xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/log2.h>
39 #include <linux/pm.h>
40 
41 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
42 #include <asm-generic/rtc.h>
43 
44 struct cmos_rtc {
45 	struct rtc_device	*rtc;
46 	struct device		*dev;
47 	int			irq;
48 	struct resource		*iomem;
49 
50 	void			(*wake_on)(struct device *);
51 	void			(*wake_off)(struct device *);
52 
53 	u8			enabled_wake;
54 	u8			suspend_ctrl;
55 
56 	/* newer hardware extends the original register set */
57 	u8			day_alrm;
58 	u8			mon_alrm;
59 	u8			century;
60 };
61 
62 /* both platform and pnp busses use negative numbers for invalid irqs */
63 #define is_valid_irq(n)		((n) > 0)
64 
65 static const char driver_name[] = "rtc_cmos";
66 
67 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
68  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
69  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
70  */
71 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
72 
73 static inline int is_intr(u8 rtc_intr)
74 {
75 	if (!(rtc_intr & RTC_IRQF))
76 		return 0;
77 	return rtc_intr & RTC_IRQMASK;
78 }
79 
80 /*----------------------------------------------------------------*/
81 
82 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
83  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
84  * used in a broken "legacy replacement" mode.  The breakage includes
85  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
86  * other (better) use.
87  *
88  * When that broken mode is in use, platform glue provides a partial
89  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
90  * want to use HPET for anything except those IRQs though...
91  */
92 #ifdef CONFIG_HPET_EMULATE_RTC
93 #include <asm/hpet.h>
94 #else
95 
96 static inline int is_hpet_enabled(void)
97 {
98 	return 0;
99 }
100 
101 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
102 {
103 	return 0;
104 }
105 
106 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
107 {
108 	return 0;
109 }
110 
111 static inline int
112 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
113 {
114 	return 0;
115 }
116 
117 static inline int hpet_set_periodic_freq(unsigned long freq)
118 {
119 	return 0;
120 }
121 
122 static inline int hpet_rtc_dropped_irq(void)
123 {
124 	return 0;
125 }
126 
127 static inline int hpet_rtc_timer_init(void)
128 {
129 	return 0;
130 }
131 
132 extern irq_handler_t hpet_rtc_interrupt;
133 
134 static inline int hpet_register_irq_handler(irq_handler_t handler)
135 {
136 	return 0;
137 }
138 
139 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
140 {
141 	return 0;
142 }
143 
144 #endif
145 
146 /*----------------------------------------------------------------*/
147 
148 #ifdef RTC_PORT
149 
150 /* Most newer x86 systems have two register banks, the first used
151  * for RTC and NVRAM and the second only for NVRAM.  Caller must
152  * own rtc_lock ... and we won't worry about access during NMI.
153  */
154 #define can_bank2	true
155 
156 static inline unsigned char cmos_read_bank2(unsigned char addr)
157 {
158 	outb(addr, RTC_PORT(2));
159 	return inb(RTC_PORT(3));
160 }
161 
162 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
163 {
164 	outb(addr, RTC_PORT(2));
165 	outb(val, RTC_PORT(2));
166 }
167 
168 #else
169 
170 #define can_bank2	false
171 
172 static inline unsigned char cmos_read_bank2(unsigned char addr)
173 {
174 	return 0;
175 }
176 
177 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
178 {
179 }
180 
181 #endif
182 
183 /*----------------------------------------------------------------*/
184 
185 static int cmos_read_time(struct device *dev, struct rtc_time *t)
186 {
187 	/* REVISIT:  if the clock has a "century" register, use
188 	 * that instead of the heuristic in get_rtc_time().
189 	 * That'll make Y3K compatility (year > 2070) easy!
190 	 */
191 	get_rtc_time(t);
192 	return 0;
193 }
194 
195 static int cmos_set_time(struct device *dev, struct rtc_time *t)
196 {
197 	/* REVISIT:  set the "century" register if available
198 	 *
199 	 * NOTE: this ignores the issue whereby updating the seconds
200 	 * takes effect exactly 500ms after we write the register.
201 	 * (Also queueing and other delays before we get this far.)
202 	 */
203 	return set_rtc_time(t);
204 }
205 
206 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
207 {
208 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
209 	unsigned char	rtc_control;
210 
211 	if (!is_valid_irq(cmos->irq))
212 		return -EIO;
213 
214 	/* Basic alarms only support hour, minute, and seconds fields.
215 	 * Some also support day and month, for alarms up to a year in
216 	 * the future.
