xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision dbdee8456aa8dee23678853be612e30aa8d5db86)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8 
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45 
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48 
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57 
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60 
61 static inline int cmos_use_acpi_alarm(void)
62 {
63 	return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66 
67 static inline int cmos_use_acpi_alarm(void)
68 {
69 	return 0;
70 }
71 #endif
72 
73 struct cmos_rtc {
74 	struct rtc_device	*rtc;
75 	struct device		*dev;
76 	int			irq;
77 	struct resource		*iomem;
78 	time64_t		alarm_expires;
79 
80 	void			(*wake_on)(struct device *);
81 	void			(*wake_off)(struct device *);
82 
83 	u8			enabled_wake;
84 	u8			suspend_ctrl;
85 
86 	/* newer hardware extends the original register set */
87 	u8			day_alrm;
88 	u8			mon_alrm;
89 	u8			century;
90 
91 	struct rtc_wkalrm	saved_wkalrm;
92 };
93 
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)		((n) > 0)
96 
97 static const char driver_name[] = "rtc_cmos";
98 
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
104 
105 static inline int is_intr(u8 rtc_intr)
106 {
107 	if (!(rtc_intr & RTC_IRQF))
108 		return 0;
109 	return rtc_intr & RTC_IRQMASK;
110 }
111 
112 /*----------------------------------------------------------------*/
113 
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127 
128 static inline int is_hpet_enabled(void)
129 {
130 	return 0;
131 }
132 
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 	return 0;
136 }
137 
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 	return 0;
141 }
142 
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 	return 0;
147 }
148 
149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 	return 0;
152 }
153 
154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 	return 0;
157 }
158 
159 static inline int hpet_rtc_timer_init(void)
160 {
161 	return 0;
162 }
163 
164 extern irq_handler_t hpet_rtc_interrupt;
165 
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 	return 0;
169 }
170 
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 	return 0;
174 }
175 
176 #endif
177 
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
180 {
181 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183 
184 /*----------------------------------------------------------------*/
185 
186 #ifdef RTC_PORT
187 
188 /* Most newer x86 systems have two register banks, the first used
189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
190  * own rtc_lock ... and we won't worry about access during NMI.
191  */
192 #define can_bank2	true
193 
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 	outb(addr, RTC_PORT(2));
197 	return inb(RTC_PORT(3));
198 }
199 
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 	outb(addr, RTC_PORT(2));
203 	outb(val, RTC_PORT(3));
204 }
205 
206 #else
207 
208 #define can_bank2	false
209 
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 	return 0;
213 }
214 
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218 
219 #endif
220 
221 /*----------------------------------------------------------------*/
222 
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225 	int ret;
226 
227 	/*
228 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 	 * which tells the caller that this RTC value is unusable.
230 	 */
231 	if (!pm_trace_rtc_valid())
232 		return -EIO;
233 
234 	ret = mc146818_get_time(t, 1000);
235 	if (ret < 0) {
236 		dev_err_ratelimited(dev, "unable to read current time\n");
237 		return ret;
238 	}
239 
240 	return 0;
241 }
242 
243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
244 {
245 	/* NOTE: this ignores the issue whereby updating the seconds
246 	 * takes effect exactly 500ms after we write the register.
247 	 * (Also queueing and other delays before we get this far.)
248 	 */
249 	return mc146818_set_time(t);
250 }
251 
252 struct cmos_read_alarm_callback_param {
253 	struct cmos_rtc *cmos;
254 	struct rtc_time *time;
255 	unsigned char	rtc_control;
256 };
257 
258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259 				     void *param_in)
260 {
261 	struct cmos_read_alarm_callback_param *p =
262 		(struct cmos_read_alarm_callback_param *)param_in;
263 	struct rtc_time *time = p->time;
264 
265 	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268 
269 	if (p->cmos->day_alrm) {
270 		/* ignore upper bits on readback per ACPI spec */
271 		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272 		if (!time->tm_mday)
273 			time->tm_mday = -1;
274 
275 		if (p->cmos->mon_alrm) {
276 			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277 			if (!time->tm_mon)
278 				time->tm_mon = -1;
279 		}
280 	}
281 
282 	p->rtc_control = CMOS_READ(RTC_CONTROL);
283 }
284 
285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286 {
287 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
288 	struct cmos_read_alarm_callback_param p = {
289 		.cmos = cmos,
290 		.time = &t->time,
291 	};
292 
293 	/* This not only a rtc_op, but also called directly */
294 	if (!is_valid_irq(cmos->irq))
295 		return -ETIMEDOUT;
296 
297 	/* Basic alarms only support hour, minute, and seconds fields.
298 	 * Some also support day and month, for alarms up to a year in
299 	 * the future.
300 	 */
301 
302 	/* Some Intel chipsets disconnect the alarm registers when the clock
303 	 * update is in progress - during this time reads return bogus values
304 	 * and writes may fail silently. See for example "7th Generation Intel®
305 	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306 	 * 27.7.1
307 	 *
308 	 * Use the mc146818_avoid_UIP() function to avoid this.
