xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision e5c86679)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
47 
48 struct cmos_rtc {
49 	struct rtc_device	*rtc;
50 	struct device		*dev;
51 	int			irq;
52 	struct resource		*iomem;
53 	time64_t		alarm_expires;
54 
55 	void			(*wake_on)(struct device *);
56 	void			(*wake_off)(struct device *);
57 
58 	u8			enabled_wake;
59 	u8			suspend_ctrl;
60 
61 	/* newer hardware extends the original register set */
62 	u8			day_alrm;
63 	u8			mon_alrm;
64 	u8			century;
65 
66 	struct rtc_wkalrm	saved_wkalrm;
67 };
68 
69 /* both platform and pnp busses use negative numbers for invalid irqs */
70 #define is_valid_irq(n)		((n) > 0)
71 
72 static const char driver_name[] = "rtc_cmos";
73 
74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
75  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
76  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
77  */
78 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
79 
80 static inline int is_intr(u8 rtc_intr)
81 {
82 	if (!(rtc_intr & RTC_IRQF))
83 		return 0;
84 	return rtc_intr & RTC_IRQMASK;
85 }
86 
87 /*----------------------------------------------------------------*/
88 
89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
90  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
91  * used in a broken "legacy replacement" mode.  The breakage includes
92  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
93  * other (better) use.
94  *
95  * When that broken mode is in use, platform glue provides a partial
96  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
97  * want to use HPET for anything except those IRQs though...
98  */
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #include <asm/hpet.h>
101 #else
102 
103 static inline int is_hpet_enabled(void)
104 {
105 	return 0;
106 }
107 
108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
109 {
110 	return 0;
111 }
112 
113 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
114 {
115 	return 0;
116 }
117 
118 static inline int
119 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
120 {
121 	return 0;
122 }
123 
124 static inline int hpet_set_periodic_freq(unsigned long freq)
125 {
126 	return 0;
127 }
128 
129 static inline int hpet_rtc_dropped_irq(void)
130 {
131 	return 0;
132 }
133 
134 static inline int hpet_rtc_timer_init(void)
135 {
136 	return 0;
137 }
138 
139 extern irq_handler_t hpet_rtc_interrupt;
140 
141 static inline int hpet_register_irq_handler(irq_handler_t handler)
142 {
143 	return 0;
144 }
145 
146 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
147 {
148 	return 0;
149 }
150 
151 #endif
152 
153 /*----------------------------------------------------------------*/
154 
155 #ifdef RTC_PORT
156 
157 /* Most newer x86 systems have two register banks, the first used
158  * for RTC and NVRAM and the second only for NVRAM.  Caller must
159  * own rtc_lock ... and we won't worry about access during NMI.
160  */
161 #define can_bank2	true
162 
163 static inline unsigned char cmos_read_bank2(unsigned char addr)
164 {
165 	outb(addr, RTC_PORT(2));
166 	return inb(RTC_PORT(3));
167 }
168 
169 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
170 {
171 	outb(addr, RTC_PORT(2));
172 	outb(val, RTC_PORT(3));
173 }
174 
175 #else
176 
177 #define can_bank2	false
178 
179 static inline unsigned char cmos_read_bank2(unsigned char addr)
180 {
181 	return 0;
182 }
183 
184 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
185 {
186 }
187 
188 #endif
189 
190 /*----------------------------------------------------------------*/
191 
192 static int cmos_read_time(struct device *dev, struct rtc_time *t)
193 {
194 	/*
195 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
196 	 * which tells the caller that this RTC value is unusable.
197 	 */
198 	if (!pm_trace_rtc_valid())
199 		return -EIO;
200 
201 	/* REVISIT:  if the clock has a "century" register, use
202 	 * that instead of the heuristic in mc146818_get_time().
203 	 * That'll make Y3K compatility (year > 2070) easy!
204 	 */
205 	mc146818_get_time(t);
206 	return 0;
207 }
208 
209 static int cmos_set_time(struct device *dev, struct rtc_time *t)
210 {
211 	/* REVISIT:  set the "century" register if available
212 	 *
213 	 * NOTE: this ignores the issue whereby updating the seconds
214 	 * takes effect exactly 500ms after we write the register.
215 	 * (Also queueing and other delays before we get this far.)
216 	 */
217 	return mc146818_set_time(t);
218 }
219 
220 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
221 {
222 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
223 	unsigned char	rtc_control;
224 
225 	if (!is_valid_irq(cmos->irq))
226 		return -EIO;
227 
228 	/* Basic alarms only support hour, minute, and seconds fields.
229 	 * Some also support day and month, for alarms up to a year in
230 	 * the future.
