		if (cmos->day_alrm) {
291 			if (((unsigned)t->time.tm_mday) <= 0x31)
292 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
293 			else
294 				t->time.tm_mday = -1;
295 
296 			if (cmos->mon_alrm) {
297 				if (((unsigned)t->time.tm_mon) <= 0x12)
298 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
299 				else
300 					t->time.tm_mon = -1;
301 			}
302 		}
303 	}
304 
305 	t->enabled = !!(rtc_control & RTC_AIE);
306 	t->pending = 0;
307 
308 	return 0;
309 }
310 
311 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
312 {
313 	unsigned char	rtc_intr;
314 
315 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
316 	 * allegedly some older rtcs need that to handle irqs properly
317 	 */
318 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
319 
320 	if (use_hpet_alarm())
321 		return;
322 
323 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
324 	if (is_intr(rtc_intr))
325 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
326 }
327 
328 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
329 {
330 	unsigned char	rtc_control;
331 
332 	/* flush any pending IRQ status, notably for update irqs,
333 	 * before we enable new IRQs
334 	 */
335 	rtc_control = CMOS_READ(RTC_CONTROL);
336 	cmos_checkintr(cmos, rtc_control);
337 
338 	rtc_control |= mask;
339 	CMOS_WRITE(rtc_control, RTC_CONTROL);
340 	if (use_hpet_alarm())
341 		hpet_set_rtc_irq_bit(mask);
342 
343 	if ((mask & RTC_AIE) && use_acpi_alarm) {
344 		if (cmos->wake_on)
345 			cmos->wake_on(cmos->dev);
346 	}
347 
348 	cmos_checkintr(cmos, rtc_control);
349 }
350 
351 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
352 {
353 	unsigned char	rtc_control;
354 
355 	rtc_control = CMOS_READ(RTC_CONTROL);
356 	rtc_control &= ~mask;
357 	CMOS_WRITE(rtc_control, RTC_CONTROL);
358 	if (use_hpet_alarm())
359 		hpet_mask_rtc_irq_bit(mask);
360 
361 	if ((mask & RTC_AIE) && use_acpi_alarm) {
362 		if (cmos->wake_off)
363 			cmos->wake_off(cmos->dev);
364 	}
365 
366 	cmos_checkintr(cmos, rtc_control);
367 }
368 
369 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
370 {
371 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
372 	struct rtc_time now;
373 
374 	cmos_read_time(dev, &now);
375 
376 	if (!cmos->day_alrm) {
377 		time64_t t_max_date;
378 		time64_t t_alrm;
379 
380 		t_max_date = rtc_tm_to_time64(&now);
381 		t_max_date += 24 * 60 * 60 - 1;
382 		t_alrm = rtc_tm_to_time64(&t->time);
383 		if (t_alrm > t_max_date) {
384 			dev_err(dev,
385 				"Alarms can be up to one day in the future\n");
386 			return -EINVAL;
387 		}
388 	} else if (!cmos->mon_alrm) {
389 		struct rtc_time max_date = now;
390 		time64_t t_max_date;
391 		time64_t t_alrm;
392 		int max_mday;
393 
394 		if (max_date.tm_mon == 11) {
395 			max_date.tm_mon = 0;
396 			max_date.tm_year += 1;
397 		} else {
398 			max_date.tm_mon += 1;
399 		}
400 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
401 		if (max_date.tm_mday > max_mday)
402 			max_date.tm_mday = max_mday;
403 
404 		t_max_date = rtc_tm_to_time64(&max_date);
405 		t_max_date -= 1;
406 		t_alrm = rtc_tm_to_time64(&t->time);
407 		if (t_alrm > t_max_date) {
408 			dev_err(dev,
409 				"Alarms can be up to one month in the future\n");
410 			return -EINVAL;
411 		}
412 	} else {
413 		struct rtc_time max_date = now;
414 		time64_t t_max_date;
415 		time64_t t_alrm;
416 		int max_mday;
417 
418 		max_date.tm_year += 1;
419 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
420 		if (max_date.tm_mday > max_mday)
421 			max_date.tm_mday = max_mday;
422 
423 		t_max_date = rtc_tm_to_time64(&max_date);
424 		t_max_date -= 1;
425 		t_alrm = rtc_tm_to_time64(&t->time);
426 		if (t_alrm > t_max_date) {
427 			dev_err(dev,
428 				"Alarms can be up to one year in the future\n");
429 			return -EINVAL;
430 		}
431 	}
432 
433 	return 0;
434 }
435 
436 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
437 {
438 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
439 	unsigned char mon, mday, hrs, min, sec, rtc_control;
440 	int ret;
441 
442 	if (!is_valid_irq(cmos->irq))
443 		return -EIO;
444 
445 	ret = cmos_validate_alarm(dev, t);
446 	if (ret < 0)
447 		return ret;
448 
449 	mon = t->time.tm_mon + 1;
450 	mday = t->time.tm_mday;
451 	hrs = t->time.tm_hour;
452 	min = t->time.tm_min;
453 	sec = t->time.tm_sec;
454 
455 	rtc_control = CMOS_READ(RTC_CONTROL);
456 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
457 		/* Writing 0xff means "don't care" or "match all".  */
458 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
459 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
460 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
461 		min = (min < 60) ? bin2bcd(min) : 0xff;
462 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
463 	}
464 
465 	spin_lock_irq(&rtc_lock);
466 
467 	/* next rtc irq must not be from previous alarm setting */
468 	cmos_irq_disable(cmos, RTC_AIE);
469 
470 	/* update alarm */
471 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
472 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
473 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
474 
475 	/* the system may support an "enhanced" alarm */
476 	if (cmos->day_alrm) {
477 		CMOS_WRITE(mday, cmos->day_alrm);
478 		if (cmos->mon_alrm)
479 			CMOS_WRITE(mon, cmos->mon_alrm);
480 	}
481 
482 	if (use_hpet_alarm()) {
483 		/*
484 		 * FIXME the HPET alarm glue currently ignores day_alrm
485 		 * and mon_alrm ...
