1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 4 * 5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 6 * Copyright (C) 2006 David Brownell (convert to new framework) 7 */ 8 9 /* 10 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 11 * That defined the register interface now provided by all PCs, some 12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 13 * integrate an MC146818 clone in their southbridge, and boards use 14 * that instead of discrete clones like the DS12887 or M48T86. There 15 * are also clones that connect using the LPC bus. 16 * 17 * That register API is also used directly by various other drivers 18 * (notably for integrated NVRAM), infrastructure (x86 has code to 19 * bypass the RTC framework, directly reading the RTC during boot 20 * and updating minutes/seconds for systems using NTP synch) and 21 * utilities (like userspace 'hwclock', if no /dev node exists). 22 * 23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 24 * interrupts disabled, holding the global rtc_lock, to exclude those 25 * other drivers and utilities on correctly configured systems. 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/spinlock.h> 35 #include <linux/platform_device.h> 36 #include <linux/log2.h> 37 #include <linux/pm.h> 38 #include <linux/of.h> 39 #include <linux/of_platform.h> 40 #ifdef CONFIG_X86 41 #include <asm/i8259.h> 42 #include <asm/processor.h> 43 #include <linux/dmi.h> 44 #endif 45 46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 47 #include <linux/mc146818rtc.h> 48 49 #ifdef CONFIG_ACPI 50 /* 51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event 52 * 53 * If cleared, ACPI SCI is only used to wake up the system from suspend 54 * 55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup 56 */ 57 58 static bool use_acpi_alarm; 59 module_param(use_acpi_alarm, bool, 0444); 60 61 static inline int cmos_use_acpi_alarm(void) 62 { 63 return use_acpi_alarm; 64 } 65 #else /* !CONFIG_ACPI */ 66 67 static inline int cmos_use_acpi_alarm(void) 68 { 69 return 0; 70 } 71 #endif 72 73 struct cmos_rtc { 74 struct rtc_device *rtc; 75 struct device *dev; 76 int irq; 77 struct resource *iomem; 78 time64_t alarm_expires; 79 80 void (*wake_on)(struct device *); 81 void (*wake_off)(struct device *); 82 83 u8 enabled_wake; 84 u8 suspend_ctrl; 85 86 /* newer hardware extends the original register set */ 87 u8 day_alrm; 88 u8 mon_alrm; 89 u8 century; 90 91 struct rtc_wkalrm saved_wkalrm; 92 }; 93 94 /* both platform and pnp busses use negative numbers for invalid irqs */ 95 #define is_valid_irq(n) ((n) > 0) 96 97 static const char driver_name[] = "rtc_cmos"; 98 99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 102 */ 103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 104 105 static inline int is_intr(u8 rtc_intr) 106 { 107 if (!(rtc_intr & RTC_IRQF)) 108 return 0; 109 return rtc_intr & RTC_IRQMASK; 110 } 111 112 /*----------------------------------------------------------------*/ 113 114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 116 * used in a broken "legacy replacement" mode. The breakage includes 117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 118 * other (better) use. 119 * 120 * When that broken mode is in use, platform glue provides a partial 121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 122 * want to use HPET for anything except those IRQs though... 