309 	 */
310 	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
311 		return -EIO;
312 
313 	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 		if (((unsigned)t->time.tm_sec) < 0x60)
315 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
316 		else
317 			t->time.tm_sec = -1;
318 		if (((unsigned)t->time.tm_min) < 0x60)
319 			t->time.tm_min = bcd2bin(t->time.tm_min);
320 		else
321 			t->time.tm_min = -1;
322 		if (((unsigned)t->time.tm_hour) < 0x24)
323 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
324 		else
325 			t->time.tm_hour = -1;
326 
327 		if (cmos->day_alrm) {
328 			if (((unsigned)t->time.tm_mday) <= 0x31)
329 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
330 			else
331 				t->time.tm_mday = -1;
332 
333 			if (cmos->mon_alrm) {
334 				if (((unsigned)t->time.tm_mon) <= 0x12)
335 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336 				else
337 					t->time.tm_mon = -1;
338 			}
339 		}
340 	}
341 
342 	t->enabled = !!(p.rtc_control & RTC_AIE);
343 	t->pending = 0;
344 
345 	return 0;
346 }
347 
348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349 {
350 	unsigned char	rtc_intr;
351 
352 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 	 * allegedly some older rtcs need that to handle irqs properly
354 	 */
355 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356 
357 	if (use_hpet_alarm())
358 		return;
359 
360 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 	if (is_intr(rtc_intr))
362 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
363 }
364 
365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367 	unsigned char	rtc_control;
368 
369 	/* flush any pending IRQ status, notably for update irqs,
370 	 * before we enable new IRQs
371 	 */
372 	rtc_control = CMOS_READ(RTC_CONTROL);
373 	cmos_checkintr(cmos, rtc_control);
374 
375 	rtc_control |= mask;
376 	CMOS_WRITE(rtc_control, RTC_CONTROL);
377 	if (use_hpet_alarm())
378 		hpet_set_rtc_irq_bit(mask);
379 
380 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381 		if (cmos->wake_on)
382 			cmos->wake_on(cmos->dev);
383 	}
384 
385 	cmos_checkintr(cmos, rtc_control);
386 }
387 
388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389 {
390 	unsigned char	rtc_control;
391 
392 	rtc_control = CMOS_READ(RTC_CONTROL);
393 	rtc_control &= ~mask;
394 	CMOS_WRITE(rtc_control, RTC_CONTROL);
395 	if (use_hpet_alarm())
396 		hpet_mask_rtc_irq_bit(mask);
397 
398 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399 		if (cmos->wake_off)
400 			cmos->wake_off(cmos->dev);
401 	}
402 
403 	cmos_checkintr(cmos, rtc_control);
404 }
405 
406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407 {
408 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 	struct rtc_time now;
410 
411 	cmos_read_time(dev, &now);
412 
413 	if (!cmos->day_alrm) {
414 		time64_t t_max_date;
415 		time64_t t_alrm;
416 
417 		t_max_date = rtc_tm_to_time64(&now);
418 		t_max_date += 24 * 60 * 60 - 1;
419 		t_alrm = rtc_tm_to_time64(&t->time);
420 		if (t_alrm > t_max_date) {
421 			dev_err(dev,
422 				"Alarms can be up to one day in the future\n");
423 			return -EINVAL;
424 		}
425 	} else if (!cmos->mon_alrm) {
426 		struct rtc_time max_date = now;
427 		time64_t t_max_date;
428 		time64_t t_alrm;
429 		int max_mday;
430 
431 		if (max_date.tm_mon == 11) {
432 			max_date.tm_mon = 0;
433 			max_date.tm_year += 1;
434 		} else {
435 			max_date.tm_mon += 1;
436 		}
437 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438 		if (max_date.tm_mday > max_mday)
439 			max_date.tm_mday = max_mday;
440 
441 		t_max_date = rtc_tm_to_time64(&max_date);
442 		t_max_date -= 1;
443 		t_alrm = rtc_tm_to_time64(&t->time);
444 		if (t_alrm > t_max_date) {
445 			dev_err(dev,
446 				"Alarms can be up to one month in the future\n");
447 			return -EINVAL;
448 		}
449 	} else {
450 		struct rtc_time max_date = now;
451 		time64_t t_max_date;
452 		time64_t t_alrm;
453 		int max_mday;
454 
455 		max_date.tm_year += 1;
456 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457 		if (max_date.tm_mday > max_mday)
458 			max_date.tm_mday = max_mday;
459 
460 		t_max_date = rtc_tm_to_time64(&max_date);
461 		t_max_date -= 1;
462 		t_alrm = rtc_tm_to_time64(&t->time);
463 		if (t_alrm > t_max_date) {
464 			dev_err(dev,
465 				"Alarms can be up to one year in the future\n");
466 			return -EINVAL;
467 		}
468 	}
469 
470 	return 0;
471 }
472 
473 struct cmos_set_alarm_callback_param {
474 	struct cmos_rtc *cmos;
475 	unsigned char mon, mday, hrs, min, sec;
476 	struct rtc_wkalrm *t;
477 };
478 
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
480  *	 once
481  */
482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483 				    void *param_in)
484 {
485 	struct cmos_set_alarm_callback_param *p =
486 		(struct cmos_set_alarm_callback_param *)param_in;
487 
488 	/* next rtc irq must not be from previous alarm setting */
489 	cmos_irq_disable(p->cmos, RTC_AIE);
490 
491 	/* update alarm */
492 	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495 
496 	/* the system may support an "enhanced" alarm */
497 	if (p->cmos->day_alrm) {
498 		CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 		if (p->cmos->mon_alrm)
500 			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501 	}
502 
503 	if (use_hpet_alarm()) {
504 		/*
505 		 * FIXME the HPET alarm glue currently ignores day_alrm
506 		 * and mon_alrm ...