486 		 */
487 		hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
488 				    t->time.tm_sec);
489 	}
490 
491 	if (t->enabled)
492 		cmos_irq_enable(cmos, RTC_AIE);
493 
494 	spin_unlock_irq(&rtc_lock);
495 
496 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
497 
498 	return 0;
499 }
500 
501 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
502 {
503 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
504 	unsigned long	flags;
505 
506 	if (!is_valid_irq(cmos->irq))
507 		return -EINVAL;
508 
509 	spin_lock_irqsave(&rtc_lock, flags);
510 
511 	if (enabled)
512 		cmos_irq_enable(cmos, RTC_AIE);
513 	else
514 		cmos_irq_disable(cmos, RTC_AIE);
515 
516 	spin_unlock_irqrestore(&rtc_lock, flags);
517 	return 0;
518 }
519 
520 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
521 
522 static int cmos_procfs(struct device *dev, struct seq_file *seq)
523 {
524 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
525 	unsigned char	rtc_control, valid;
526 
527 	spin_lock_irq(&rtc_lock);
528 	rtc_control = CMOS_READ(RTC_CONTROL);
529 	valid = CMOS_READ(RTC_VALID);
530 	spin_unlock_irq(&rtc_lock);
531 
532 	/* NOTE:  at least ICH6 reports battery status using a different
533 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
534 	 */
535 	seq_printf(seq,
536 		   "periodic_IRQ\t: %s\n"
537 		   "update_IRQ\t: %s\n"
538 		   "HPET_emulated\t: %s\n"
539 		   // "square_wave\t: %s\n"
540 		   "BCD\t\t: %s\n"
541 		   "DST_enable\t: %s\n"
542 		   "periodic_freq\t: %d\n"
543 		   "batt_status\t: %s\n",
544 		   (rtc_control & RTC_PIE) ? "yes" : "no",
545 		   (rtc_control & RTC_UIE) ? "yes" : "no",
546 		   use_hpet_alarm() ? "yes" : "no",
547 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
548 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
549 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
550 		   cmos->rtc->irq_freq,
551 		   (valid & RTC_VRT) ? "okay" : "dead");
552 
553 	return 0;
554 }
555 
556 #else
557 #define	cmos_procfs	NULL
558 #endif
559 
560 static const struct rtc_class_ops cmos_rtc_ops = {
561 	.read_time		= cmos_read_time,
562 	.set_time		= cmos_set_time,
563 	.read_alarm		= cmos_read_alarm,
564 	.set_alarm		= cmos_set_alarm,
565 	.proc			= cmos_procfs,
566 	.alarm_irq_enable	= cmos_alarm_irq_enable,
567 };
568 
569 /*----------------------------------------------------------------*/
570 
571 /*
572  * All these chips have at least 64 bytes of address space, shared by
573  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
574  * by boot firmware.  Modern chips have 128 or 256 bytes.
575  */
576 
577 #define NVRAM_OFFSET	(RTC_REG_D + 1)
578 
579 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
580 			   size_t count)
581 {
582 	unsigned char *buf = val;
583 	int	retval;
584 
585 	off += NVRAM_OFFSET;
586 	spin_lock_irq(&rtc_lock);
587 	for (retval = 0; count; count--, off++, retval++) {
588 		if (off < 128)
589 			*buf++ = CMOS_READ(off);
590 		else if (can_bank2)
591 			*buf++ = cmos_read_bank2(off);
592 		else
593 			break;
594 	}
595 	spin_unlock_irq(&rtc_lock);
596 
597 	return retval;
598 }
599 
600 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
601 			    size_t count)
602 {
603 	struct cmos_rtc	*cmos = priv;
604 	unsigned char	*buf = val;
605 	int		retval;
606 
607 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
608 	 * checksum on part of the NVRAM data.  That's currently ignored
609 	 * here.  If userspace is smart enough to know what fields of
610 	 * NVRAM to update, updating checksums is also part of its job.