231 	 */
232 
233 	spin_lock_irq(&rtc_lock);
234 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
235 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
236 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
237 
238 	if (cmos->day_alrm) {
239 		/* ignore upper bits on readback per ACPI spec */
240 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
241 		if (!t->time.tm_mday)
242 			t->time.tm_mday = -1;
243 
244 		if (cmos->mon_alrm) {
245 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
246 			if (!t->time.tm_mon)
247 				t->time.tm_mon = -1;
248 		}
249 	}
250 
251 	rtc_control = CMOS_READ(RTC_CONTROL);
252 	spin_unlock_irq(&rtc_lock);
253 
254 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
255 		if (((unsigned)t->time.tm_sec) < 0x60)
256 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
257 		else
258 			t->time.tm_sec = -1;
259 		if (((unsigned)t->time.tm_min) < 0x60)
260 			t->time.tm_min = bcd2bin(t->time.tm_min);
261 		else
262 			t->time.tm_min = -1;
263 		if (((unsigned)t->time.tm_hour) < 0x24)
264 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
265 		else
266 			t->time.tm_hour = -1;
267 
268 		if (cmos->day_alrm) {
269 			if (((unsigned)t->time.tm_mday) <= 0x31)
270 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
271 			else
272 				t->time.tm_mday = -1;
273 
274 			if (cmos->mon_alrm) {
275 				if (((unsigned)t->time.tm_mon) <= 0x12)
276 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
277 				else
278 					t->time.tm_mon = -1;
279 			}
280 		}
281 	}
282 
283 	t->enabled = !!(rtc_control & RTC_AIE);
284 	t->pending = 0;
285 
286 	return 0;
287 }
288 
289 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
290 {
291 	unsigned char	rtc_intr;
292 
293 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
294 	 * allegedly some older rtcs need that to handle irqs properly
295 	 */
296 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
297 
298 	if (is_hpet_enabled())
299 		return;
300 
301 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
302 	if (is_intr(rtc_intr))
303 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
304 }
305 
306 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
307 {
308 	unsigned char	rtc_control;
309 
310 	/* flush any pending IRQ status, notably for update irqs,
311 	 * before we enable new IRQs
312 	 */
313 	rtc_control = CMOS_READ(RTC_CONTROL);
314 	cmos_checkintr(cmos, rtc_control);
315 
316 	rtc_control |= mask;
317 	CMOS_WRITE(rtc_control, RTC_CONTROL);
318 	hpet_set_rtc_irq_bit(mask);
319 
320 	cmos_checkintr(cmos, rtc_control);
321 }
322 
323 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
324 {
325 	unsigned char	rtc_control;
326 
327 	rtc_control = CMOS_READ(RTC_CONTROL);
328 	rtc_control &= ~mask;
329 	CMOS_WRITE(rtc_control, RTC_CONTROL);
330 	hpet_mask_rtc_irq_bit(mask);
331 
332 	cmos_checkintr(cmos, rtc_control);
333 }
334 
335 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
336 {
337 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
338 	struct rtc_time now;
339 
340 	cmos_read_time(dev, &now);
341 
342 	if (!cmos->day_alrm) {
343 		time64_t t_max_date;
344 		time64_t t_alrm;
345 
346 		t_max_date = rtc_tm_to_time64(&now);
347 		t_max_date += 24 * 60 * 60 - 1;
348 		t_alrm = rtc_tm_to_time64(&t->time);
349 		if (t_alrm > t_max_date) {
350 			dev_err(dev,
351 				"Alarms can be up to one day in the future\n");
352 			return -EINVAL;
353 		}
354 	} else if (!cmos->mon_alrm) {
355 		struct rtc_time max_date = now;
356 		time64_t t_max_date;
357 		time64_t t_alrm;
358 		int max_mday;
359 
360 		if (max_date.tm_mon == 11) {
361 			max_date.tm_mon = 0;
362 			max_date.tm_year += 1;
363 		} else {
364 			max_date.tm_mon += 1;
365 		}
366 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
367 		if (max_date.tm_mday > max_mday)
368 			max_date.tm_mday = max_mday;
369 
370 		t_max_date = rtc_tm_to_time64(&max_date);
371 		t_max_date -= 1;
372 		t_alrm = rtc_tm_to_time64(&t->time);
373 		if (t_alrm > t_max_date) {
374 			dev_err(dev,
375 				"Alarms can be up to one month in the future\n");
376 			return -EINVAL;
377 		}
378 	} else {
379 		struct rtc_time max_date = now;
380 		time64_t t_max_date;
381 		time64_t t_alrm;
382 		int max_mday;
383 
384 		max_date.tm_year += 1;
385 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
386 		if (max_date.tm_mday > max_mday)
387 			max_date.tm_mday = max_mday;
388 
389 		t_max_date = rtc_tm_to_time64(&max_date);
390 		t_max_date -= 1;
391 		t_alrm = rtc_tm_to_time64(&t->time);
392 		if (t_alrm > t_max_date) {
393 			dev_err(dev,
394 				"Alarms can be up to one year in the future\n");
395 			return -EINVAL;
396 		}
397 	}
398 
399 	return 0;
400 }
401 
402 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
403 {
404 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
405 	unsigned char mon, mday, hrs, min, sec, rtc_control;
406 	int ret;
407 
408 	if (!is_valid_irq(cmos->irq))
409 		return -EIO;
410 
411 	ret = cmos_validate_alarm(dev, t);
412 	if (ret < 0)
413 		return ret;
414 
415 	mon = t->time.tm_mon + 1;
416 	mday = t->time.tm_mday;
417 	hrs = t->time.tm_hour;
418 	min = t->time.tm_min;
419 	sec = t->time.tm_sec;
420 
421 	rtc_control = CMOS_READ(RTC_CONTROL);
422 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
423 		/* Writing 0xff means "don't care" or "match all".  */
424 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
425 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
426 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
427 		min = (min < 60) ? bin2bcd(min) : 0xff;
428 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
429 	}
430 
431 	spin_lock_irq(&rtc_lock);
432 
433 	/* next rtc irq must not be from previous alarm setting */
434 	cmos_irq_disable(cmos, RTC_AIE);
435 
436 	/* update alarm */
437 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
438 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
439 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
440 
441 	/* the system may support an "enhanced" alarm */
442 	if (cmos->day_alrm) {
443 		CMOS_WRITE(mday, cmos->day_alrm);
444 		if (cmos->mon_alrm)
445 			CMOS_WRITE(mon, cmos->mon_alrm);
446 	}
447 
448 	/* FIXME the HPET alarm glue currently ignores day_alrm
449 	 * and mon_alrm ...