123 */ 124 #ifdef CONFIG_HPET_EMULATE_RTC 125 #include <asm/hpet.h> 126 #else 127 128 static inline int is_hpet_enabled(void) 129 { 130 return 0; 131 } 132 133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 134 { 135 return 0; 136 } 137 138 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 139 { 140 return 0; 141 } 142 143 static inline int 144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 145 { 146 return 0; 147 } 148 149 static inline int hpet_set_periodic_freq(unsigned long freq) 150 { 151 return 0; 152 } 153 154 static inline int hpet_rtc_dropped_irq(void) 155 { 156 return 0; 157 } 158 159 static inline int hpet_rtc_timer_init(void) 160 { 161 return 0; 162 } 163 164 extern irq_handler_t hpet_rtc_interrupt; 165 166 static inline int hpet_register_irq_handler(irq_handler_t handler) 167 { 168 return 0; 169 } 170 171 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 172 { 173 return 0; 174 } 175 176 #endif 177 178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ 179 static inline int use_hpet_alarm(void) 180 { 181 return is_hpet_enabled() && !cmos_use_acpi_alarm(); 182 } 183 184 /*----------------------------------------------------------------*/ 185 186 #ifdef RTC_PORT 187 188 /* Most newer x86 systems have two register banks, the first used 189 * for RTC and NVRAM and the second only for NVRAM. Caller must 190 * own rtc_lock ... and we won't worry about access during NMI. 191 */ 192 #define can_bank2 true 193 194 static inline unsigned char cmos_read_bank2(unsigned char addr) 195 { 196 outb(addr, RTC_PORT(2)); 197 return inb(RTC_PORT(3)); 198 } 199 200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 201 { 202 outb(addr, RTC_PORT(2)); 203 outb(val, RTC_PORT(3)); 204 } 205 206 #else 207 208 #define can_bank2 false 209 210 static inline unsigned char cmos_read_bank2(unsigned char addr) 211 { 212 return 0; 213 } 214 215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 216 { 217 } 218 219 #endif 220 221 /*----------------------------------------------------------------*/ 222 223 static int cmos_read_time(struct device *dev, struct rtc_time *t) 224 { 225 /* 226 * If pm_trace abused the RTC for storage, set the timespec to 0, 227 * which tells the caller that this RTC value is unusable. 228 */ 229 if (!pm_trace_rtc_valid()) 230 return -EIO; 231 232 /* REVISIT: if the clock has a "century" register, use 233 * that instead of the heuristic in mc146818_get_time(). 234 * That'll make Y3K compatility (year > 2070) easy! 235 */ 236 mc146818_get_time(t); 237 return 0; 238 } 239 240 static int cmos_set_time(struct device *dev, struct rtc_time *t) 241 { 242 /* REVISIT: set the "century" register if available 243 * 244 * NOTE: this ignores the issue whereby updating the seconds 245 * takes effect exactly 500ms after we write the register. 246 * (Also queueing and other delays before we get this far.) 247 */ 248 return mc146818_set_time(t); 249 } 250 251 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 252 { 253 struct cmos_rtc *cmos = dev_get_drvdata(dev); 254 unsigned char rtc_control; 255 256 /* This not only a rtc_op, but also called directly */ 257 if (!is_valid_irq(cmos->irq)) 258 return -EIO; 259 260 /* Basic alarms only support hour, minute, and seconds fields. 261 * Some also support day and month, for alarms up to a year in 262 * the future. 263 */ 264 265 spin_lock_irq(&rtc_lock); 266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 269 270 if (cmos->day_alrm) { 271 /* ignore upper bits on readback per ACPI spec */ 272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 273 if (!t->time.tm_mday) 274 t->time.tm_mday = -1; 275 276 if (cmos->mon_alrm) { 277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 278 if (!t->time.tm_mon) 279 t->time.tm_mon = -1; 280 } 281 } 282 283 rtc_control = CMOS_READ(RTC_CONTROL); 284 spin_unlock_irq(&rtc_lock); 285 286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 287 if (((unsigned)t->time.tm_sec) < 0x60) 288 t->time.tm_sec = bcd2bin(t->time.tm_sec); 289 else 290 t->time.tm_sec = -1; 291 if (((unsigned)t->time.tm_min) < 0x60) 292 t->time.tm_min = bcd2bin(t->time.tm_min); 293 else 294 t->time.tm_min = -1; 295 if (((unsigned)t->time.tm_hour) < 0x24) 296 t->time.tm_hour = bcd2bin(t->time.tm_hour); 297 else 298 t->time.tm_hour = -1; 299 300 if (cmos->day_alrm) { 301 if (((unsigned)t->time.tm_mday) <= 0x31) 302 t->time.tm_mday = bcd2bin(t->time.tm_mday); 303 else 304 t->time.tm_mday = -1; 305 306 if (cmos->mon_alrm) { 307 if (((unsigned)t->time.tm_mon) <= 0x12) 308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 309 else 310 t->time.tm_mon = -1; 311 } 312 } 313 } 314 315 t->enabled = !!