611 	 */
612 	off += NVRAM_OFFSET;
613 	spin_lock_irq(&rtc_lock);
614 	for (retval = 0; count; count--, off++, retval++) {
615 		/* don't trash RTC registers */
616 		if (off == cmos->day_alrm
617 				|| off == cmos->mon_alrm
618 				|| off == cmos->century)
619 			buf++;
620 		else if (off < 128)
621 			CMOS_WRITE(*buf++, off);
622 		else if (can_bank2)
623 			cmos_write_bank2(*buf++, off);
624 		else
625 			break;
626 	}
627 	spin_unlock_irq(&rtc_lock);
628 
629 	return retval;
630 }
631 
632 /*----------------------------------------------------------------*/
633 
634 static struct cmos_rtc	cmos_rtc;
635 
636 static irqreturn_t cmos_interrupt(int irq, void *p)
637 {
638 	u8		irqstat;
639 	u8		rtc_control;
640 
641 	spin_lock(&rtc_lock);
642 
643 	/* When the HPET interrupt handler calls us, the interrupt
644 	 * status is passed as arg1 instead of the irq number.  But
645 	 * always clear irq status, even when HPET is in the way.
646 	 *
647 	 * Note that HPET and RTC are almost certainly out of phase,
648 	 * giving different IRQ status ...
649 	 */
650 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
651 	rtc_control = CMOS_READ(RTC_CONTROL);
652 	if (use_hpet_alarm())
653 		irqstat = (unsigned long)irq & 0xF0;
654 
655 	/* If we were suspended, RTC_CONTROL may not be accurate since the
656 	 * bios may have cleared it.
657 	 */
658 	if (!cmos_rtc.suspend_ctrl)
659 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
660 	else
661 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
662 
663 	/* All Linux RTC alarms should be treated as if they were oneshot.
664 	 * Similar code may be needed in system wakeup paths, in case the
665 	 * alarm woke the system.
666 	 */
667 	if (irqstat & RTC_AIE) {
668 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
669 		rtc_control &= ~RTC_AIE;
670 		CMOS_WRITE(rtc_control, RTC_CONTROL);
671 		if (use_hpet_alarm())
672 			hpet_mask_rtc_irq_bit(RTC_AIE);
673 		CMOS_READ(RTC_INTR_FLAGS);
674 	}
675 	spin_unlock(&rtc_lock);
676 
677 	if (is_intr(irqstat)) {
678 		rtc_update_irq(p, 1, irqstat);
679 		return IRQ_HANDLED;
680 	} else
681 		return IRQ_NONE;
682 }
683 
684 #ifdef	CONFIG_PNP
685 #define	INITSECTION
686 
687 #else
688 #define	INITSECTION	__init
689 #endif
690 
691 static int INITSECTION
692 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
693 {
694 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
695 	int				retval = 0;
696 	unsigned char			rtc_control;
697 	unsigned			address_space;
698 	u32				flags = 0;
699 	struct nvmem_config nvmem_cfg = {
700 		.name = "cmos_nvram",
701 		.word_size = 1,
702 		.stride = 1,
703 		.reg_read = cmos_nvram_read,
704 		.reg_write = cmos_nvram_write,
705 		.priv = &cmos_rtc,
706 	};
707 
708 	/* there can be only one ... */
709 	if (cmos_rtc.dev)
710 		return -EBUSY;
711 
712 	if (!ports)
713 		return -ENODEV;
714 
715 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
716 	 *
717 	 * REVISIT non-x86 systems may instead use memory space resources
718 	 * (needing ioremap etc), not i/o space resources like this ...
719 	 */
720 	if (RTC_IOMAPPED)
721 		ports = request_region(ports->start, resource_size(ports),
722 				       driver_name);
723 	else
724 		ports = request_mem_region(ports->start, resource_size(ports),
725 					   driver_name);
726 	if (!ports) {
727 		dev_dbg(dev, "i/o registers already in use\n");
728 		return -EBUSY;
729 	}
730 
731 	cmos_rtc.irq = rtc_irq;
732 	cmos_rtc.iomem = ports;
733 
734 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
735 	 * driver did, but don't reject unknown configs.   Old hardware
736 	 * won't address 128 bytes.  Newer chips have multiple banks,
737 	 * though they may not be listed in one I/O resource.