507 		 */
508 		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509 				    p->t->time.tm_sec);
510 	}
511 
512 	if (p->t->enabled)
513 		cmos_irq_enable(p->cmos, RTC_AIE);
514 }
515 
516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517 {
518 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
519 	struct cmos_set_alarm_callback_param p = {
520 		.cmos = cmos,
521 		.t = t
522 	};
523 	unsigned char rtc_control;
524 	int ret;
525 
526 	/* This not only a rtc_op, but also called directly */
527 	if (!is_valid_irq(cmos->irq))
528 		return -EIO;
529 
530 	ret = cmos_validate_alarm(dev, t);
531 	if (ret < 0)
532 		return ret;
533 
534 	p.mon = t->time.tm_mon + 1;
535 	p.mday = t->time.tm_mday;
536 	p.hrs = t->time.tm_hour;
537 	p.min = t->time.tm_min;
538 	p.sec = t->time.tm_sec;
539 
540 	spin_lock_irq(&rtc_lock);
541 	rtc_control = CMOS_READ(RTC_CONTROL);
542 	spin_unlock_irq(&rtc_lock);
543 
544 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 		/* Writing 0xff means "don't care" or "match all".  */
546 		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551 	}
552 
553 	/*
554 	 * Some Intel chipsets disconnect the alarm registers when the clock
555 	 * update is in progress - during this time writes fail silently.
556 	 *
557 	 * Use mc146818_avoid_UIP() to avoid this.
558 	 */
559 	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
560 		return -ETIMEDOUT;
561 
562 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563 
564 	return 0;
565 }
566 
567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568 {
569 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
570 	unsigned long	flags;
571 
572 	spin_lock_irqsave(&rtc_lock, flags);
573 
574 	if (enabled)
575 		cmos_irq_enable(cmos, RTC_AIE);
576 	else
577 		cmos_irq_disable(cmos, RTC_AIE);
578 
579 	spin_unlock_irqrestore(&rtc_lock, flags);
580 	return 0;
581 }
582 
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584 
585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
586 {
587 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
588 	unsigned char	rtc_control, valid;
589 
590 	spin_lock_irq(&rtc_lock);
591 	rtc_control = CMOS_READ(RTC_CONTROL);
592 	valid = CMOS_READ(RTC_VALID);
593 	spin_unlock_irq(&rtc_lock);
594 
595 	/* NOTE:  at least ICH6 reports battery status using a different
596 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
597 	 */
598 	seq_printf(seq,
599 		   "periodic_IRQ\t: %s\n"
600 		   "update_IRQ\t: %s\n"
601 		   "HPET_emulated\t: %s\n"
602 		   // "square_wave\t: %s\n"
603 		   "BCD\t\t: %s\n"
604 		   "DST_enable\t: %s\n"
605 		   "periodic_freq\t: %d\n"
606 		   "batt_status\t: %s\n",
607 		   (rtc_control & RTC_PIE) ? "yes" : "no",
608 		   (rtc_control & RTC_UIE) ? "yes" : "no",
609 		   use_hpet_alarm() ? "yes" : "no",
610 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
613 		   cmos->rtc->irq_freq,
614 		   (valid & RTC_VRT) ? "okay" : "dead");
615 
616 	return 0;
617 }
618 
619 #else
620 #define	cmos_procfs	NULL
621 #endif
622 
623 static const struct rtc_class_ops cmos_rtc_ops = {
624 	.read_time		= cmos_read_time,
625 	.set_time		= cmos_set_time,
626 	.read_alarm		= cmos_read_alarm,
627 	.set_alarm		= cmos_set_alarm,
628 	.proc			= cmos_procfs,
629 	.alarm_irq_enable	= cmos_alarm_irq_enable,
630 };
631 
632 /*----------------------------------------------------------------*/
633 
634 /*
635  * All these chips have at least 64 bytes of address space, shared by
636  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
637  * by boot firmware.  Modern chips have 128 or 256 bytes.
638  */
639 
640 #define NVRAM_OFFSET	(RTC_REG_D + 1)
641 
642 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
643 			   size_t count)
644 {
645 	unsigned char *buf = val;
646 
647 	off += NVRAM_OFFSET;
648 	for (; count; count--, off++, buf++) {
649 		guard(spinlock_irq)(&rtc_lock);
650 		if (off < 128)
651 			*buf = CMOS_READ(off);
652 		else if (can_bank2)
653 			*buf = cmos_read_bank2(off);
654 		else
655 			return -EIO;
656 	}
657 
658 	return 0;
659 }
660 
661 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
662 			    size_t count)
663 {
664 	struct cmos_rtc	*cmos = priv;
665 	unsigned char	*buf = val;
666 
667 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
668 	 * checksum on part of the NVRAM data.  That's currently ignored
669 	 * here.  If userspace is smart enough to know what fields of
670 	 * NVRAM to update, updating checksums is also part of its job.
671 	 */
672 	off += NVRAM_OFFSET;
673 	for (; count; count--, off++, buf++) {
674 		/* don't trash RTC registers */
675 		if (off == cmos->day_alrm
676 				|| off == cmos->mon_alrm
677 				|| off == cmos->century)
678 			continue;
679 
680 		guard(spinlock_irq)(&rtc_lock);
681 		if (off < 128)
682 			CMOS_WRITE(*buf, off);
683 		else if (can_bank2)
684 			cmos_write_bank2(*buf, off);
685 		else
686 			return -EIO;
687 	}
688 
689 	return 0;
690 }
691 
692 /*----------------------------------------------------------------*/
693 
694 static struct cmos_rtc	cmos_rtc;
695 
696 static irqreturn_t cmos_interrupt(int irq, void *p)
697 {
698 	u8		irqstat;
699 	u8		rtc_control;
700 
701 	spin_lock(&rtc_lock);
702 
703 	/* When the HPET interrupt handler calls us, the interrupt
704 	 * status is passed as arg1 instead of the irq number.  But
705 	 * always clear irq status, even when HPET is in the way.
706 	 *
707 	 * Note that HPET and RTC are almost certainly out of phase,
708 	 * giving different IRQ status ...