217 	 */
218 	t->time.tm_mday = -1;
219 	t->time.tm_mon = -1;
220 
221 	spin_lock_irq(&rtc_lock);
222 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
223 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
224 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
225 
226 	if (cmos->day_alrm) {
227 		/* ignore upper bits on readback per ACPI spec */
228 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
229 		if (!t->time.tm_mday)
230 			t->time.tm_mday = -1;
231 
232 		if (cmos->mon_alrm) {
233 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
234 			if (!t->time.tm_mon)
235 				t->time.tm_mon = -1;
236 		}
237 	}
238 
239 	rtc_control = CMOS_READ(RTC_CONTROL);
240 	spin_unlock_irq(&rtc_lock);
241 
242 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
243 		if (((unsigned)t->time.tm_sec) < 0x60)
244 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
245 		else
246 			t->time.tm_sec = -1;
247 		if (((unsigned)t->time.tm_min) < 0x60)
248 			t->time.tm_min = bcd2bin(t->time.tm_min);
249 		else
250 			t->time.tm_min = -1;
251 		if (((unsigned)t->time.tm_hour) < 0x24)
252 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
253 		else
254 			t->time.tm_hour = -1;
255 
256 		if (cmos->day_alrm) {
257 			if (((unsigned)t->time.tm_mday) <= 0x31)
258 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
259 			else
260 				t->time.tm_mday = -1;
261 
262 			if (cmos->mon_alrm) {
263 				if (((unsigned)t->time.tm_mon) <= 0x12)
264 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
265 				else
266 					t->time.tm_mon = -1;
267 			}
268 		}
269 	}
270 	t->time.tm_year = -1;
271 
272 	t->enabled = !!(rtc_control & RTC_AIE);
273 	t->pending = 0;
274 
275 	return 0;
276 }
277 
278 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
279 {
280 	unsigned char	rtc_intr;
281 
282 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
283 	 * allegedly some older rtcs need that to handle irqs properly
284 	 */
285 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
286 
287 	if (is_hpet_enabled())
288 		return;
289 
290 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
291 	if (is_intr(rtc_intr))
292 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
293 }
294 
295 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
296 {
297 	unsigned char	rtc_control;
298 
299 	/* flush any pending IRQ status, notably for update irqs,
300 	 * before we enable new IRQs
301 	 */
302 	rtc_control = CMOS_READ(RTC_CONTROL);
303 	cmos_checkintr(cmos, rtc_control);
304 
305 	rtc_control |= mask;
306 	CMOS_WRITE(rtc_control, RTC_CONTROL);
307 	hpet_set_rtc_irq_bit(mask);
308 
309 	cmos_checkintr(cmos, rtc_control);
310 }
311 
312 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
313 {
314 	unsigned char	rtc_control;
315 
316 	rtc_control = CMOS_READ(RTC_CONTROL);
317 	rtc_control &= ~mask;
318 	CMOS_WRITE(rtc_control, RTC_CONTROL);
319 	hpet_mask_rtc_irq_bit(mask);
320 
321 	cmos_checkintr(cmos, rtc_control);
322 }
323 
324 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
325 {
326 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
327        unsigned char   mon, mday, hrs, min, sec, rtc_control;
328 
329 	if (!is_valid_irq(cmos->irq))
330 		return -EIO;
331 
332 	mon = t->time.tm_mon + 1;
333 	mday = t->time.tm_mday;
334 	hrs = t->time.tm_hour;
335 	min = t->time.tm_min;
336 	sec = t->time.tm_sec;
337 
338 	rtc_control = CMOS_READ(RTC_CONTROL);
339 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
340 		/* Writing 0xff means "don't care" or "match all".  */
341 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
342 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
343 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
344 		min = (min < 60) ? bin2bcd(min) : 0xff;
345 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
346 	}
347 
348 	spin_lock_irq(&rtc_lock);
349 
350 	/* next rtc irq must not be from previous alarm setting */
351 	cmos_irq_disable(cmos, RTC_AIE);
352 
353 	/* update alarm */
354 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
355 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
356 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
357 
358 	/* the system may support an "enhanced" alarm */
359 	if (cmos->day_alrm) {
360 		CMOS_WRITE(mday, cmos->day_alrm);
361 		if (cmos->mon_alrm)
362 			CMOS_WRITE(mon, cmos->mon_alrm);
363 	}
364 
365 	/* FIXME the HPET alarm glue currently ignores day_alrm
366 	 * and mon_alrm ...