(rtc_control & RTC_AIE); 316 t->pending = 0; 317 318 return 0; 319 } 320 321 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 322 { 323 unsigned char rtc_intr; 324 325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 326 * allegedly some older rtcs need that to handle irqs properly 327 */ 328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 329 330 if (use_hpet_alarm()) 331 return; 332 333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 334 if (is_intr(rtc_intr)) 335 rtc_update_irq(cmos->rtc, 1, rtc_intr); 336 } 337 338 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 339 { 340 unsigned char rtc_control; 341 342 /* flush any pending IRQ status, notably for update irqs, 343 * before we enable new IRQs 344 */ 345 rtc_control = CMOS_READ(RTC_CONTROL); 346 cmos_checkintr(cmos, rtc_control); 347 348 rtc_control |= mask; 349 CMOS_WRITE(rtc_control, RTC_CONTROL); 350 if (use_hpet_alarm()) 351 hpet_set_rtc_irq_bit(mask); 352 353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 354 if (cmos->wake_on) 355 cmos->wake_on(cmos->dev); 356 } 357 358 cmos_checkintr(cmos, rtc_control); 359 } 360 361 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 362 { 363 unsigned char rtc_control; 364 365 rtc_control = CMOS_READ(RTC_CONTROL); 366 rtc_control &= ~mask; 367 CMOS_WRITE(rtc_control, RTC_CONTROL); 368 if (use_hpet_alarm()) 369 hpet_mask_rtc_irq_bit(mask); 370 371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 372 if (cmos->wake_off) 373 cmos->wake_off(cmos->dev); 374 } 375 376 cmos_checkintr(cmos, rtc_control); 377 } 378 379 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) 380 { 381 struct cmos_rtc *cmos = dev_get_drvdata(dev); 382 struct rtc_time now; 383 384 cmos_read_time(dev, &now); 385 386 if (!cmos->day_alrm) { 387 time64_t t_max_date; 388 time64_t t_alrm; 389 390 t_max_date = rtc_tm_to_time64(&now); 391 t_max_date += 24 * 60 * 60 - 1; 392 t_alrm = rtc_tm_to_time64(&t->time); 393 if (t_alrm > t_max_date) { 394 dev_err(dev, 395 "Alarms can be up to one day in the future\n"); 396 return -EINVAL; 397 } 398 } else if (!cmos->mon_alrm) { 399 struct rtc_time max_date = now; 400 time64_t t_max_date; 401 time64_t t_alrm; 402 int max_mday; 403 404 if (max_date.tm_mon == 11) { 405 max_date.tm_mon = 0; 406 max_date.tm_year += 1; 407 } else { 408 max_date.tm_mon += 1; 409 } 410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 411 if (max_date.tm_mday > max_mday) 412 max_date.tm_mday = max_mday; 413 414 t_max_date = rtc_tm_to_time64(&max_date); 415 t_max_date -= 1; 416 t_alrm = rtc_tm_to_time64(&t->time); 417 if (t_alrm > t_max_date) { 418 dev_err(dev, 419 "Alarms can be up to one month in the future\n"); 420 return -EINVAL; 421 } 422 } else { 423 struct rtc_time max_date = now; 424 time64_t t_max_date; 425 time64_t t_alrm; 426 int max_mday; 427 428 max_date.tm_year += 1; 429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 430 if (max_date.tm_mday > max_mday) 431 max_date.tm_mday = max_mday; 432 433 t_max_date = rtc_tm_to_time64(&max_date); 434 t_max_date -= 1; 435 t_alrm = rtc_tm_to_time64(&t->time); 436 if (t_alrm > t_max_date) { 437 dev_err(dev, 438 "Alarms can be up to one year in the future\n"); 439 return -EINVAL; 440 } 441 } 442 443 return 0; 444 } 445 446 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 447 { 448 struct cmos_rtc *cmos = dev_get_drvdata(dev); 449 unsigned char mon, mday, hrs, min, sec, rtc_control; 450 int ret; 451 452 /* This not only a rtc_op, but also called directly */ 453 if (!is_valid_irq(cmos->irq)) 454 return -EIO; 455 456 ret = cmos_validate_alarm(dev, t); 457 if (ret < 0) 458 return ret; 459 460 mon = t->time.tm_mon + 1; 461 mday = t->time.tm_mday; 462 hrs = t->time.tm_hour; 463 min = t->time.tm_min; 464 sec = t->time.tm_sec; 465 466 rtc_control = CMOS_READ(RTC_CONTROL); 