450 	 */
451 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
452 
453 	if (t->enabled)
454 		cmos_irq_enable(cmos, RTC_AIE);
455 
456 	spin_unlock_irq(&rtc_lock);
457 
458 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
459 
460 	return 0;
461 }
462 
463 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
464 {
465 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
466 	unsigned long	flags;
467 
468 	if (!is_valid_irq(cmos->irq))
469 		return -EINVAL;
470 
471 	spin_lock_irqsave(&rtc_lock, flags);
472 
473 	if (enabled)
474 		cmos_irq_enable(cmos, RTC_AIE);
475 	else
476 		cmos_irq_disable(cmos, RTC_AIE);
477 
478 	spin_unlock_irqrestore(&rtc_lock, flags);
479 	return 0;
480 }
481 
482 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
483 
484 static int cmos_procfs(struct device *dev, struct seq_file *seq)
485 {
486 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
487 	unsigned char	rtc_control, valid;
488 
489 	spin_lock_irq(&rtc_lock);
490 	rtc_control = CMOS_READ(RTC_CONTROL);
491 	valid = CMOS_READ(RTC_VALID);
492 	spin_unlock_irq(&rtc_lock);
493 
494 	/* NOTE:  at least ICH6 reports battery status using a different
495 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
496 	 */
497 	seq_printf(seq,
498 		   "periodic_IRQ\t: %s\n"
499 		   "update_IRQ\t: %s\n"
500 		   "HPET_emulated\t: %s\n"
501 		   // "square_wave\t: %s\n"
502 		   "BCD\t\t: %s\n"
503 		   "DST_enable\t: %s\n"
504 		   "periodic_freq\t: %d\n"
505 		   "batt_status\t: %s\n",
506 		   (rtc_control & RTC_PIE) ? "yes" : "no",
507 		   (rtc_control & RTC_UIE) ? "yes" : "no",
508 		   is_hpet_enabled() ? "yes" : "no",
509 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
510 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
511 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
512 		   cmos->rtc->irq_freq,
513 		   (valid & RTC_VRT) ? "okay" : "dead");
514 
515 	return 0;
516 }
517 
518 #else
519 #define	cmos_procfs	NULL
520 #endif
521 
522 static const struct rtc_class_ops cmos_rtc_ops = {
523 	.read_time		= cmos_read_time,
524 	.set_time		= cmos_set_time,
525 	.read_alarm		= cmos_read_alarm,
526 	.set_alarm		= cmos_set_alarm,
527 	.proc			= cmos_procfs,
528 	.alarm_irq_enable	= cmos_alarm_irq_enable,
529 };
530 
531 /*----------------------------------------------------------------*/
532 
533 /*
534  * All these chips have at least 64 bytes of address space, shared by
535  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
536  * by boot firmware.  Modern chips have 128 or 256 bytes.
537  */
538 
539 #define NVRAM_OFFSET	(RTC_REG_D + 1)
540 
541 static ssize_t
542 cmos_nvram_read(struct file *filp, struct kobject *kobj,
543 		struct bin_attribute *attr,
544 		char *buf, loff_t off, size_t count)
545 {
546 	int	retval;
547 
548 	off += NVRAM_OFFSET;
549 	spin_lock_irq(&rtc_lock);
550 	for (retval = 0; count; count--, off++, retval++) {
551 		if (off < 128)
552 			*buf++ = CMOS_READ(off);
553 		else if (can_bank2)
554 			*buf++ = cmos_read_bank2(off);
555 		else
556 			break;
557 	}
558 	spin_unlock_irq(&rtc_lock);
559 
560 	return retval;
561 }
562 
563 static ssize_t
564 cmos_nvram_write(struct file *filp, struct kobject *kobj,
565 		struct bin_attribute *attr,
566 		char *buf, loff_t off, size_t count)
567 {
568 	struct cmos_rtc	*cmos;
569 	int		retval;
570 
571 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
572 
573 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
574 	 * checksum on part of the NVRAM data.  That's currently ignored
575 	 * here.  If userspace is smart enough to know what fields of
576 	 * NVRAM to update, updating checksums is also part of its job.