367 	 */
368 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
369 
370 	if (t->enabled)
371 		cmos_irq_enable(cmos, RTC_AIE);
372 
373 	spin_unlock_irq(&rtc_lock);
374 
375 	return 0;
376 }
377 
378 static int cmos_irq_set_freq(struct device *dev, int freq)
379 {
380 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
381 	int		f;
382 	unsigned long	flags;
383 
384 	if (!is_valid_irq(cmos->irq))
385 		return -ENXIO;
386 
387 	if (!is_power_of_2(freq))
388 		return -EINVAL;
389 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
390 	f = ffs(freq);
391 	if (f-- > 16)
392 		return -EINVAL;
393 	f = 16 - f;
394 
395 	spin_lock_irqsave(&rtc_lock, flags);
396 	hpet_set_periodic_freq(freq);
397 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
398 	spin_unlock_irqrestore(&rtc_lock, flags);
399 
400 	return 0;
401 }
402 
403 static int cmos_irq_set_state(struct device *dev, int enabled)
404 {
405 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
406 	unsigned long	flags;
407 
408 	if (!is_valid_irq(cmos->irq))
409 		return -ENXIO;
410 
411 	spin_lock_irqsave(&rtc_lock, flags);
412 
413 	if (enabled)
414 		cmos_irq_enable(cmos, RTC_PIE);
415 	else
416 		cmos_irq_disable(cmos, RTC_PIE);
417 
418 	spin_unlock_irqrestore(&rtc_lock, flags);
419 	return 0;
420 }
421 
422 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
423 {
424 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
425 	unsigned long	flags;
426 
427 	if (!is_valid_irq(cmos->irq))
428 		return -EINVAL;
429 
430 	spin_lock_irqsave(&rtc_lock, flags);
431 
432 	if (enabled)
433 		cmos_irq_enable(cmos, RTC_AIE);
434 	else
435 		cmos_irq_disable(cmos, RTC_AIE);
436 
437 	spin_unlock_irqrestore(&rtc_lock, flags);
438 	return 0;
439 }
440 
441 static int cmos_update_irq_enable(struct device *dev, unsigned int enabled)
442 {
443 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
444 	unsigned long	flags;
445 
446 	if (!is_valid_irq(cmos->irq))
447 		return -EINVAL;
448 
449 	spin_lock_irqsave(&rtc_lock, flags);
450 
451 	if (enabled)
452 		cmos_irq_enable(cmos, RTC_UIE);
453 	else
454 		cmos_irq_disable(cmos, RTC_UIE);
455 
456 	spin_unlock_irqrestore(&rtc_lock, flags);
457 	return 0;
458 }
459 
460 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
461 
462 static int cmos_procfs(struct device *dev, struct seq_file *seq)
463 {
464 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
465 	unsigned char	rtc_control, valid;
466 
467 	spin_lock_irq(&rtc_lock);
468 	rtc_control = CMOS_READ(RTC_CONTROL);
469 	valid = CMOS_READ(RTC_VALID);
470 	spin_unlock_irq(&rtc_lock);
471 
472 	/* NOTE:  at least ICH6 reports battery status using a different
473 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
474 	 */
475 	return seq_printf(seq,
476 			"periodic_IRQ\t: %s\n"
477 			"update_IRQ\t: %s\n"
478 			"HPET_emulated\t: %s\n"
479 			// "square_wave\t: %s\n"
480 			"BCD\t\t: %s\n"
481 			"DST_enable\t: %s\n"
482 			"periodic_freq\t: %d\n"
483 			"batt_status\t: %s\n",
484 			(rtc_control & RTC_PIE) ? "yes" : "no",
485 			(rtc_control & RTC_UIE) ? "yes" : "no",
486 			is_hpet_enabled() ? "yes" : "no",
487 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
488 			(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
489 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
490 			cmos->rtc->irq_freq,
491 			(valid & RTC_VRT) ? "okay" : "dead");
492 }
493 
494 #else
495 #define	cmos_procfs	NULL
496 #endif
497 
498 static const struct rtc_class_ops cmos_rtc_ops = {
499 	.read_time		= cmos_read_time,
500 	.set_time		= cmos_set_time,
501 	.read_alarm		= cmos_read_alarm,
502 	.set_alarm		= cmos_set_alarm,
503 	.proc			= cmos_procfs,
504 	.irq_set_freq		= cmos_irq_set_freq,
505 	.irq_set_state		= cmos_irq_set_state,
506 	.alarm_irq_enable	= cmos_alarm_irq_enable,
507 	.update_irq_enable	= cmos_update_irq_enable,
508 };
509 
510 /*----------------------------------------------------------------*/
511 
512 /*
513  * All these chips have at least 64 bytes of address space, shared by
514  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
515  * by boot firmware.  Modern chips have 128 or 256 bytes.