467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 468 /* Writing 0xff means "don't care" or "match all". */ 469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 472 min = (min < 60) ? bin2bcd(min) : 0xff; 473 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 474 } 475 476 spin_lock_irq(&rtc_lock); 477 478 /* next rtc irq must not be from previous alarm setting */ 479 cmos_irq_disable(cmos, RTC_AIE); 480 481 /* update alarm */ 482 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 483 CMOS_WRITE(min, RTC_MINUTES_ALARM); 484 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 485 486 /* the system may support an "enhanced" alarm */ 487 if (cmos->day_alrm) { 488 CMOS_WRITE(mday, cmos->day_alrm); 489 if (cmos->mon_alrm) 490 CMOS_WRITE(mon, cmos->mon_alrm); 491 } 492 493 if (use_hpet_alarm()) { 494 /* 495 * FIXME the HPET alarm glue currently ignores day_alrm 496 * and mon_alrm ... 497 */ 498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, 499 t->time.tm_sec); 500 } 501 502 if (t->enabled) 503 cmos_irq_enable(cmos, RTC_AIE); 504 505 spin_unlock_irq(&rtc_lock); 506 507 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 508 509 return 0; 510 } 511 512 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 513 { 514 struct cmos_rtc *cmos = dev_get_drvdata(dev); 515 unsigned long flags; 516 517 spin_lock_irqsave(&rtc_lock, flags); 518 519 if (enabled) 520 cmos_irq_enable(cmos, RTC_AIE); 521 else 522 cmos_irq_disable(cmos, RTC_AIE); 523 524 spin_unlock_irqrestore(&rtc_lock, flags); 525 return 0; 526 } 527 528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 529 530 static int cmos_procfs(struct device *dev, struct seq_file *seq) 531 { 532 struct cmos_rtc *cmos = dev_get_drvdata(dev); 533 unsigned char rtc_control, valid; 534 535 spin_lock_irq(&rtc_lock); 536 rtc_control = CMOS_READ(RTC_CONTROL); 537 valid = CMOS_READ(RTC_VALID); 538 spin_unlock_irq(&rtc_lock); 539 540 /* NOTE: at least ICH6 reports battery status using a different 541 * (non-RTC) bit; and SQWE is ignored on many current systems. 542 */ 543 seq_printf(seq, 544 "periodic_IRQ\t: %s\n" 545 "update_IRQ\t: %s\n" 546 "HPET_emulated\t: %s\n" 547 // "square_wave\t: %s\n" 548 "BCD\t\t: %s\n" 549 "DST_enable\t: %s\n" 550 "periodic_freq\t: %d\n" 551 "batt_status\t: %s\n", 552 (rtc_control & RTC_PIE) ? "yes" : "no", 553 (rtc_control & RTC_UIE) ? "yes" : "no", 554 use_hpet_alarm() ? "yes" : "no", 555 // (rtc_control & RTC_SQWE) ? "yes" : "no", 556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 557 (rtc_control & RTC_DST_EN) ? "yes" : "no", 558 cmos->rtc->irq_freq, 559 (valid & RTC_VRT) ? "okay" : "dead"); 560 561 return 0; 562 } 563 564 #else 565 #define cmos_procfs NULL 566 #endif 567 568 static const struct rtc_class_ops cmos_rtc_ops = { 569 .read_time = cmos_read_time, 570 .set_time = cmos_set_time, 571 .read_alarm = cmos_read_alarm, 572 .set_alarm = cmos_set_alarm, 573 .proc = cmos_procfs, 574 .alarm_irq_enable = cmos_alarm_irq_enable, 575 }; 576 577 /*----------------------------------------------------------------*/ 578 579 /* 580 * All these chips have at least 64 bytes of address space, shared by 581 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 582 * by boot firmware. Modern chips have 128 or 256 bytes. 583 */ 584 585 #define NVRAM_OFFSET (RTC_REG_D + 1) 586 587 static int cmos_nvram_read(void *priv, unsigned int off, void *val, 588 size_t count) 589 { 590 unsigned char *buf = val; 591 int retval; 592 593 off += NVRAM_OFFSET; 594 spin_lock_irq(&rtc_lock); 595 for (retval = 0; count; count--, off++, retval++) { 596 if (off < 128) 597 *buf++ = CMOS_READ(off); 598 else if (can_bank2) 599 *buf++ = cmos_read_bank2(off); 600 else 601 break; 602 } 603 spin_unlock_irq(&rtc_lock); 604 605 return retval; 606 } 607 608 static int cmos_nvram_write(void *priv, unsigned int off, void *val, 609 size_t count) 610 { 611 struct cmos_rtc *cmos = priv; 612 unsigned char *buf = val; 613 int