709 	 */
710 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
711 	rtc_control = CMOS_READ(RTC_CONTROL);
712 	if (use_hpet_alarm())
713 		irqstat = (unsigned long)irq & 0xF0;
714 
715 	/* If we were suspended, RTC_CONTROL may not be accurate since the
716 	 * bios may have cleared it.
717 	 */
718 	if (!cmos_rtc.suspend_ctrl)
719 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
720 	else
721 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
722 
723 	/* All Linux RTC alarms should be treated as if they were oneshot.
724 	 * Similar code may be needed in system wakeup paths, in case the
725 	 * alarm woke the system.
726 	 */
727 	if (irqstat & RTC_AIE) {
728 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
729 		rtc_control &= ~RTC_AIE;
730 		CMOS_WRITE(rtc_control, RTC_CONTROL);
731 		if (use_hpet_alarm())
732 			hpet_mask_rtc_irq_bit(RTC_AIE);
733 		CMOS_READ(RTC_INTR_FLAGS);
734 	}
735 	spin_unlock(&rtc_lock);
736 
737 	if (is_intr(irqstat)) {
738 		rtc_update_irq(p, 1, irqstat);
739 		return IRQ_HANDLED;
740 	} else
741 		return IRQ_NONE;
742 }
743 
744 #ifdef	CONFIG_ACPI
745 
746 #include <linux/acpi.h>
747 
748 static u32 rtc_handler(void *context)
749 {
750 	struct device *dev = context;
751 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
752 	unsigned char rtc_control = 0;
753 	unsigned char rtc_intr;
754 	unsigned long flags;
755 
756 
757 	/*
758 	 * Always update rtc irq when ACPI is used as RTC Alarm.
759 	 * Or else, ACPI SCI is enabled during suspend/resume only,
760 	 * update rtc irq in that case.
761 	 */
762 	if (cmos_use_acpi_alarm())
763 		cmos_interrupt(0, (void *)cmos->rtc);
764 	else {
765 		/* Fix me: can we use cmos_interrupt() here as well? */
766 		spin_lock_irqsave(&rtc_lock, flags);
767 		if (cmos_rtc.suspend_ctrl)
768 			rtc_control = CMOS_READ(RTC_CONTROL);
769 		if (rtc_control & RTC_AIE) {
770 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
771 			CMOS_WRITE(rtc_control, RTC_CONTROL);
772 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
773 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
774 		}
775 		spin_unlock_irqrestore(&rtc_lock, flags);
776 	}
777 
778 	pm_wakeup_hard_event(dev);
779 	acpi_clear_event(ACPI_EVENT_RTC);
780 	acpi_disable_event(ACPI_EVENT_RTC, 0);
781 	return ACPI_INTERRUPT_HANDLED;
782 }
783 
784 static void acpi_rtc_event_setup(struct device *dev)
785 {
786 	if (acpi_disabled)
787 		return;
788 
789 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
790 	/*
791 	 * After the RTC handler is installed, the Fixed_RTC event should
792 	 * be disabled. Only when the RTC alarm is set will it be enabled.
793 	 */
794 	acpi_clear_event(ACPI_EVENT_RTC);
795 	acpi_disable_event(ACPI_EVENT_RTC, 0);
796 }
797 
798 static void acpi_rtc_event_cleanup(void)
799 {
800 	if (acpi_disabled)
801 		return;
802 
803 	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
804 }
805 
806 static void rtc_wake_on(struct device *dev)
807 {
808 	acpi_clear_event(ACPI_EVENT_RTC);
809 	acpi_enable_event(ACPI_EVENT_RTC, 0);
810 }
811 
812 static void rtc_wake_off(struct device *dev)
813 {
814 	acpi_disable_event(ACPI_EVENT_RTC, 0);
815 }
816 
817 #ifdef CONFIG_X86
818 static void use_acpi_alarm_quirks(void)
819 {
820 	switch (boot_cpu_data.x86_vendor) {
821 	case X86_VENDOR_INTEL:
822 		if (dmi_get_bios_year() < 2015)
823 			return;
824 		break;
825 	case X86_VENDOR_AMD:
826 	case X86_VENDOR_HYGON:
827 		if (dmi_get_bios_year() < 2021)
828 			return;
829 		break;
830 	default:
831 		return;
832 	}
833 	if (!is_hpet_enabled())
834 		return;
835 
836 	use_acpi_alarm = true;
837 }
838 #else
839 static inline void use_acpi_alarm_quirks(void) { }
840 #endif
841 
842 static void acpi_cmos_wake_setup(struct device *dev)
843 {
844 	if (acpi_disabled)
845 		return;
846 
847 	use_acpi_alarm_quirks();
848 
849 	cmos_rtc.wake_on = rtc_wake_on;
850 	cmos_rtc.wake_off = rtc_wake_off;
851 
852 	/* ACPI tables bug workaround. */
853 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
854 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
855 			acpi_gbl_FADT.month_alarm);
856 		acpi_gbl_FADT.month_alarm = 0;
857 	}
858 
859 	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
860 	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
861 	cmos_rtc.century = acpi_gbl_FADT.century;
862 
863 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
864 		dev_info(dev, "RTC can wake from S4\n");
865 
866 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
867 	device_init_wakeup(dev, 1);
868 }
869 
870 static void cmos_check_acpi_rtc_status(struct device *dev,
871 					      unsigned char *rtc_control)
872 {
873 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
874 	acpi_event_status rtc_status;
875 	acpi_status status;
876 
877 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
878 		return;
879 
880 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
881 	if (ACPI_FAILURE(status)) {
882 		dev_err(dev, "Could not get RTC status\n");
883 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