516  */
517 
518 #define NVRAM_OFFSET	(RTC_REG_D + 1)
519 
520 static ssize_t
521 cmos_nvram_read(struct file *filp, struct kobject *kobj,
522 		struct bin_attribute *attr,
523 		char *buf, loff_t off, size_t count)
524 {
525 	int	retval;
526 
527 	if (unlikely(off >= attr->size))
528 		return 0;
529 	if (unlikely(off < 0))
530 		return -EINVAL;
531 	if ((off + count) > attr->size)
532 		count = attr->size - off;
533 
534 	off += NVRAM_OFFSET;
535 	spin_lock_irq(&rtc_lock);
536 	for (retval = 0; count; count--, off++, retval++) {
537 		if (off < 128)
538 			*buf++ = CMOS_READ(off);
539 		else if (can_bank2)
540 			*buf++ = cmos_read_bank2(off);
541 		else
542 			break;
543 	}
544 	spin_unlock_irq(&rtc_lock);
545 
546 	return retval;
547 }
548 
549 static ssize_t
550 cmos_nvram_write(struct file *filp, struct kobject *kobj,
551 		struct bin_attribute *attr,
552 		char *buf, loff_t off, size_t count)
553 {
554 	struct cmos_rtc	*cmos;
555 	int		retval;
556 
557 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
558 	if (unlikely(off >= attr->size))
559 		return -EFBIG;
560 	if (unlikely(off < 0))
561 		return -EINVAL;
562 	if ((off + count) > attr->size)
563 		count = attr->size - off;
564 
565 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
566 	 * checksum on part of the NVRAM data.  That's currently ignored
567 	 * here.  If userspace is smart enough to know what fields of
568 	 * NVRAM to update, updating checksums is also part of its job.
569 	 */
570 	off += NVRAM_OFFSET;
571 	spin_lock_irq(&rtc_lock);
572 	for (retval = 0; count; count--, off++, retval++) {
573 		/* don't trash RTC registers */
574 		if (off == cmos->day_alrm
575 				|| off == cmos->mon_alrm
576 				|| off == cmos->century)
577 			buf++;
578 		else if (off < 128)
579 			CMOS_WRITE(*buf++, off);
580 		else if (can_bank2)
581 			cmos_write_bank2(*buf++, off);
582 		else
583 			break;
584 	}
585 	spin_unlock_irq(&rtc_lock);
586 
587 	return retval;
588 }
589 
590 static struct bin_attribute nvram = {
591 	.attr = {
592 		.name	= "nvram",
593 		.mode	= S_IRUGO | S_IWUSR,
594 	},
595 
596 	.read	= cmos_nvram_read,
597 	.write	= cmos_nvram_write,
598 	/* size gets set up later */
599 };
600 
601 /*----------------------------------------------------------------*/
602 
603 static struct cmos_rtc	cmos_rtc;
604 
605 static irqreturn_t cmos_interrupt(int irq, void *p)
606 {
607 	u8		irqstat;
608 	u8		rtc_control;
609 
610 	spin_lock(&rtc_lock);
611 
612 	/* When the HPET interrupt handler calls us, the interrupt
613 	 * status is passed as arg1 instead of the irq number.  But
614 	 * always clear irq status, even when HPET is in the way.
615 	 *
616 	 * Note that HPET and RTC are almost certainly out of phase,
617 	 * giving different IRQ status ...
618 	 */
619 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
620 	rtc_control = CMOS_READ(RTC_CONTROL);
621 	if (is_hpet_enabled())
622 		irqstat = (unsigned long)irq & 0xF0;
623 	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
624 
625 	/* All Linux RTC alarms should be treated as if they were oneshot.
626 	 * Similar code may be needed in system wakeup paths, in case the
627 	 * alarm woke the system.