retval; 614 615 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 616 * checksum on part of the NVRAM data. That's currently ignored 617 * here. If userspace is smart enough to know what fields of 618 * NVRAM to update, updating checksums is also part of its job. 619 */ 620 off += NVRAM_OFFSET; 621 spin_lock_irq(&rtc_lock); 622 for (retval = 0; count; count--, off++, retval++) { 623 /* don't trash RTC registers */ 624 if (off == cmos->day_alrm 625 || off == cmos->mon_alrm 626 || off == cmos->century) 627 buf++; 628 else if (off < 128) 629 CMOS_WRITE(*buf++, off); 630 else if (can_bank2) 631 cmos_write_bank2(*buf++, off); 632 else 633 break; 634 } 635 spin_unlock_irq(&rtc_lock); 636 637 return retval; 638 } 639 640 /*----------------------------------------------------------------*/ 641 642 static struct cmos_rtc cmos_rtc; 643 644 static irqreturn_t cmos_interrupt(int irq, void *p) 645 { 646 u8 irqstat; 647 u8 rtc_control; 648 649 spin_lock(&rtc_lock); 650 651 /* When the HPET interrupt handler calls us, the interrupt 652 * status is passed as arg1 instead of the irq number. But 653 * always clear irq status, even when HPET is in the way. 654 * 655 * Note that HPET and RTC are almost certainly out of phase, 656 * giving different IRQ status ... 657 */ 658 irqstat = CMOS_READ(RTC_INTR_FLAGS); 659 rtc_control = CMOS_READ(RTC_CONTROL); 660 if (use_hpet_alarm()) 661 irqstat = (unsigned long)irq & 0xF0; 662 663 /* If we were suspended, RTC_CONTROL may not be accurate since the 664 * bios may have cleared it. 665 */ 666 if (!cmos_rtc.suspend_ctrl) 667 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 668 else 669 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 670 671 /* All Linux RTC alarms should be treated as if they were oneshot. 672 * Similar code may be needed in system wakeup paths, in case the 673 * alarm woke the system. 674 */ 675 if (irqstat & RTC_AIE) { 676 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 677 rtc_control &= ~RTC_AIE; 678 CMOS_WRITE(rtc_control, RTC_CONTROL); 679 if (use_hpet_alarm()) 680 hpet_mask_rtc_irq_bit(RTC_AIE); 681 CMOS_READ(RTC_INTR_FLAGS); 682 } 683 spin_unlock(&rtc_lock); 684 685 if (is_intr(irqstat)) { 686 rtc_update_irq(p, 1, irqstat); 687 return IRQ_HANDLED; 688 } else 689 return IRQ_NONE; 690 } 691 692 #ifdef CONFIG_PNP 693 #define INITSECTION 694 695 #else 696 #define INITSECTION __init 697 #endif 698 699 static int INITSECTION 700 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 701 { 702 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 703 int retval = 0; 704 unsigned char rtc_control; 705 unsigned address_space; 706 u32 flags = 0; 707 struct nvmem_config nvmem_cfg = { 708 .name = "cmos_nvram", 709 .word_size = 1, 710 .stride = 1, 711 .reg_read = cmos_nvram_read, 712 .reg_write = cmos_nvram_write, 713 .priv = &cmos_rtc, 714 }; 715 716 /* there can be only one ... */ 717 if (cmos_rtc.dev) 718 return -EBUSY; 719 720 if (!ports) 721 return -ENODEV; 722 723 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 724 * 725 * REVISIT non-x86 systems may instead use memory space resources 726 * (needing ioremap etc), not i/o space resources like this ... 727 */ 728 if (RTC_IOMAPPED) 729 ports = request_region(ports->start, resource_size(ports), 730 driver_name); 731 else 732 ports = request_mem_region(ports->start, resource_size(ports), 733 driver_name); 734 if (!ports) { 735 dev_dbg(dev, "i/o registers already in use\n"); 736 return -EBUSY; 737 } 738 739 cmos_rtc.irq = rtc_irq; 740 cmos_rtc.iomem = ports; 741 742 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 743 * driver did, but don't reject unknown configs. Old hardware 744 * won't address 128 bytes. Newer chips have multiple banks, 745 * though they may not be listed in one I/O resource. 