884 		unsigned char mask;
885 		*rtc_control &= ~RTC_AIE;
886 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
887 		mask = CMOS_READ(RTC_INTR_FLAGS);
888 		rtc_update_irq(cmos->rtc, 1, mask);
889 	}
890 }
891 
892 #else /* !CONFIG_ACPI */
893 
894 static inline void acpi_rtc_event_setup(struct device *dev)
895 {
896 }
897 
898 static inline void acpi_rtc_event_cleanup(void)
899 {
900 }
901 
902 static inline void acpi_cmos_wake_setup(struct device *dev)
903 {
904 }
905 
906 static inline void cmos_check_acpi_rtc_status(struct device *dev,
907 					      unsigned char *rtc_control)
908 {
909 }
910 #endif /* CONFIG_ACPI */
911 
912 #ifdef	CONFIG_PNP
913 #define	INITSECTION
914 
915 #else
916 #define	INITSECTION	__init
917 #endif
918 
919 #define SECS_PER_DAY	(24 * 60 * 60)
920 #define SECS_PER_MONTH	(28 * SECS_PER_DAY)
921 #define SECS_PER_YEAR	(365 * SECS_PER_DAY)
922 
923 static int INITSECTION
924 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
925 {
926 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
927 	int				retval = 0;
928 	unsigned char			rtc_control;
929 	unsigned			address_space;
930 	u32				flags = 0;
931 	struct nvmem_config nvmem_cfg = {
932 		.name = "cmos_nvram",
933 		.word_size = 1,
934 		.stride = 1,
935 		.reg_read = cmos_nvram_read,
936 		.reg_write = cmos_nvram_write,
937 		.priv = &cmos_rtc,
938 	};
939 
940 	/* there can be only one ... */
941 	if (cmos_rtc.dev)
942 		return -EBUSY;
943 
944 	if (!ports)
945 		return -ENODEV;
946 
947 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
948 	 *
949 	 * REVISIT non-x86 systems may instead use memory space resources
950 	 * (needing ioremap etc), not i/o space resources like this ...
951 	 */
952 	if (RTC_IOMAPPED)
953 		ports = request_region(ports->start, resource_size(ports),
954 				       driver_name);
955 	else
956 		ports = request_mem_region(ports->start, resource_size(ports),
957 					   driver_name);
958 	if (!ports) {
959 		dev_dbg(dev, "i/o registers already in use\n");
960 		return -EBUSY;
961 	}
962 
963 	cmos_rtc.irq = rtc_irq;
964 	cmos_rtc.iomem = ports;
965 
966 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
967 	 * driver did, but don't reject unknown configs.   Old hardware
968 	 * won't address 128 bytes.  Newer chips have multiple banks,
969 	 * though they may not be listed in one I/O resource.
970 	 */
971 #if	defined(CONFIG_ATARI)
972 	address_space = 64;
973 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
974 			|| defined(__sparc__) || defined(__mips__) \
975 			|| defined(__powerpc__)
976 	address_space = 128;
977 #else
978 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
979 	address_space = 128;
980 #endif
981 	if (can_bank2 && ports->end > (ports->start + 1))
982 		address_space = 256;
983 
984 	/* For ACPI systems extension info comes from the FADT.  On others,
985 	 * board specific setup provides it as appropriate.  Systems where
986 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
987 	 * some almost-clones) can provide hooks to make that behave.
988 	 *
989 	 * Note that ACPI doesn't preclude putting these registers into
990 	 * "extended" areas of the chip, including some that we won't yet
991 	 * expect CMOS_READ and friends to handle.
992 	 */
993 	if (info) {
994 		if (info->flags)
995 			flags = info->flags;
996 		if (info->address_space)
997 			address_space = info->address_space;
998 
999 		cmos_rtc.day_alrm = info->rtc_day_alarm;
1000 		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1001 		cmos_rtc.century = info->rtc_century;
1002 
1003 		if (info->wake_on && info->wake_off) {
1004 			cmos_rtc.wake_on = info->wake_on;
1005 			cmos_rtc.wake_off = info->wake_off;
1006 		}
1007 	} else {
1008 		acpi_cmos_wake_setup(dev);
1009 	}
1010 
1011 	if (cmos_rtc.day_alrm >= 128)
1012 		cmos_rtc.day_alrm = 0;
1013 
1014 	if (cmos_rtc.mon_alrm >= 128)
1015 		cmos_rtc.mon_alrm = 0;
1016 
1017 	if (cmos_rtc.century >= 128)
1018 		cmos_rtc.century = 0;
1019 
1020 	cmos_rtc.dev = dev;
1021 	dev_set_drvdata(dev, &cmos_rtc);
1022 
1023 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1024 	if (IS_ERR(cmos_rtc.rtc)) {
1025 		retval = PTR_ERR(cmos_rtc.rtc);
1026 		goto cleanup0;
1027 	}
1028 
1029 	if (cmos_rtc.mon_alrm)
1030 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1031 	else if (cmos_rtc.day_alrm)
1032 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1033 	else
1034 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1035 
1036 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1037 
1038 	if (!mc146818_does_rtc_work()) {
1039 		dev_warn(dev, "broken or not accessible\n");
1040 		retval = -ENXIO;
1041 		goto cleanup1;
1042 	}
1043 
1044 	spin_lock_irq(&rtc_lock);
1045 
1046 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1047 		/* force periodic irq to CMOS reset default of 1024Hz;
1048 		 *
1049 		 * REVISIT it's been reported that at least one x86_64 ALI
1050 		 * mobo doesn't use 32KHz here ... for portability we might
1051 		 * need to do something about other clock frequencies.