628 	 */
629 	if (irqstat & RTC_AIE) {
630 		rtc_control &= ~RTC_AIE;
631 		CMOS_WRITE(rtc_control, RTC_CONTROL);
632 		hpet_mask_rtc_irq_bit(RTC_AIE);
633 
634 		CMOS_READ(RTC_INTR_FLAGS);
635 	}
636 	spin_unlock(&rtc_lock);
637 
638 	if (is_intr(irqstat)) {
639 		rtc_update_irq(p, 1, irqstat);
640 		return IRQ_HANDLED;
641 	} else
642 		return IRQ_NONE;
643 }
644 
645 #ifdef	CONFIG_PNP
646 #define	INITSECTION
647 
648 #else
649 #define	INITSECTION	__init
650 #endif
651 
652 static int INITSECTION
653 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
654 {
655 	struct cmos_rtc_board_info	*info = dev->platform_data;
656 	int				retval = 0;
657 	unsigned char			rtc_control;
658 	unsigned			address_space;
659 
660 	/* there can be only one ... */
661 	if (cmos_rtc.dev)
662 		return -EBUSY;
663 
664 	if (!ports)
665 		return -ENODEV;
666 
667 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
668 	 *
669 	 * REVISIT non-x86 systems may instead use memory space resources
670 	 * (needing ioremap etc), not i/o space resources like this ...
671 	 */
672 	ports = request_region(ports->start,
673 			ports->end + 1 - ports->start,
674 			driver_name);
675 	if (!ports) {
676 		dev_dbg(dev, "i/o registers already in use\n");
677 		return -EBUSY;
678 	}
679 
680 	cmos_rtc.irq = rtc_irq;
681 	cmos_rtc.iomem = ports;
682 
683 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
684 	 * driver did, but don't reject unknown configs.   Old hardware
685 	 * won't address 128 bytes.  Newer chips have multiple banks,
686 	 * though they may not be listed in one I/O resource.
687 	 */
688 #if	defined(CONFIG_ATARI)
689 	address_space = 64;
690 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
691 			|| defined(__sparc__) || defined(__mips__) \
692 			|| defined(__powerpc__)
693 	address_space = 128;
694 #else
695 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
696 	address_space = 128;
697 #endif
698 	if (can_bank2 && ports->end > (ports->start + 1))
699 		address_space = 256;
700 
701 	/* For ACPI systems extension info comes from the FADT.  On others,
702 	 * board specific setup provides it as appropriate.  Systems where
703 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
704 	 * some almost-clones) can provide hooks to make that behave.
705 	 *
706 	 * Note that ACPI doesn't preclude putting these registers into
707 	 * "extended" areas of the chip, including some that we won't yet
708 	 * expect CMOS_READ and friends to handle.
709 	 */
710 	if (info) {
711 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
712 			cmos_rtc.day_alrm = info->rtc_day_alarm;
713 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
714 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
715 		if (info->rtc_century && info->rtc_century < 128)
716 			cmos_rtc.century = info->rtc_century;
717 
718 		if (info->wake_on && info->wake_off) {
719 			cmos_rtc.wake_on = info->wake_on;
720 			cmos_rtc.wake_off = info->wake_off;
721 		}
722 	}
723 
724 	cmos_rtc.dev = dev;
725 	dev_set_drvdata(dev, &cmos_rtc);
726 
727 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
728 				&cmos_rtc_ops, THIS_MODULE);
729 	if (IS_ERR(cmos_rtc.rtc)) {
730 		retval = PTR_ERR(cmos_rtc.rtc);
731 		goto cleanup0;
732 	}
733 
734 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
735 
736 	spin_lock_irq(&rtc_lock);
737 
738 	/* force periodic irq to CMOS reset default of 1024Hz;
739 	 *
740 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
741 	 * doesn't use 32KHz here ... for portability we might need to
742 	 * do something about other clock frequencies.