738 	 */
739 #if	defined(CONFIG_ATARI)
740 	address_space = 64;
741 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
742 			|| defined(__sparc__) || defined(__mips__) \
743 			|| defined(__powerpc__)
744 	address_space = 128;
745 #else
746 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
747 	address_space = 128;
748 #endif
749 	if (can_bank2 && ports->end > (ports->start + 1))
750 		address_space = 256;
751 
752 	/* For ACPI systems extension info comes from the FADT.  On others,
753 	 * board specific setup provides it as appropriate.  Systems where
754 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
755 	 * some almost-clones) can provide hooks to make that behave.
756 	 *
757 	 * Note that ACPI doesn't preclude putting these registers into
758 	 * "extended" areas of the chip, including some that we won't yet
759 	 * expect CMOS_READ and friends to handle.
760 	 */
761 	if (info) {
762 		if (info->flags)
763 			flags = info->flags;
764 		if (info->address_space)
765 			address_space = info->address_space;
766 
767 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
768 			cmos_rtc.day_alrm = info->rtc_day_alarm;
769 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
770 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
771 		if (info->rtc_century && info->rtc_century < 128)
772 			cmos_rtc.century = info->rtc_century;
773 
774 		if (info->wake_on && info->wake_off) {
775 			cmos_rtc.wake_on = info->wake_on;
776 			cmos_rtc.wake_off = info->wake_off;
777 		}
778 	}
779 
780 	cmos_rtc.dev = dev;
781 	dev_set_drvdata(dev, &cmos_rtc);
782 
783 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
784 	if (IS_ERR(cmos_rtc.rtc)) {
785 		retval = PTR_ERR(cmos_rtc.rtc);
786 		goto cleanup0;
787 	}
788 
789 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
790 
791 	spin_lock_irq(&rtc_lock);
792 
793 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
794 		/* force periodic irq to CMOS reset default of 1024Hz;
795 		 *
796 		 * REVISIT it's been reported that at least one x86_64 ALI
797 		 * mobo doesn't use 32KHz here ... for portability we might
798 		 * need to do something about other clock frequencies.
799 		 */
800 		cmos_rtc.rtc->irq_freq = 1024;
801 		if (use_hpet_alarm())
802 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
803 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
804 	}
805 
806 	/* disable irqs */
807 	if (is_valid_irq(rtc_irq))
808 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
809 
810 	rtc_control = CMOS_READ(RTC_CONTROL);
811 
812 	spin_unlock_irq(&rtc_lock);
813 
814 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
815 		dev_warn(dev, "only 24-hr supported\n");
816 		retval = -ENXIO;
817 		goto cleanup1;
818 	}
819 
820 	if (use_hpet_alarm())
821 		hpet_rtc_timer_init();
822 
823 	if (is_valid_irq(rtc_irq)) {
824 		irq_handler_t rtc_cmos_int_handler;
825 
826 		if (use_hpet_alarm()) {
827 			rtc_cmos_int_handler = hpet_rtc_interrupt;
828 			retval = hpet_register_irq_handler(cmos_interrupt);
829 			if (retval) {
830 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
831 				dev_warn(dev, "hpet_register_irq_handler "
832 						" failed in rtc_init().");
833 				goto cleanup1;
834 			}
835 		} else
836 			rtc_cmos_int_handler = cmos_interrupt;
837 
838 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
839 				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
840 				cmos_rtc.rtc);
841 		if (retval < 0) {
842 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
843 			goto cleanup1;
844 		}
845 	}
846 
847 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
848 	cmos_rtc.rtc->nvram_old_abi = true;
849 	retval = rtc_register_device(cmos_rtc.rtc);
850 	if (retval)
851 		goto cleanup2;
852 
853 	/* export at least the first block of NVRAM */
854 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
855 	if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
856 		dev_err(dev, "nvmem registration failed\n");
857 
858 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
859 		 !is_valid_irq(rtc_irq) ? "no alarms" :
860 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