1052 		 */
1053 		cmos_rtc.rtc->irq_freq = 1024;
1054 		if (use_hpet_alarm())
1055 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1056 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1057 	}
1058 
1059 	/* disable irqs */
1060 	if (is_valid_irq(rtc_irq))
1061 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1062 
1063 	rtc_control = CMOS_READ(RTC_CONTROL);
1064 
1065 	spin_unlock_irq(&rtc_lock);
1066 
1067 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1068 		dev_warn(dev, "only 24-hr supported\n");
1069 		retval = -ENXIO;
1070 		goto cleanup1;
1071 	}
1072 
1073 	if (use_hpet_alarm())
1074 		hpet_rtc_timer_init();
1075 
1076 	if (is_valid_irq(rtc_irq)) {
1077 		irq_handler_t rtc_cmos_int_handler;
1078 
1079 		if (use_hpet_alarm()) {
1080 			rtc_cmos_int_handler = hpet_rtc_interrupt;
1081 			retval = hpet_register_irq_handler(cmos_interrupt);
1082 			if (retval) {
1083 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1084 				dev_warn(dev, "hpet_register_irq_handler "
1085 						" failed in rtc_init().");
1086 				goto cleanup1;
1087 			}
1088 		} else
1089 			rtc_cmos_int_handler = cmos_interrupt;
1090 
1091 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1092 				0, dev_name(&cmos_rtc.rtc->dev),
1093 				cmos_rtc.rtc);
1094 		if (retval < 0) {
1095 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1096 			goto cleanup1;
1097 		}
1098 	} else {
1099 		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1100 	}
1101 
1102 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
1103 
1104 	retval = devm_rtc_register_device(cmos_rtc.rtc);
1105 	if (retval)
1106 		goto cleanup2;
1107 
1108 	/* Set the sync offset for the periodic 11min update correct */
1109 	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1110 
1111 	/* export at least the first block of NVRAM */
1112 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1113 	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1114 
1115 	/*
1116 	 * Everything has gone well so far, so by default register a handler for
1117 	 * the ACPI RTC fixed event.
1118 	 */
1119 	if (!info)
1120 		acpi_rtc_event_setup(dev);
1121 
1122 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1123 		 !is_valid_irq(rtc_irq) ? "no alarms" :
1124 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1125 		 cmos_rtc.day_alrm ? "alarms up to one month" :
1126 		 "alarms up to one day",
1127 		 cmos_rtc.century ? ", y3k" : "",
1128 		 nvmem_cfg.size,
1129 		 use_hpet_alarm() ? ", hpet irqs" : "");
1130 
1131 	return 0;
1132 
1133 cleanup2:
1134 	if (is_valid_irq(rtc_irq))
1135 		free_irq(rtc_irq, cmos_rtc.rtc);
1136 cleanup1:
1137 	cmos_rtc.dev = NULL;
1138 cleanup0:
1139 	if (RTC_IOMAPPED)
1140 		release_region(ports->start, resource_size(ports));
1141 	else
1142 		release_mem_region(ports->start, resource_size(ports));
1143 	return retval;
1144 }
1145 
1146 static void cmos_do_shutdown(int rtc_irq)
1147 {
1148 	spin_lock_irq(&rtc_lock);
1149 	if (is_valid_irq(rtc_irq))
1150 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1151 	spin_unlock_irq(&rtc_lock);
1152 }
1153 
1154 static void cmos_do_remove(struct device *dev)
1155 {
1156 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1157 	struct resource *ports;
1158 
1159 	cmos_do_shutdown(cmos->irq);
1160 
1161 	if (is_valid_irq(cmos->irq)) {
1162 		free_irq(cmos->irq, cmos->rtc);
1163 		if (use_hpet_alarm())
1164 			hpet_unregister_irq_handler(cmos_interrupt);
1165 	}
1166 
1167 	if (!dev_get_platdata(dev))
1168 		acpi_rtc_event_cleanup();
1169 
1170 	cmos->rtc = NULL;
1171 
1172 	ports = cmos->iomem;
1173 	if (RTC_IOMAPPED)
1174 		release_region(ports->start, resource_size(ports));
1175 	else
1176 		release_mem_region(ports->start, resource_size(ports));
1177 	cmos->iomem = NULL;
1178 
1179 	cmos->dev = NULL;
1180 }
1181 
1182 static int cmos_aie_poweroff(struct device *dev)
1183 {
1184 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1185 	struct rtc_time now;
1186 	time64_t t_now;
1187 	int retval = 0;
1188 	unsigned char rtc_control;
1189 
1190 	if (!cmos->alarm_expires)
1191 		return -EINVAL;
1192 
1193 	spin_lock_irq(&rtc_lock);
1194 	rtc_control = CMOS_READ(RTC_CONTROL);
1195 	spin_unlock_irq(&rtc_lock);
1196 
1197 	/* We only care about the situation where AIE is disabled. */
1198 	if (rtc_control & RTC_AIE)
1199 		return -EBUSY;
1200 
1201 	cmos_read_time(dev, &now);
1202 	t_now = rtc_tm_to_time64(&now);
1203 
1204 	/*
1205 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1206 	 * automatically right after shutdown on some buggy boxes.
1207 	 * This automatic rebooting issue won't happen when the alarm
1208 	 * time is larger than now+1 seconds.
1209 	 *
1210 	 * If the alarm time is equal to now+1 seconds, the issue can be
1211 	 * prevented by cancelling the alarm.