577 	 */
578 	off += NVRAM_OFFSET;
579 	spin_lock_irq(&rtc_lock);
580 	for (retval = 0; count; count--, off++, retval++) {
581 		/* don't trash RTC registers */
582 		if (off == cmos->day_alrm
583 				|| off == cmos->mon_alrm
584 				|| off == cmos->century)
585 			buf++;
586 		else if (off < 128)
587 			CMOS_WRITE(*buf++, off);
588 		else if (can_bank2)
589 			cmos_write_bank2(*buf++, off);
590 		else
591 			break;
592 	}
593 	spin_unlock_irq(&rtc_lock);
594 
595 	return retval;
596 }
597 
598 static struct bin_attribute nvram = {
599 	.attr = {
600 		.name	= "nvram",
601 		.mode	= S_IRUGO | S_IWUSR,
602 	},
603 
604 	.read	= cmos_nvram_read,
605 	.write	= cmos_nvram_write,
606 	/* size gets set up later */
607 };
608 
609 /*----------------------------------------------------------------*/
610 
611 static struct cmos_rtc	cmos_rtc;
612 
613 static irqreturn_t cmos_interrupt(int irq, void *p)
614 {
615 	u8		irqstat;
616 	u8		rtc_control;
617 
618 	spin_lock(&rtc_lock);
619 
620 	/* When the HPET interrupt handler calls us, the interrupt
621 	 * status is passed as arg1 instead of the irq number.  But
622 	 * always clear irq status, even when HPET is in the way.
623 	 *
624 	 * Note that HPET and RTC are almost certainly out of phase,
625 	 * giving different IRQ status ...
626 	 */
627 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
628 	rtc_control = CMOS_READ(RTC_CONTROL);
629 	if (is_hpet_enabled())
630 		irqstat = (unsigned long)irq & 0xF0;
631 
632 	/* If we were suspended, RTC_CONTROL may not be accurate since the
633 	 * bios may have cleared it.
634 	 */
635 	if (!cmos_rtc.suspend_ctrl)
636 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
637 	else
638 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
639 
640 	/* All Linux RTC alarms should be treated as if they were oneshot.
641 	 * Similar code may be needed in system wakeup paths, in case the
642 	 * alarm woke the system.
643 	 */
644 	if (irqstat & RTC_AIE) {
645 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
646 		rtc_control &= ~RTC_AIE;
647 		CMOS_WRITE(rtc_control, RTC_CONTROL);
648 		hpet_mask_rtc_irq_bit(RTC_AIE);
649 		CMOS_READ(RTC_INTR_FLAGS);
650 	}
651 	spin_unlock(&rtc_lock);
652 
653 	if (is_intr(irqstat)) {
654 		rtc_update_irq(p, 1, irqstat);
655 		return IRQ_HANDLED;
656 	} else
657 		return IRQ_NONE;
658 }
659 
660 #ifdef	CONFIG_PNP
661 #define	INITSECTION
662 
663 #else
664 #define	INITSECTION	__init
665 #endif
666 
667 static int INITSECTION
668 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
669 {
670 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
671 	int				retval = 0;
672 	unsigned char			rtc_control;
673 	unsigned			address_space;
674 	u32				flags = 0;
675 
676 	/* there can be only one ... */
677 	if (cmos_rtc.dev)
678 		return -EBUSY;
679 
680 	if (!ports)
681 		return -ENODEV;
682 
683 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
684 	 *
685 	 * REVISIT non-x86 systems may instead use memory space resources
686 	 * (needing ioremap etc), not i/o space resources like this ...
687 	 */
688 	if (RTC_IOMAPPED)
689 		ports = request_region(ports->start, resource_size(ports),
690 				       driver_name);
691 	else
692 		ports = request_mem_region(ports->start, resource_size(ports),
693 					   driver_name);
694 	if (!ports) {
695 		dev_dbg(dev, "i/o registers already in use\n");
696 		return -EBUSY;
697 	}
698 
699 	cmos_rtc.irq = rtc_irq;
700 	cmos_rtc.iomem = ports;
701 
702 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
703 	 * driver did, but don't reject unknown configs.   Old hardware
704 	 * won't address 128 bytes.  Newer chips have multiple banks,
705 	 * though they may not be listed in one I/O resource.
706 	 */
707 #if	defined(CONFIG_ATARI)
708 	address_space = 64;
709 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
710 			|| defined(__sparc__) || defined(__mips__) \
711 			|| defined(__powerpc__) || defined(CONFIG_MN10300)
712 	address_space = 128;
713 #else
714 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
715 	address_space = 128;
716 #endif
717 	if (can_bank2 && ports->end > (ports->start + 1))
718 		address_space = 256;
719 
720 	/* For ACPI systems extension info comes from the FADT.  On others,
721 	 * board specific setup provides it as appropriate.  Systems where
722 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
723 	 * some almost-clones) can provide hooks to make that behave.
724 	 *
725 	 * Note that ACPI doesn't preclude putting these registers into
726 	 * "extended" areas of the chip, including some that we won't yet
727 	 * expect CMOS_READ and friends to handle.