861 		 cmos_rtc.day_alrm ? "alarms up to one month" :
862 		 "alarms up to one day",
863 		 cmos_rtc.century ? ", y3k" : "",
864 		 nvmem_cfg.size,
865 		 use_hpet_alarm() ? ", hpet irqs" : "");
866 
867 	return 0;
868 
869 cleanup2:
870 	if (is_valid_irq(rtc_irq))
871 		free_irq(rtc_irq, cmos_rtc.rtc);
872 cleanup1:
873 	cmos_rtc.dev = NULL;
874 cleanup0:
875 	if (RTC_IOMAPPED)
876 		release_region(ports->start, resource_size(ports));
877 	else
878 		release_mem_region(ports->start, resource_size(ports));
879 	return retval;
880 }
881 
882 static void cmos_do_shutdown(int rtc_irq)
883 {
884 	spin_lock_irq(&rtc_lock);
885 	if (is_valid_irq(rtc_irq))
886 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
887 	spin_unlock_irq(&rtc_lock);
888 }
889 
890 static void cmos_do_remove(struct device *dev)
891 {
892 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
893 	struct resource *ports;
894 
895 	cmos_do_shutdown(cmos->irq);
896 
897 	if (is_valid_irq(cmos->irq)) {
898 		free_irq(cmos->irq, cmos->rtc);
899 		if (use_hpet_alarm())
900 			hpet_unregister_irq_handler(cmos_interrupt);
901 	}
902 
903 	cmos->rtc = NULL;
904 
905 	ports = cmos->iomem;
906 	if (RTC_IOMAPPED)
907 		release_region(ports->start, resource_size(ports));
908 	else
909 		release_mem_region(ports->start, resource_size(ports));
910 	cmos->iomem = NULL;
911 
912 	cmos->dev = NULL;
913 }
914 
915 static int cmos_aie_poweroff(struct device *dev)
916 {
917 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
918 	struct rtc_time now;
919 	time64_t t_now;
920 	int retval = 0;
921 	unsigned char rtc_control;
922 
923 	if (!cmos->alarm_expires)
924 		return -EINVAL;
925 
926 	spin_lock_irq(&rtc_lock);
927 	rtc_control = CMOS_READ(RTC_CONTROL);
928 	spin_unlock_irq(&rtc_lock);
929 
930 	/* We only care about the situation where AIE is disabled. */
931 	if (rtc_control & RTC_AIE)
932 		return -EBUSY;
933 
934 	cmos_read_time(dev, &now);
935 	t_now = rtc_tm_to_time64(&now);
936 
937 	/*
938 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
939 	 * automatically right after shutdown on some buggy boxes.
940 	 * This automatic rebooting issue won't happen when the alarm
941 	 * time is larger than now+1 seconds.
942 	 *
943 	 * If the alarm time is equal to now+1 seconds, the issue can be
944 	 * prevented by cancelling the alarm.
945 	 */
946 	if (cmos->alarm_expires == t_now + 1) {
947 		struct rtc_wkalrm alarm;
948 
949 		/* Cancel the AIE timer by configuring the past time. */
950 		rtc_time64_to_tm(t_now - 1, &alarm.time);
951 		alarm.enabled = 0;
952 		retval = cmos_set_alarm(dev, &alarm);
953 	} else if (cmos->alarm_expires > t_now + 1) {
954 		retval = -EBUSY;
955 	}
956 
957 	return retval;
958 }
959 
960 static int cmos_suspend(struct device *dev)
961 {
962 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
963 	unsigned char	tmp;
964 
965 	/* only the alarm might be a wakeup event source */
966 	spin_lock_irq(&rtc_lock);
967 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
968 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
969 		unsigned char	mask;
970 
971 		if (device_may_wakeup(dev))
972 			mask = RTC_IRQMASK & ~RTC_AIE;
973 		else
974 			mask = RTC_IRQMASK;
975 		tmp &= ~mask;
976 		CMOS_WRITE(tmp, RTC_CONTROL);
977 		if (use_hpet_alarm())
978 			hpet_mask_rtc_irq_bit(mask);
979 		cmos_checkintr(cmos, tmp);
980 	}
981 	spin_unlock_irq(&rtc_lock);
982 
983 	if ((tmp & RTC_AIE) && !use_acpi_alarm) {
984 		cmos->enabled_wake = 1;
985 		if (cmos->wake_on)
986 			cmos->wake_on(dev);
987 		else
988 			enable_irq_wake(cmos->irq);
989 	}
990 
991 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
992 
993 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
994 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
995 			tmp);
996 
997 	return 0;
998 }
999 
1000 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1001  * after a detour through G3 "mechanical off", although the ACPI spec
1002  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1003  * distinctions between S4 and S5 are pointless.  So when the hardware
1004  * allows, don't draw that distinction.