1212 	 */
1213 	if (cmos->alarm_expires == t_now + 1) {
1214 		struct rtc_wkalrm alarm;
1215 
1216 		/* Cancel the AIE timer by configuring the past time. */
1217 		rtc_time64_to_tm(t_now - 1, &alarm.time);
1218 		alarm.enabled = 0;
1219 		retval = cmos_set_alarm(dev, &alarm);
1220 	} else if (cmos->alarm_expires > t_now + 1) {
1221 		retval = -EBUSY;
1222 	}
1223 
1224 	return retval;
1225 }
1226 
1227 static int cmos_suspend(struct device *dev)
1228 {
1229 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1230 	unsigned char	tmp;
1231 
1232 	/* only the alarm might be a wakeup event source */
1233 	spin_lock_irq(&rtc_lock);
1234 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1235 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1236 		unsigned char	mask;
1237 
1238 		if (device_may_wakeup(dev))
1239 			mask = RTC_IRQMASK & ~RTC_AIE;
1240 		else
1241 			mask = RTC_IRQMASK;
1242 		tmp &= ~mask;
1243 		CMOS_WRITE(tmp, RTC_CONTROL);
1244 		if (use_hpet_alarm())
1245 			hpet_mask_rtc_irq_bit(mask);
1246 		cmos_checkintr(cmos, tmp);
1247 	}
1248 	spin_unlock_irq(&rtc_lock);
1249 
1250 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1251 		cmos->enabled_wake = 1;
1252 		if (cmos->wake_on)
1253 			cmos->wake_on(dev);
1254 		else
1255 			enable_irq_wake(cmos->irq);
1256 	}
1257 
1258 	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1259 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1260 
1261 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1262 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1263 			tmp);
1264 
1265 	return 0;
1266 }
1267 
1268 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1269  * after a detour through G3 "mechanical off", although the ACPI spec
1270  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1271  * distinctions between S4 and S5 are pointless.  So when the hardware
1272  * allows, don't draw that distinction.
1273  */
1274 static inline int cmos_poweroff(struct device *dev)
1275 {
1276 	if (!IS_ENABLED(CONFIG_PM))
1277 		return -ENOSYS;
1278 
1279 	return cmos_suspend(dev);
1280 }
1281 
1282 static void cmos_check_wkalrm(struct device *dev)
1283 {
1284 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1285 	struct rtc_wkalrm current_alarm;
1286 	time64_t t_now;
1287 	time64_t t_current_expires;
1288 	time64_t t_saved_expires;
1289 	struct rtc_time now;
1290 
1291 	/* Check if we have RTC Alarm armed */
1292 	if (!(cmos->suspend_ctrl & RTC_AIE))
1293 		return;
1294 
1295 	cmos_read_time(dev, &now);
1296 	t_now = rtc_tm_to_time64(&now);
1297 
1298 	/*
1299 	 * ACPI RTC wake event is cleared after resume from STR,
1300 	 * ACK the rtc irq here
1301 	 */
1302 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1303 		local_irq_disable();
1304 		cmos_interrupt(0, (void *)cmos->rtc);
1305 		local_irq_enable();
1306 		return;
1307 	}
1308 
1309 	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1310 	cmos_read_alarm(dev, &current_alarm);
1311 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1312 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1313 	if (t_current_expires != t_saved_expires ||
1314 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1315 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1316 	}
1317 }
1318 
1319 static int __maybe_unused cmos_resume(struct device *dev)
1320 {
1321 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1322 	unsigned char tmp;
1323 
1324 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1325 		if (cmos->wake_off)
1326 			cmos->wake_off(dev);
1327 		else
1328 			disable_irq_wake(cmos->irq);
1329 		cmos->enabled_wake = 0;
1330 	}
1331 
1332 	/* The BIOS might have changed the alarm, restore it */
1333 	cmos_check_wkalrm(dev);
1334 
1335 	spin_lock_irq(&rtc_lock);
1336 	tmp = cmos->suspend_ctrl;
1337 	cmos->suspend_ctrl = 0;
1338 	/* re-enable any irqs previously active */
1339 	if (tmp & RTC_IRQMASK) {
1340 		unsigned char	mask;
1341 
1342 		if (device_may_wakeup(dev) && use_hpet_alarm())
1343 			hpet_rtc_timer_init();
1344 
1345 		do {
1346 			CMOS_WRITE(tmp, RTC_CONTROL);
1347 			if (use_hpet_alarm())
1348 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1349 
1350 			mask = CMOS_READ(RTC_INTR_FLAGS);
1351 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1352 			if (!use_hpet_alarm() || !is_intr(mask))
1353 				break;
1354 
1355 			/* force one-shot behavior if HPET blocked
1356 			 * the wake alarm's irq
1357 			 */
1358 			rtc_update_irq(cmos->rtc, 1, mask);
1359 			tmp &= ~RTC_AIE;
1360 			hpet_mask_rtc_irq_bit(RTC_AIE);
1361 		} while (mask & RTC_AIE);
1362 
1363 		if (tmp & RTC_AIE)
1364 			cmos_check_acpi_rtc_status(dev, &tmp);
1365 	}
1366 	spin_unlock_irq(&rtc_lock);
1367 
1368 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1369 
1370 	return 0;
1371 }
1372 
1373 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1374 
1375 /*----------------------------------------------------------------*/
1376 
1377 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1378  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1379  * probably list them in similar PNPBIOS tables; so PNP is more common.
1380  *
1381  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1382  * predate even PNPBIOS should set up platform_bus devices.
1383  */
1384 
1385 #ifdef	CONFIG_PNP
1386 
1387 #include <linux/pnp.h>
1388 
1389 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1390 {
1391 	int irq;
1392 
1393 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1394 		irq = 0;
1395 #ifdef CONFIG_X86
1396 		/* Some machines contain a PNP entry for the RTC, but
1397 		 * don't define the IRQ. It should always be safe to
1398 		 * hardcode it on systems with a legacy PIC.