728 	 */
729 	if (info) {
730 		if (info->flags)
731 			flags = info->flags;
732 		if (info->address_space)
733 			address_space = info->address_space;
734 
735 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
736 			cmos_rtc.day_alrm = info->rtc_day_alarm;
737 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
738 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
739 		if (info->rtc_century && info->rtc_century < 128)
740 			cmos_rtc.century = info->rtc_century;
741 
742 		if (info->wake_on && info->wake_off) {
743 			cmos_rtc.wake_on = info->wake_on;
744 			cmos_rtc.wake_off = info->wake_off;
745 		}
746 	}
747 
748 	cmos_rtc.dev = dev;
749 	dev_set_drvdata(dev, &cmos_rtc);
750 
751 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
752 				&cmos_rtc_ops, THIS_MODULE);
753 	if (IS_ERR(cmos_rtc.rtc)) {
754 		retval = PTR_ERR(cmos_rtc.rtc);
755 		goto cleanup0;
756 	}
757 
758 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
759 
760 	spin_lock_irq(&rtc_lock);
761 
762 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
763 		/* force periodic irq to CMOS reset default of 1024Hz;
764 		 *
765 		 * REVISIT it's been reported that at least one x86_64 ALI
766 		 * mobo doesn't use 32KHz here ... for portability we might
767 		 * need to do something about other clock frequencies.
768 		 */
769 		cmos_rtc.rtc->irq_freq = 1024;
770 		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
771 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
772 	}
773 
774 	/* disable irqs */
775 	if (is_valid_irq(rtc_irq))
776 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
777 
778 	rtc_control = CMOS_READ(RTC_CONTROL);
779 
780 	spin_unlock_irq(&rtc_lock);
781 
782 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
783 		dev_warn(dev, "only 24-hr supported\n");
784 		retval = -ENXIO;
785 		goto cleanup1;
786 	}
787 
788 	hpet_rtc_timer_init();
789 
790 	if (is_valid_irq(rtc_irq)) {
791 		irq_handler_t rtc_cmos_int_handler;
792 
793 		if (is_hpet_enabled()) {
794 			rtc_cmos_int_handler = hpet_rtc_interrupt;
795 			retval = hpet_register_irq_handler(cmos_interrupt);
796 			if (retval) {
797 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
798 				dev_warn(dev, "hpet_register_irq_handler "
799 						" failed in rtc_init().");
800 				goto cleanup1;
801 			}
802 		} else
803 			rtc_cmos_int_handler = cmos_interrupt;
804 
805 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
806 				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
807 				cmos_rtc.rtc);
808 		if (retval < 0) {
809 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
810 			goto cleanup1;
811 		}
812 	}
813 
814 	/* export at least the first block of NVRAM */
815 	nvram.size = address_space - NVRAM_OFFSET;
816 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
817 	if (retval < 0) {
818 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
819 		goto cleanup2;
820 	}
821 
822 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
823 		!is_valid_irq(rtc_irq) ? "no alarms" :
824 			cmos_rtc.mon_alrm ? "alarms up to one year" :
825 			cmos_rtc.day_alrm ? "alarms up to one month" :
826 			"alarms up to one day",
827 		cmos_rtc.century ? ", y3k" : "",
828 		nvram.size,
829 		is_hpet_enabled() ? ", hpet irqs" : "");
830 
831 	return 0;
832 
833 cleanup2:
834 	if (is_valid_irq(rtc_irq))
835 		free_irq(rtc_irq, cmos_rtc.rtc);
836 cleanup1:
837 	cmos_rtc.dev = NULL;
838 	rtc_device_unregister(cmos_rtc.rtc);
839 cleanup0:
840 	if (RTC_IOMAPPED)
841 		release_region(ports->start, resource_size(ports));
842 	else
843 		release_mem_region(ports->start, resource_size(ports));
844 	return retval;
845 }
846 
847 static void cmos_do_shutdown(int rtc_irq)
848 {
849 	spin_lock_irq(&rtc_lock);
850 	if (is_valid_irq(rtc_irq))
851 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
852 	spin_unlock_irq(&rtc_lock);
853 }
854 
855 static void cmos_do_remove(struct device *dev)
856 {
857 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
858 	struct resource *ports;
859 
860 	cmos_do_shutdown(cmos->irq);
861 
862 	sysfs_remove_bin_file(&dev->kobj, &nvram);
863 
864 	if (is_valid_irq(cmos->irq)) {
865 		free_irq(cmos->irq, cmos->rtc);
866 		hpet_unregister_irq_handler(cmos_interrupt);
867 	}
868 
869 	rtc_device_unregister(cmos->rtc);
870 	cmos->rtc = NULL;
871 
872 	ports = cmos->iomem;
873 	if (RTC_IOMAPPED)
874 		release_region(ports->start, resource_size(ports));
875 	else
876 		release_mem_region(ports->start, resource_size(ports));
877 	cmos->iomem = NULL;
878 
879 	cmos->dev = NULL;
880 }
881 
882 static int cmos_aie_poweroff(struct device *dev)
883 {
884 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
885 	struct rtc_time now;
886 	time64_t t_now;
887 	int retval = 0;
888 	unsigned char rtc_control;
889 
890 	if (!cmos->alarm_expires)
891 		return -EINVAL;
892 
893 	spin_lock_irq(&rtc_lock);
894 	rtc_control = CMOS_READ(RTC_CONTROL);
895 	spin_unlock_irq(&rtc_lock);
896 
897 	/* We only care about the situation where AIE is disabled. */
898 	if (rtc_control & RTC_AIE)
899 		return -EBUSY;
900 
901 	cmos_read_time(dev, &now);
902 	t_now = rtc_tm_to_time64(&now);
903 
904 	/*
905 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
906 	 * automatically right after shutdown on some buggy boxes.