743 	 */
744 	cmos_rtc.rtc->irq_freq = 1024;
745 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
746 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
747 
748 	/* disable irqs */
749 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
750 
751 	rtc_control = CMOS_READ(RTC_CONTROL);
752 
753 	spin_unlock_irq(&rtc_lock);
754 
755 	/* FIXME:
756 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
757 	 */
758        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
759 		dev_warn(dev, "only 24-hr supported\n");
760 		retval = -ENXIO;
761 		goto cleanup1;
762 	}
763 
764 	if (is_valid_irq(rtc_irq)) {
765 		irq_handler_t rtc_cmos_int_handler;
766 
767 		if (is_hpet_enabled()) {
768 			int err;
769 
770 			rtc_cmos_int_handler = hpet_rtc_interrupt;
771 			err = hpet_register_irq_handler(cmos_interrupt);
772 			if (err != 0) {
773 				printk(KERN_WARNING "hpet_register_irq_handler "
774 						" failed in rtc_init().");
775 				goto cleanup1;
776 			}
777 		} else
778 			rtc_cmos_int_handler = cmos_interrupt;
779 
780 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
781 				IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
782 				cmos_rtc.rtc);
783 		if (retval < 0) {
784 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
785 			goto cleanup1;
786 		}
787 	}
788 	hpet_rtc_timer_init();
789 
790 	/* export at least the first block of NVRAM */
791 	nvram.size = address_space - NVRAM_OFFSET;
792 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
793 	if (retval < 0) {
794 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
795 		goto cleanup2;
796 	}
797 
798 	pr_info("%s: %s%s, %zd bytes nvram%s\n",
799 		dev_name(&cmos_rtc.rtc->dev),
800 		!is_valid_irq(rtc_irq) ? "no alarms" :
801 			cmos_rtc.mon_alrm ? "alarms up to one year" :
802 			cmos_rtc.day_alrm ? "alarms up to one month" :
803 			"alarms up to one day",
804 		cmos_rtc.century ? ", y3k" : "",
805 		nvram.size,
806 		is_hpet_enabled() ? ", hpet irqs" : "");
807 
808 	return 0;
809 
810 cleanup2:
811 	if (is_valid_irq(rtc_irq))
812 		free_irq(rtc_irq, cmos_rtc.rtc);
813 cleanup1:
814 	cmos_rtc.dev = NULL;
815 	rtc_device_unregister(cmos_rtc.rtc);
816 cleanup0:
817 	release_region(ports->start, ports->end + 1 - ports->start);
818 	return retval;
819 }
820 
821 static void cmos_do_shutdown(void)
822 {
823 	spin_lock_irq(&rtc_lock);
824 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
825 	spin_unlock_irq(&rtc_lock);
826 }
827 
828 static void __exit cmos_do_remove(struct device *dev)
829 {
830 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
831 	struct resource *ports;
832 
833 	cmos_do_shutdown();
834 
835 	sysfs_remove_bin_file(&dev->kobj, &nvram);
836 
837 	if (is_valid_irq(cmos->irq)) {
838 		free_irq(cmos->irq, cmos->rtc);
839 		hpet_unregister_irq_handler(cmos_interrupt);
840 	}
841 
842 	rtc_device_unregister(cmos->rtc);
843 	cmos->rtc = NULL;
844 
845 	ports = cmos->iomem;
846 	release_region(ports->start, ports->end + 1 - ports->start);
847 	cmos->iomem = NULL;
848 
849 	cmos->dev = NULL;
850 	dev_set_drvdata(dev, NULL);
851 }
852 
853 #ifdef	CONFIG_PM
854 
855 static int cmos_suspend(struct device *dev)
856 {
857 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
858 	unsigned char	tmp;
859 
860 	/* only the alarm might be a wakeup event source */
861 	spin_lock_irq(&rtc_lock);
862 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
863 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
864 		unsigned char	mask;
865 
866 		if (device_may_wakeup(dev))
867 			mask = RTC_IRQMASK & ~RTC_AIE;
868 		else
869 			mask = RTC_IRQMASK;
870 		tmp &= ~mask;
871 		CMOS_WRITE(tmp, RTC_CONTROL);
872 
873 		/* shut down hpet emulation - we don't need it for alarm */
874 		hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
875 		cmos_checkintr(cmos, tmp);
876 	}
877 	spin_unlock_irq(&rtc_lock);
878 
879 	if (tmp & RTC_AIE) {
880 		cmos->enabled_wake = 1;
881 		if (cmos->wake_on)
882 			cmos->wake_on(dev);
883 		else
884 			enable_irq_wake(cmos->irq);
885 	}
886 
887 	pr_debug("%s: suspend%s, ctrl %02x\n",
888 			dev_name(&cmos_rtc.rtc->dev),
889 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
890 			tmp);
891 
892 	return 0;
893 }
894 
895 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
896  * after a detour through G3 "mechanical off", although the ACPI spec
897  * says wakeup should only work from G1/S4 "hibernate".  To most users,
898  * distinctions between S4 and S5 are pointless.  So when the hardware
899  * allows, don't draw that distinction.