1399 		 */
1400 		if (nr_legacy_irqs())
1401 			irq = RTC_IRQ;
1402 #endif
1403 	} else {
1404 		irq = pnp_irq(pnp, 0);
1405 	}
1406 
1407 	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1408 }
1409 
1410 static void cmos_pnp_remove(struct pnp_dev *pnp)
1411 {
1412 	cmos_do_remove(&pnp->dev);
1413 }
1414 
1415 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1416 {
1417 	struct device *dev = &pnp->dev;
1418 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1419 
1420 	if (system_state == SYSTEM_POWER_OFF) {
1421 		int retval = cmos_poweroff(dev);
1422 
1423 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1424 			return;
1425 	}
1426 
1427 	cmos_do_shutdown(cmos->irq);
1428 }
1429 
1430 static const struct pnp_device_id rtc_ids[] = {
1431 	{ .id = "PNP0b00", },
1432 	{ .id = "PNP0b01", },
1433 	{ .id = "PNP0b02", },
1434 	{ },
1435 };
1436 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1437 
1438 static struct pnp_driver cmos_pnp_driver = {
1439 	.name		= driver_name,
1440 	.id_table	= rtc_ids,
1441 	.probe		= cmos_pnp_probe,
1442 	.remove		= cmos_pnp_remove,
1443 	.shutdown	= cmos_pnp_shutdown,
1444 
1445 	/* flag ensures resume() gets called, and stops syslog spam */
1446 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1447 	.driver		= {
1448 			.pm = &cmos_pm_ops,
1449 	},
1450 };
1451 
1452 #endif	/* CONFIG_PNP */
1453 
1454 #ifdef CONFIG_OF
1455 static const struct of_device_id of_cmos_match[] = {
1456 	{
1457 		.compatible = "motorola,mc146818",
1458 	},
1459 	{ },
1460 };
1461 MODULE_DEVICE_TABLE(of, of_cmos_match);
1462 
1463 static __init void cmos_of_init(struct platform_device *pdev)
1464 {
1465 	struct device_node *node = pdev->dev.of_node;
1466 	const __be32 *val;
1467 
1468 	if (!node)
1469 		return;
1470 
1471 	val = of_get_property(node, "ctrl-reg", NULL);
1472 	if (val)
1473 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1474 
1475 	val = of_get_property(node, "freq-reg", NULL);
1476 	if (val)
1477 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1478 }
1479 #else
1480 static inline void cmos_of_init(struct platform_device *pdev) {}
1481 #endif
1482 /*----------------------------------------------------------------*/
1483 
1484 /* Platform setup should have set up an RTC device, when PNP is
1485  * unavailable ... this could happen even on (older) PCs.
1486  */
1487 
1488 static int __init cmos_platform_probe(struct platform_device *pdev)
1489 {
1490 	struct resource *resource;
1491 	int irq;
1492 
1493 	cmos_of_init(pdev);
1494 
1495 	if (RTC_IOMAPPED)
1496 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1497 	else
1498 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1499 	irq = platform_get_irq(pdev, 0);
1500 	if (irq < 0)
1501 		irq = -1;
1502 
1503 	return cmos_do_probe(&pdev->dev, resource, irq);
1504 }
1505 
1506 static void cmos_platform_remove(struct platform_device *pdev)
1507 {
1508 	cmos_do_remove(&pdev->dev);
1509 }
1510 
1511 static void cmos_platform_shutdown(struct platform_device *pdev)
1512 {
1513 	struct device *dev = &pdev->dev;
1514 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1515 
1516 	if (system_state == SYSTEM_POWER_OFF) {
1517 		int retval = cmos_poweroff(dev);
1518 
1519 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1520 			return;
1521 	}
1522 
1523 	cmos_do_shutdown(cmos->irq);
1524 }
1525 
1526 /* work with hotplug and coldplug */
1527 MODULE_ALIAS("platform:rtc_cmos");
1528 
1529 static struct platform_driver cmos_platform_driver = {
1530 	.remove_new	= cmos_platform_remove,
1531 	.shutdown	= cmos_platform_shutdown,
1532 	.driver = {
1533 		.name		= driver_name,
1534 		.pm		= &cmos_pm_ops,
1535 		.of_match_table = of_match_ptr(of_cmos_match),
1536 	}
1537 };
1538 
1539 #ifdef CONFIG_PNP
1540 static bool pnp_driver_registered;
1541 #endif
1542 static bool platform_driver_registered;
1543 
1544 static int __init cmos_init(void)
1545 {
1546 	int retval = 0;
1547 
1548 #ifdef	CONFIG_PNP
1549 	retval = pnp_register_driver(&cmos_pnp_driver);
1550 	if (retval == 0)
1551 		pnp_driver_registered = true;
1552 #endif
1553 
1554 	if (!cmos_rtc.dev) {
1555 		retval = platform_driver_probe(&cmos_platform_driver,
1556 					       cmos_platform_probe);
1557 		if (retval == 0)
1558 			platform_driver_registered = true;
1559 	}
1560 
1561 	if (retval == 0)
1562 		return 0;
1563 
1564 #ifdef	CONFIG_PNP
1565 	if (pnp_driver_registered)
1566 		pnp_unregister_driver(&cmos_pnp_driver);
1567 #endif
1568 	return retval;
1569 }
1570 module_init(cmos_init);
1571 
1572 static void __exit cmos_exit(void)
1573 {
1574 #ifdef	CONFIG_PNP
1575 	if (pnp_driver_registered)
1576 		pnp_unregister_driver(&cmos_pnp_driver);
1577 #endif
1578 	if (platform_driver_registered)
1579 		platform_driver_unregister(&cmos_platform_driver);
1580 }
1581 module_exit(cmos_exit);
1582 
1583 
1584 MODULE_AUTHOR("David Brownell");
1585 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1586 MODULE_LICENSE("GPL");
1587