1005  */
1006 static inline int cmos_poweroff(struct device *dev)
1007 {
1008 	if (!IS_ENABLED(CONFIG_PM))
1009 		return -ENOSYS;
1010 
1011 	return cmos_suspend(dev);
1012 }
1013 
1014 static void cmos_check_wkalrm(struct device *dev)
1015 {
1016 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1017 	struct rtc_wkalrm current_alarm;
1018 	time64_t t_now;
1019 	time64_t t_current_expires;
1020 	time64_t t_saved_expires;
1021 	struct rtc_time now;
1022 
1023 	/* Check if we have RTC Alarm armed */
1024 	if (!(cmos->suspend_ctrl & RTC_AIE))
1025 		return;
1026 
1027 	cmos_read_time(dev, &now);
1028 	t_now = rtc_tm_to_time64(&now);
1029 
1030 	/*
1031 	 * ACPI RTC wake event is cleared after resume from STR,
1032 	 * ACK the rtc irq here
1033 	 */
1034 	if (t_now >= cmos->alarm_expires && use_acpi_alarm) {
1035 		cmos_interrupt(0, (void *)cmos->rtc);
1036 		return;
1037 	}
1038 
1039 	cmos_read_alarm(dev, &current_alarm);
1040 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1041 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1042 	if (t_current_expires != t_saved_expires ||
1043 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1044 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1045 	}
1046 }
1047 
1048 static void cmos_check_acpi_rtc_status(struct device *dev,
1049 				       unsigned char *rtc_control);
1050 
1051 static int __maybe_unused cmos_resume(struct device *dev)
1052 {
1053 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1054 	unsigned char tmp;
1055 
1056 	if (cmos->enabled_wake && !use_acpi_alarm) {
1057 		if (cmos->wake_off)
1058 			cmos->wake_off(dev);
1059 		else
1060 			disable_irq_wake(cmos->irq);
1061 		cmos->enabled_wake = 0;
1062 	}
1063 
1064 	/* The BIOS might have changed the alarm, restore it */
1065 	cmos_check_wkalrm(dev);
1066 
1067 	spin_lock_irq(&rtc_lock);
1068 	tmp = cmos->suspend_ctrl;
1069 	cmos->suspend_ctrl = 0;
1070 	/* re-enable any irqs previously active */
1071 	if (tmp & RTC_IRQMASK) {
1072 		unsigned char	mask;
1073 
1074 		if (device_may_wakeup(dev) && use_hpet_alarm())
1075 			hpet_rtc_timer_init();
1076 
1077 		do {
1078 			CMOS_WRITE(tmp, RTC_CONTROL);
1079 			if (use_hpet_alarm())
1080 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1081 
1082 			mask = CMOS_READ(RTC_INTR_FLAGS);
1083 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1084 			if (!use_hpet_alarm() || !is_intr(mask))
1085 				break;
1086 
1087 			/* force one-shot behavior if HPET blocked
1088 			 * the wake alarm's irq
1089 			 */
1090 			rtc_update_irq(cmos->rtc, 1, mask);
1091 			tmp &= ~RTC_AIE;
1092 			hpet_mask_rtc_irq_bit(RTC_AIE);
1093 		} while (mask & RTC_AIE);
1094 
1095 		if (tmp & RTC_AIE)
1096 			cmos_check_acpi_rtc_status(dev, &tmp);
1097 	}
1098 	spin_unlock_irq(&rtc_lock);
1099 
1100 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1101 
1102 	return 0;
1103 }
1104 
1105 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1106 
1107 /*----------------------------------------------------------------*/
1108 
1109 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1110  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1111  * probably list them in similar PNPBIOS tables; so PNP is more common.
1112  *
1113  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1114  * predate even PNPBIOS should set up platform_bus devices.
1115  */
1116 
1117 #ifdef	CONFIG_ACPI
1118 
1119 #include <linux/acpi.h>
1120 
1121 static u32 rtc_handler(void *context)
1122 {
1123 	struct device *dev = context;
1124 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1125 	unsigned char rtc_control = 0;
1126 	unsigned char rtc_intr;
1127 	unsigned long flags;
1128 
1129 
1130 	/*
1131 	 * Always update rtc irq when ACPI is used as RTC Alarm.
1132 	 * Or else, ACPI SCI is enabled during suspend/resume only,
1133 	 * update rtc irq in that case.
1134 	 */
1135 	if (use_acpi_alarm)
1136 		cmos_interrupt(0, (void *)cmos->rtc);
1137 	else {
1138 		/* Fix me: can we use cmos_interrupt() here as well? */
1139 		spin_lock_irqsave(&rtc_lock, flags);
1140 		if (cmos_rtc.suspend_ctrl)
1141 			rtc_control = CMOS_READ(RTC_CONTROL);
1142 		if (rtc_control & RTC_AIE) {
1143 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1144 			CMOS_WRITE(rtc_control, RTC_CONTROL);
1145 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1146 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
1147 		}
1148 		spin_unlock_irqrestore(&rtc_lock, flags);
1149 	}
1150 
1151 	pm_wakeup_hard_event(dev);
1152 	acpi_clear_event(ACPI_EVENT_RTC);
1153 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1154 	return ACPI_INTERRUPT_HANDLED;
1155 }
1156 
1157 static inline void rtc_wake_setup(struct device *dev)
1158 {
1159 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1160 	/*
1161 	 * After the RTC handler is installed, the Fixed_RTC event should
1162 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1163 	 */
1164 	acpi_clear_event(ACPI_EVENT_RTC);
1165 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1166 }
1167 
1168 static void rtc_wake_on(struct device *dev)
1169 {
1170 	acpi_clear_event(ACPI_EVENT_RTC);
1171 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1172 }
1173 
1174 static void rtc_wake_off(struct device *dev)
1175 {
1176 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1177 }
1178 
1179 #ifdef CONFIG_X86
1180 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1181 static void use_acpi_alarm_quirks(void)
1182 {
1183 	int year;
1184 
1185 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1186 		return;
1187 
1188 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1189 		return;
1190 
1191 	if (!is_hpet_enabled())
1192 		return;
1193 
1194 	if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1195 		use_acpi_alarm = true;
1196 }
1197 #else
1198 static inline void use_acpi_alarm_quirks(void) { }
1199 #endif
1200 
1201 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1202  * its device node and pass extra config data.  This helps its driver use
1203  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1204  * that this board's RTC is wakeup-capable (per ACPI spec).