900  */
901 static inline int cmos_poweroff(struct device *dev)
902 {
903 	return cmos_suspend(dev);
904 }
905 
906 static int cmos_resume(struct device *dev)
907 {
908 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
909 	unsigned char	tmp = cmos->suspend_ctrl;
910 
911 	/* re-enable any irqs previously active */
912 	if (tmp & RTC_IRQMASK) {
913 		unsigned char	mask;
914 
915 		if (cmos->enabled_wake) {
916 			if (cmos->wake_off)
917 				cmos->wake_off(dev);
918 			else
919 				disable_irq_wake(cmos->irq);
920 			cmos->enabled_wake = 0;
921 		}
922 
923 		spin_lock_irq(&rtc_lock);
924 		do {
925 			CMOS_WRITE(tmp, RTC_CONTROL);
926 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
927 
928 			mask = CMOS_READ(RTC_INTR_FLAGS);
929 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
930 			if (!is_hpet_enabled() || !is_intr(mask))
931 				break;
932 
933 			/* force one-shot behavior if HPET blocked
934 			 * the wake alarm's irq
935 			 */
936 			rtc_update_irq(cmos->rtc, 1, mask);
937 			tmp &= ~RTC_AIE;
938 			hpet_mask_rtc_irq_bit(RTC_AIE);
939 		} while (mask & RTC_AIE);
940 		spin_unlock_irq(&rtc_lock);
941 	}
942 
943 	pr_debug("%s: resume, ctrl %02x\n",
944 			dev_name(&cmos_rtc.rtc->dev),
945 			tmp);
946 
947 	return 0;
948 }
949 
950 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
951 
952 #else
953 
954 static inline int cmos_poweroff(struct device *dev)
955 {
956 	return -ENOSYS;
957 }
958 
959 #endif
960 
961 /*----------------------------------------------------------------*/
962 
963 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
964  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
965  * probably list them in similar PNPBIOS tables; so PNP is more common.
966  *
967  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
968  * predate even PNPBIOS should set up platform_bus devices.
969  */
970 
971 #ifdef	CONFIG_ACPI
972 
973 #include <linux/acpi.h>
974 
975 static u32 rtc_handler(void *context)
976 {
977 	acpi_clear_event(ACPI_EVENT_RTC);
978 	acpi_disable_event(ACPI_EVENT_RTC, 0);
979 	return ACPI_INTERRUPT_HANDLED;
980 }
981 
982 static inline void rtc_wake_setup(void)
983 {
984 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
985 	/*
986 	 * After the RTC handler is installed, the Fixed_RTC event should
987 	 * be disabled. Only when the RTC alarm is set will it be enabled.
988 	 */
989 	acpi_clear_event(ACPI_EVENT_RTC);
990 	acpi_disable_event(ACPI_EVENT_RTC, 0);
991 }
992 
993 static void rtc_wake_on(struct device *dev)
994 {
995 	acpi_clear_event(ACPI_EVENT_RTC);
996 	acpi_enable_event(ACPI_EVENT_RTC, 0);
997 }
998 
999 static void rtc_wake_off(struct device *dev)
1000 {
1001 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1002 }
1003 
1004 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1005  * its device node and pass extra config data.  This helps its driver use
1006  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1007  * that this board's RTC is wakeup-capable (per ACPI spec).
1008  */
1009 static struct cmos_rtc_board_info acpi_rtc_info;
1010 
1011 static void __devinit
1012 cmos_wake_setup(struct device *dev)
1013 {
1014 	if (acpi_disabled)
1015 		return;
1016 
1017 	rtc_wake_setup();
1018 	acpi_rtc_info.wake_on = rtc_wake_on;
1019 	acpi_rtc_info.wake_off = rtc_wake_off;
1020 
1021 	/* workaround bug in some ACPI tables */
1022 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1023 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1024 			acpi_gbl_FADT.month_alarm);
1025 		acpi_gbl_FADT.month_alarm = 0;
1026 	}
1027 
1028 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1029 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1030 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1031 
1032 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1033 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1034 		dev_info(dev, "RTC can wake from S4\n");
1035 
1036 	dev->platform_data = &acpi_rtc_info;
1037 
1038 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1039 	device_init_wakeup(dev, 1);
1040 }
1041 
1042 #else
1043 
1044 static void __devinit
1045 cmos_wake_setup(struct device *dev)
1046 {
1047 }
1048 
1049 #endif
1050 
1051 #ifdef	CONFIG_PNP
1052 
1053 #include <linux/pnp.h>
1054 
1055 static int __devinit
1056 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1057 {