907 	 * This automatic rebooting issue won't happen when the alarm
908 	 * time is larger than now+1 seconds.
909 	 *
910 	 * If the alarm time is equal to now+1 seconds, the issue can be
911 	 * prevented by cancelling the alarm.
912 	 */
913 	if (cmos->alarm_expires == t_now + 1) {
914 		struct rtc_wkalrm alarm;
915 
916 		/* Cancel the AIE timer by configuring the past time. */
917 		rtc_time64_to_tm(t_now - 1, &alarm.time);
918 		alarm.enabled = 0;
919 		retval = cmos_set_alarm(dev, &alarm);
920 	} else if (cmos->alarm_expires > t_now + 1) {
921 		retval = -EBUSY;
922 	}
923 
924 	return retval;
925 }
926 
927 static int cmos_suspend(struct device *dev)
928 {
929 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
930 	unsigned char	tmp;
931 
932 	/* only the alarm might be a wakeup event source */
933 	spin_lock_irq(&rtc_lock);
934 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
935 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
936 		unsigned char	mask;
937 
938 		if (device_may_wakeup(dev))
939 			mask = RTC_IRQMASK & ~RTC_AIE;
940 		else
941 			mask = RTC_IRQMASK;
942 		tmp &= ~mask;
943 		CMOS_WRITE(tmp, RTC_CONTROL);
944 		hpet_mask_rtc_irq_bit(mask);
945 
946 		cmos_checkintr(cmos, tmp);
947 	}
948 	spin_unlock_irq(&rtc_lock);
949 
950 	if (tmp & RTC_AIE) {
951 		cmos->enabled_wake = 1;
952 		if (cmos->wake_on)
953 			cmos->wake_on(dev);
954 		else
955 			enable_irq_wake(cmos->irq);
956 	}
957 
958 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
959 
960 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
961 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
962 			tmp);
963 
964 	return 0;
965 }
966 
967 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
968  * after a detour through G3 "mechanical off", although the ACPI spec
969  * says wakeup should only work from G1/S4 "hibernate".  To most users,
970  * distinctions between S4 and S5 are pointless.  So when the hardware
971  * allows, don't draw that distinction.
972  */
973 static inline int cmos_poweroff(struct device *dev)
974 {
975 	if (!IS_ENABLED(CONFIG_PM))
976 		return -ENOSYS;
977 
978 	return cmos_suspend(dev);
979 }
980 
981 static void cmos_check_wkalrm(struct device *dev)
982 {
983 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
984 	struct rtc_wkalrm current_alarm;
985 	time64_t t_current_expires;
986 	time64_t t_saved_expires;
987 
988 	cmos_read_alarm(dev, &current_alarm);
989 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
990 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
991 	if (t_current_expires != t_saved_expires ||
992 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
993 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
994 	}
995 }
996 
997 static void cmos_check_acpi_rtc_status(struct device *dev,
998 				       unsigned char *rtc_control);
999 
1000 static int __maybe_unused cmos_resume(struct device *dev)
1001 {
1002 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1003 	unsigned char tmp;
1004 
1005 	if (cmos->enabled_wake) {
1006 		if (cmos->wake_off)
1007 			cmos->wake_off(dev);
1008 		else
1009 			disable_irq_wake(cmos->irq);
1010 		cmos->enabled_wake = 0;
1011 	}
1012 
1013 	/* The BIOS might have changed the alarm, restore it */
1014 	cmos_check_wkalrm(dev);
1015 
1016 	spin_lock_irq(&rtc_lock);
1017 	tmp = cmos->suspend_ctrl;
1018 	cmos->suspend_ctrl = 0;
1019 	/* re-enable any irqs previously active */
1020 	if (tmp & RTC_IRQMASK) {
1021 		unsigned char	mask;
1022 
1023 		if (device_may_wakeup(dev))
1024 			hpet_rtc_timer_init();
1025 
1026 		do {
1027 			CMOS_WRITE(tmp, RTC_CONTROL);
1028 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1029 
1030 			mask = CMOS_READ(RTC_INTR_FLAGS);
1031 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1032 			if (!is_hpet_enabled() || !is_intr(mask))
1033 				break;
1034 
1035 			/* force one-shot behavior if HPET blocked
1036 			 * the wake alarm's irq
1037 			 */
1038 			rtc_update_irq(cmos->rtc, 1, mask);
1039 			tmp &= ~RTC_AIE;
1040 			hpet_mask_rtc_irq_bit(RTC_AIE);
1041 		} while (mask & RTC_AIE);
1042 
1043 		if (tmp & RTC_AIE)
1044 			cmos_check_acpi_rtc_status(dev, &tmp);
1045 	}
1046 	spin_unlock_irq(&rtc_lock);
1047 
1048 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1049 
1050 	return 0;
1051 }
1052 
1053 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1054 
1055 /*----------------------------------------------------------------*/
1056 
1057 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1058  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1059  * probably list them in similar PNPBIOS tables; so PNP is more common.
1060  *
1061  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1062  * predate even PNPBIOS should set up platform_bus devices.