1205  */
1206 static struct cmos_rtc_board_info acpi_rtc_info;
1207 
1208 static void cmos_wake_setup(struct device *dev)
1209 {
1210 	if (acpi_disabled)
1211 		return;
1212 
1213 	use_acpi_alarm_quirks();
1214 
1215 	rtc_wake_setup(dev);
1216 	acpi_rtc_info.wake_on = rtc_wake_on;
1217 	acpi_rtc_info.wake_off = rtc_wake_off;
1218 
1219 	/* workaround bug in some ACPI tables */
1220 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1221 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1222 			acpi_gbl_FADT.month_alarm);
1223 		acpi_gbl_FADT.month_alarm = 0;
1224 	}
1225 
1226 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1227 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1228 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1229 
1230 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1231 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1232 		dev_info(dev, "RTC can wake from S4\n");
1233 
1234 	dev->platform_data = &acpi_rtc_info;
1235 
1236 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1237 	device_init_wakeup(dev, 1);
1238 }
1239 
1240 static void cmos_check_acpi_rtc_status(struct device *dev,
1241 				       unsigned char *rtc_control)
1242 {
1243 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1244 	acpi_event_status rtc_status;
1245 	acpi_status status;
1246 
1247 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1248 		return;
1249 
1250 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1251 	if (ACPI_FAILURE(status)) {
1252 		dev_err(dev, "Could not get RTC status\n");
1253 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1254 		unsigned char mask;
1255 		*rtc_control &= ~RTC_AIE;
1256 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1257 		mask = CMOS_READ(RTC_INTR_FLAGS);
1258 		rtc_update_irq(cmos->rtc, 1, mask);
1259 	}
1260 }
1261 
1262 #else
1263 
1264 static void cmos_wake_setup(struct device *dev)
1265 {
1266 }
1267 
1268 static void cmos_check_acpi_rtc_status(struct device *dev,
1269 				       unsigned char *rtc_control)
1270 {
1271 }
1272 
1273 #endif
1274 
1275 #ifdef	CONFIG_PNP
1276 
1277 #include <linux/pnp.h>
1278 
1279 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1280 {
1281 	cmos_wake_setup(&pnp->dev);
1282 
1283 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1284 		unsigned int irq = 0;
1285 #ifdef CONFIG_X86
1286 		/* Some machines contain a PNP entry for the RTC, but
1287 		 * don't define the IRQ. It should always be safe to
1288 		 * hardcode it on systems with a legacy PIC.