1058 	cmos_wake_setup(&pnp->dev);
1059 
1060 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1061 		/* Some machines contain a PNP entry for the RTC, but
1062 		 * don't define the IRQ. It should always be safe to
1063 		 * hardcode it in these cases
1064 		 */
1065 		return cmos_do_probe(&pnp->dev,
1066 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1067 	else
1068 		return cmos_do_probe(&pnp->dev,
1069 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1070 				pnp_irq(pnp, 0));
1071 }
1072 
1073 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1074 {
1075 	cmos_do_remove(&pnp->dev);
1076 }
1077 
1078 #ifdef	CONFIG_PM
1079 
1080 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1081 {
1082 	return cmos_suspend(&pnp->dev);
1083 }
1084 
1085 static int cmos_pnp_resume(struct pnp_dev *pnp)
1086 {
1087 	return cmos_resume(&pnp->dev);
1088 }
1089 
1090 #else
1091 #define	cmos_pnp_suspend	NULL
1092 #define	cmos_pnp_resume		NULL
1093 #endif
1094 
1095 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1096 {
1097 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1098 		return;
1099 
1100 	cmos_do_shutdown();
1101 }
1102 
1103 static const struct pnp_device_id rtc_ids[] = {
1104 	{ .id = "PNP0b00", },
1105 	{ .id = "PNP0b01", },
1106 	{ .id = "PNP0b02", },
1107 	{ },
1108 };
1109 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1110 
1111 static struct pnp_driver cmos_pnp_driver = {
1112 	.name		= (char *) driver_name,
1113 	.id_table	= rtc_ids,
1114 	.probe		= cmos_pnp_probe,
1115 	.remove		= __exit_p(cmos_pnp_remove),
1116 	.shutdown	= cmos_pnp_shutdown,
1117 
1118 	/* flag ensures resume() gets called, and stops syslog spam */
1119 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1120 	.suspend	= cmos_pnp_suspend,
1121 	.resume		= cmos_pnp_resume,
1122 };
1123 
1124 #endif	/* CONFIG_PNP */
1125 
1126 /*----------------------------------------------------------------*/
1127 
1128 /* Platform setup should have set up an RTC device, when PNP is
1129  * unavailable ... this could happen even on (older) PCs.
1130  */
1131 
1132 static int __init cmos_platform_probe(struct platform_device *pdev)
1133 {
1134 	cmos_wake_setup(&pdev->dev);
1135 	return cmos_do_probe(&pdev->dev,
1136 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1137 			platform_get_irq(pdev, 0));
1138 }
1139 
1140 static int __exit cmos_platform_remove(struct platform_device *pdev)
1141 {
1142 	cmos_do_remove(&pdev->dev);
1143 	return 0;
1144 }
1145 
1146 static void cmos_platform_shutdown(struct platform_device *pdev)
1147 {
1148 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1149 		return;
1150 
1151 	cmos_do_shutdown();
1152 }
1153 
1154 /* work with hotplug and coldplug */
1155 MODULE_ALIAS("platform:rtc_cmos");
1156 
1157 static struct platform_driver cmos_platform_driver = {
1158 	.remove		= __exit_p(cmos_platform_remove),
1159 	.shutdown	= cmos_platform_shutdown,
1160 	.driver = {
1161 		.name		= (char *) driver_name,
1162 #ifdef CONFIG_PM
1163 		.pm		= &cmos_pm_ops,
1164 #endif
1165 	}
1166 };
1167 
1168 #ifdef CONFIG_PNP
1169 static bool pnp_driver_registered;
1170 #endif
1171 static bool platform_driver_registered;
1172 
1173 static int __init cmos_init(void)
1174 {
1175 	int retval = 0;
1176 
1177 #ifdef	CONFIG_PNP
1178 	retval = pnp_register_driver(&cmos_pnp_driver);
1179 	if (retval == 0)
1180 		pnp_driver_registered = true;
1181 #endif
1182 
1183 	if (!cmos_rtc.dev) {
1184 		retval = platform_driver_probe(&cmos_platform_driver,
1185 					       cmos_platform_probe);
1186 		if (retval == 0)
1187 			platform_driver_registered = true;
1188 	}
1189 
1190 	if (retval == 0)
1191 		return 0;
1192 
1193 #ifdef	CONFIG_PNP
1194 	if (pnp_driver_registered)
1195 		pnp_unregister_driver(&cmos_pnp_driver);
1196 #endif
1197 	return retval;
1198 }
1199 module_init(cmos_init);
1200 
1201 static void __exit cmos_exit(void)
1202 {
1203 #ifdef	CONFIG_PNP
1204 	if (pnp_driver_registered)
1205 		pnp_unregister_driver(&cmos_pnp_driver);
1206 #endif
1207 	if (platform_driver_registered)
1208 		platform_driver_unregister(&cmos_platform_driver);
1209 }
1210 module_exit(cmos_exit);
1211 
1212 
1213 MODULE_AUTHOR("David Brownell");
1214 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1215 MODULE_LICENSE("GPL");
1216