1063  */
1064 
1065 #ifdef	CONFIG_ACPI
1066 
1067 #include <linux/acpi.h>
1068 
1069 static u32 rtc_handler(void *context)
1070 {
1071 	struct device *dev = context;
1072 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1073 	unsigned char rtc_control = 0;
1074 	unsigned char rtc_intr;
1075 	unsigned long flags;
1076 
1077 	spin_lock_irqsave(&rtc_lock, flags);
1078 	if (cmos_rtc.suspend_ctrl)
1079 		rtc_control = CMOS_READ(RTC_CONTROL);
1080 	if (rtc_control & RTC_AIE) {
1081 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1082 		CMOS_WRITE(rtc_control, RTC_CONTROL);
1083 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1084 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1085 	}
1086 	spin_unlock_irqrestore(&rtc_lock, flags);
1087 
1088 	pm_wakeup_event(dev, 0);
1089 	acpi_clear_event(ACPI_EVENT_RTC);
1090 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1091 	return ACPI_INTERRUPT_HANDLED;
1092 }
1093 
1094 static inline void rtc_wake_setup(struct device *dev)
1095 {
1096 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1097 	/*
1098 	 * After the RTC handler is installed, the Fixed_RTC event should
1099 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1100 	 */
1101 	acpi_clear_event(ACPI_EVENT_RTC);
1102 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1103 }
1104 
1105 static void rtc_wake_on(struct device *dev)
1106 {
1107 	acpi_clear_event(ACPI_EVENT_RTC);
1108 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1109 }
1110 
1111 static void rtc_wake_off(struct device *dev)
1112 {
1113 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1114 }
1115 
1116 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1117  * its device node and pass extra config data.  This helps its driver use
1118  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1119  * that this board's RTC is wakeup-capable (per ACPI spec).
1120  */
1121 static struct cmos_rtc_board_info acpi_rtc_info;
1122 
1123 static void cmos_wake_setup(struct device *dev)
1124 {
1125 	if (acpi_disabled)
1126 		return;
1127 
1128 	rtc_wake_setup(dev);
1129 	acpi_rtc_info.wake_on = rtc_wake_on;
1130 	acpi_rtc_info.wake_off = rtc_wake_off;
1131 
1132 	/* workaround bug in some ACPI tables */
1133 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1134 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1135 			acpi_gbl_FADT.month_alarm);
1136 		acpi_gbl_FADT.month_alarm = 0;
1137 	}
1138 
1139 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1140 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1141 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1142 
1143 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1144 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1145 		dev_info(dev, "RTC can wake from S4\n");
1146 
1147 	dev->platform_data = &acpi_rtc_info;
1148 
1149 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1150 	device_init_wakeup(dev, 1);
1151 }
1152 
1153 static void cmos_check_acpi_rtc_status(struct device *dev,
1154 				       unsigned char *rtc_control)
1155 {
1156 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1157 	acpi_event_status rtc_status;
1158 	acpi_status status;
1159 
1160 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1161 		return;
1162 
1163 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1164 	if (ACPI_FAILURE(status)) {
1165 		dev_err(dev, "Could not get RTC status\n");
1166 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1167 		unsigned char mask;
1168 		*rtc_control &= ~RTC_AIE;
1169 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1170 		mask = CMOS_READ(RTC_INTR_FLAGS);
1171 		rtc_update_irq(cmos->rtc, 1, mask);
1172 	}
1173 }
1174 
1175 #else
1176 
1177 static void cmos_wake_setup(struct device *dev)
1178 {
1179 }
1180 
1181 static void cmos_check_acpi_rtc_status(struct device *dev,
1182 				       unsigned char *rtc_control)
1183 {
1184 }
1185 
1186 #endif
1187 
1188 #ifdef	CONFIG_PNP
1189 
1190 #include <linux/pnp.h>
1191 
1192 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1193 {
1194 	cmos_wake_setup(&pnp->dev);
1195 
1196 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1197 		/* Some machines contain a PNP entry for the RTC, but
1198 		 * don't define the IRQ. It should always be safe to
1199 		 * hardcode it in these cases
1200 		 */
1201 		return cmos_do_probe(&pnp->dev,
1202 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1203 	else
1204 		return cmos_do_probe(&pnp->dev,
1205 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1206 				pnp_irq(pnp, 0));
1207 }
1208 
1209 static void cmos_pnp_remove(struct pnp_dev *pnp)
1210 {
1211 	cmos_do_remove(&pnp->dev);
1212 }
1213 
1214 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215 {
1216 	struct device *dev = &pnp->dev;
1217 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1218 