1289 		 */
1290 		if (nr_legacy_irqs())
1291 			irq = 8;
1292 #endif
1293 		return cmos_do_probe(&pnp->dev,
1294 				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1295 	} else {
1296 		return cmos_do_probe(&pnp->dev,
1297 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1298 				pnp_irq(pnp, 0));
1299 	}
1300 }
1301 
1302 static void cmos_pnp_remove(struct pnp_dev *pnp)
1303 {
1304 	cmos_do_remove(&pnp->dev);
1305 }
1306 
1307 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1308 {
1309 	struct device *dev = &pnp->dev;
1310 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1311 
1312 	if (system_state == SYSTEM_POWER_OFF) {
1313 		int retval = cmos_poweroff(dev);
1314 
1315 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1316 			return;
1317 	}
1318 
1319 	cmos_do_shutdown(cmos->irq);
1320 }
1321 
1322 static const struct pnp_device_id rtc_ids[] = {
1323 	{ .id = "PNP0b00", },
1324 	{ .id = "PNP0b01", },
1325 	{ .id = "PNP0b02", },
1326 	{ },
1327 };
1328 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1329 
1330 static struct pnp_driver cmos_pnp_driver = {
1331 	.name		= (char *) driver_name,
1332 	.id_table	= rtc_ids,
1333 	.probe		= cmos_pnp_probe,
1334 	.remove		= cmos_pnp_remove,
1335 	.shutdown	= cmos_pnp_shutdown,
1336 
1337 	/* flag ensures resume() gets called, and stops syslog spam */
1338 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1339 	.driver		= {
1340 			.pm = &cmos_pm_ops,
1341 	},
1342 };
1343 
1344 #endif	/* CONFIG_PNP */
1345 
1346 #ifdef CONFIG_OF
1347 static const struct of_device_id of_cmos_match[] = {
1348 	{
1349 		.compatible = "motorola,mc146818",
1350 	},
1351 	{ },
1352 };
1353 MODULE_DEVICE_TABLE(of, of_cmos_match);
1354 
1355 static __init void cmos_of_init(struct platform_device *pdev)
1356 {
1357 	struct device_node *node = pdev->dev.of_node;
1358 	const __be32 *val;
1359 
1360 	if (!node)
1361 		return;
1362 
1363 	val = of_get_property(node, "ctrl-reg", NULL);
1364 	if (val)
1365 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1366 
1367 	val = of_get_property(node, "freq-reg", NULL);
1368 	if (val)
1369 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1370 }
1371 #else
1372 static inline void cmos_of_init(struct platform_device *pdev) {}
1373 #endif
1374 /*----------------------------------------------------------------*/
1375 
1376 /* Platform setup should have set up an RTC device, when PNP is
1377  * unavailable ... this could happen even on (older) PCs.
1378  */
1379 
1380 static int __init cmos_platform_probe(struct platform_device *pdev)
1381 {
1382 	struct resource *resource;
1383 	int irq;
1384 
1385 	cmos_of_init(pdev);
1386 	cmos_wake_setup(&pdev->dev);
1387 
1388 	if (RTC_IOMAPPED)
1389 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1390 	else
1391 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1392 	irq = platform_get_irq(pdev, 0);
1393 	if (irq < 0)
1394 		irq = -1;
1395 
1396 	return cmos_do_probe(&pdev->dev, resource, irq);
1397 }
1398 
1399 static int cmos_platform_remove(struct platform_device *pdev)
1400 {
1401 	cmos_do_remove(&pdev->dev);
1402 	return 0;
1403 }
1404 
1405 static void cmos_platform_shutdown(struct platform_device *pdev)
1406 {
1407 	struct device *dev = &pdev->dev;
1408 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1409 
1410 	if (system_state == SYSTEM_POWER_OFF) {
1411 		int retval = cmos_poweroff(dev);
1412 
1413 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1414 			return;
1415 	}
1416 
1417 	cmos_do_shutdown(cmos->irq);
1418 }
1419 
1420 /* work with hotplug and coldplug */
1421 MODULE_ALIAS("platform:rtc_cmos");
1422 
1423 static struct platform_driver cmos_platform_driver = {
1424 	.remove		= cmos_platform_remove,
1425 	.shutdown	= cmos_platform_shutdown,
1426 	.driver = {
1427 		.name		= driver_name,
1428 		.pm		= &cmos_pm_ops,
1429 		.of_match_table = of_match_ptr(of_cmos_match),
1430 	}
1431 };
1432 
1433 #ifdef CONFIG_PNP
1434 static bool pnp_driver_registered;
1435 #endif
1436 static bool platform_driver_registered;
1437 
1438 static int __init cmos_init(void)
1439 {
1440 	int retval = 0;
1441 
1442 #ifdef	CONFIG_PNP
1443 	retval = pnp_register_driver(&cmos_pnp_driver);
1444 	if (retval == 0)
1445 		pnp_driver_registered = true;
1446 #endif
1447 
1448 	if (!cmos_rtc.dev) {
1449 		retval = platform_driver_probe(&cmos_platform_driver,
1450 					       cmos_platform_probe);
1451 		if (retval == 0)
1452 			platform_driver_registered = true;
1453 	}
1454 
1455 	if (retval == 0)
1456 		return 0;
1457 
1458 #ifdef	CONFIG_PNP
1459 	if (pnp_driver_registered)
1460 		pnp_unregister_driver(&cmos_pnp_driver);
1461 #endif
1462 	return retval;
1463 }
1464 module_init(cmos_init);
1465 
1466 static void __exit cmos_exit(void)
1467 {
1468 #ifdef	CONFIG_PNP
1469 	if (pnp_driver_registered)
1470 		pnp_unregister_driver(&cmos_pnp_driver);
1471 #endif
1472 	if (platform_driver_registered)
1473 		platform_driver_unregister(&cmos_platform_driver);
1474 }
1475 module_exit(cmos_exit);
1476 
1477 
1478 MODULE_AUTHOR("David Brownell");
1479 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1480 MODULE_LICENSE("GPL");
1481