1219 	if (system_state == SYSTEM_POWER_OFF) {
1220 		int retval = cmos_poweroff(dev);
1221 
1222 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1223 			return;
1224 	}
1225 
1226 	cmos_do_shutdown(cmos->irq);
1227 }
1228 
1229 static const struct pnp_device_id rtc_ids[] = {
1230 	{ .id = "PNP0b00", },
1231 	{ .id = "PNP0b01", },
1232 	{ .id = "PNP0b02", },
1233 	{ },
1234 };
1235 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236 
1237 static struct pnp_driver cmos_pnp_driver = {
1238 	.name		= (char *) driver_name,
1239 	.id_table	= rtc_ids,
1240 	.probe		= cmos_pnp_probe,
1241 	.remove		= cmos_pnp_remove,
1242 	.shutdown	= cmos_pnp_shutdown,
1243 
1244 	/* flag ensures resume() gets called, and stops syslog spam */
1245 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1246 	.driver		= {
1247 			.pm = &cmos_pm_ops,
1248 	},
1249 };
1250 
1251 #endif	/* CONFIG_PNP */
1252 
1253 #ifdef CONFIG_OF
1254 static const struct of_device_id of_cmos_match[] = {
1255 	{
1256 		.compatible = "motorola,mc146818",
1257 	},
1258 	{ },
1259 };
1260 MODULE_DEVICE_TABLE(of, of_cmos_match);
1261 
1262 static __init void cmos_of_init(struct platform_device *pdev)
1263 {
1264 	struct device_node *node = pdev->dev.of_node;
1265 	struct rtc_time time;
1266 	int ret;
1267 	const __be32 *val;
1268 
1269 	if (!node)
1270 		return;
1271 
1272 	val = of_get_property(node, "ctrl-reg", NULL);
1273 	if (val)
1274 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1275 
1276 	val = of_get_property(node, "freq-reg", NULL);
1277 	if (val)
1278 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1279 
1280 	cmos_read_time(&pdev->dev, &time);
1281 	ret = rtc_valid_tm(&time);
1282 	if (ret) {
1283 		struct rtc_time def_time = {
1284 			.tm_year = 1,
1285 			.tm_mday = 1,
1286 		};
1287 		cmos_set_time(&pdev->dev, &def_time);
1288 	}
1289 }
1290 #else
1291 static inline void cmos_of_init(struct platform_device *pdev) {}
1292 #endif
1293 /*----------------------------------------------------------------*/
1294 
1295 /* Platform setup should have set up an RTC device, when PNP is
1296  * unavailable ... this could happen even on (older) PCs.
1297  */
1298 
1299 static int __init cmos_platform_probe(struct platform_device *pdev)
1300 {
1301 	struct resource *resource;
1302 	int irq;
1303 
1304 	cmos_of_init(pdev);
1305 	cmos_wake_setup(&pdev->dev);
1306 
1307 	if (RTC_IOMAPPED)
1308 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1309 	else
1310 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311 	irq = platform_get_irq(pdev, 0);
1312 	if (irq < 0)
1313 		irq = -1;
1314 
1315 	return cmos_do_probe(&pdev->dev, resource, irq);
1316 }
1317 
1318 static int cmos_platform_remove(struct platform_device *pdev)
1319 {
1320 	cmos_do_remove(&pdev->dev);
1321 	return 0;
1322 }
1323 
1324 static void cmos_platform_shutdown(struct platform_device *pdev)
1325 {
1326 	struct device *dev = &pdev->dev;
1327 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1328 
1329 	if (system_state == SYSTEM_POWER_OFF) {
1330 		int retval = cmos_poweroff(dev);
1331 
1332 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1333 			return;
1334 	}
1335 
1336 	cmos_do_shutdown(cmos->irq);
1337 }
1338 
1339 /* work with hotplug and coldplug */
1340 MODULE_ALIAS("platform:rtc_cmos");
1341 
1342 static struct platform_driver cmos_platform_driver = {
1343 	.remove		= cmos_platform_remove,
1344 	.shutdown	= cmos_platform_shutdown,
1345 	.driver = {
1346 		.name		= driver_name,
1347 		.pm		= &cmos_pm_ops,
1348 		.of_match_table = of_match_ptr(of_cmos_match),
1349 	}
1350 };
1351 
1352 #ifdef CONFIG_PNP
1353 static bool pnp_driver_registered;
1354 #endif
1355 static bool platform_driver_registered;
1356 
1357 static int __init cmos_init(void)
1358 {
1359 	int retval = 0;
1360 
1361 #ifdef	CONFIG_PNP
1362 	retval = pnp_register_driver(&cmos_pnp_driver);
1363 	if (retval == 0)
1364 		pnp_driver_registered = true;
1365 #endif
1366 
1367 	if (!cmos_rtc.dev) {
1368 		retval = platform_driver_probe(&cmos_platform_driver,
1369 					       cmos_platform_probe);
1370 		if (retval == 0)
1371 			platform_driver_registered = true;
1372 	}
1373 
1374 	if (retval == 0)
1375 		return 0;
1376 
1377 #ifdef	CONFIG_PNP
1378 	if (pnp_driver_registered)
1379 		pnp_unregister_driver(&cmos_pnp_driver);
1380 #endif
1381 	return retval;
1382 }
1383 module_init(cmos_init);
1384 
1385 static void __exit cmos_exit(void)
1386 {
1387 #ifdef	CONFIG_PNP
1388 	if (pnp_driver_registered)
1389 		pnp_unregister_driver(&cmos_pnp_driver);
1390 #endif
1391 	if (platform_driver_registered)
1392 		platform_driver_unregister(&cmos_platform_driver);
1393 }
1394 module_exit(cmos_exit);
1395 
1396 
1397 MODULE_AUTHOR("David Brownell");
1398 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1399 MODULE_LICENSE("GPL");
1400