746 */ 747 #if defined(CONFIG_ATARI) 748 address_space = 64; 749 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 750 || defined(__sparc__) || defined(__mips__) \ 751 || defined(__powerpc__) 752 address_space = 128; 753 #else 754 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 755 address_space = 128; 756 #endif 757 if (can_bank2 && ports->end > (ports->start + 1)) 758 address_space = 256; 759 760 /* For ACPI systems extension info comes from the FADT. On others, 761 * board specific setup provides it as appropriate. Systems where 762 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 763 * some almost-clones) can provide hooks to make that behave. 764 * 765 * Note that ACPI doesn't preclude putting these registers into 766 * "extended" areas of the chip, including some that we won't yet 767 * expect CMOS_READ and friends to handle. 768 */ 769 if (info) { 770 if (info->flags) 771 flags = info->flags; 772 if (info->address_space) 773 address_space = info->address_space; 774 775 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 776 cmos_rtc.day_alrm = info->rtc_day_alarm; 777 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 778 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 779 if (info->rtc_century && info->rtc_century < 128) 780 cmos_rtc.century = info->rtc_century; 781 782 if (info->wake_on && info->wake_off) { 783 cmos_rtc.wake_on = info->wake_on; 784 cmos_rtc.wake_off = info->wake_off; 785 } 786 } 787 788 cmos_rtc.dev = dev; 789 dev_set_drvdata(dev, &cmos_rtc); 790 791 cmos_rtc.rtc = devm_rtc_allocate_device(dev); 792 if (IS_ERR(cmos_rtc.rtc)) { 793 retval = PTR_ERR(cmos_rtc.rtc); 794 goto cleanup0; 795 } 796 797 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 798 799 spin_lock_irq(&rtc_lock); 800 801 /* Ensure that the RTC is accessible. Bit 6 must be 0! */ 802 if ((CMOS_READ(RTC_VALID) & 0x40) != 0) { 803 spin_unlock_irq(&rtc_lock); 804 dev_warn(dev, "not accessible\n"); 805 retval = -ENXIO; 806 goto cleanup1; 807 } 808 809 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 810 /* force periodic irq to CMOS reset default of 1024Hz; 811 * 812 * REVISIT it's been reported that at least one x86_64 ALI 813 * mobo doesn't use 32KHz here ... for portability we might 814 * need to do something about other clock frequencies. 815 */ 816 cmos_rtc.rtc->irq_freq = 1024; 817 if (use_hpet_alarm()) 818 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 819 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 820 } 821 822 /* disable irqs */ 823 if (is_valid_irq(rtc_irq)) 824 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 825 826 rtc_control = CMOS_READ(RTC_CONTROL); 827 828 spin_unlock_irq(&rtc_lock); 829 830 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 831 dev_warn(dev, "only 24-hr supported\n"); 832 retval = -ENXIO; 833 goto cleanup1; 834 } 835 836 if (use_hpet_alarm()) 837 hpet_rtc_timer_init(); 838 839 if (is_valid_irq(rtc_irq)) { 840 irq_handler_t rtc_cmos_int_handler; 841 842 if (use_hpet_alarm()) { 843 rtc_cmos_int_handler = hpet_rtc_interrupt; 844 retval = hpet_register_irq_handler(cmos_interrupt); 845 if (retval) { 846 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 847 dev_warn(dev, "hpet_register_irq_handler " 848 " failed in rtc_init()."); 849 goto cleanup1; 850 } 851 } else 852 rtc_cmos_int_handler = cmos_interrupt; 853 854 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 855 0, dev_name(&cmos_rtc.rtc->dev), 856 cmos_rtc.rtc); 857 if (retval < 0) { 858 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 859 goto cleanup1; 860 } 861 } else { 862 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features); 863 } 864 865 cmos_rtc.rtc->ops = &cmos_rtc_ops; 866 867 retval = devm_rtc_register_device(cmos_rtc.rtc); 868 if (retval) 869 goto cleanup2; 870 871 /* Set the sync offset for the periodic 11min update correct */ 872 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2; 873 874 /* export at least the first block of NVRAM */ 875 nvmem_cfg.size = address_space - NVRAM_OFFSET; 876 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg); 877 878 dev_info(dev, "%s%s, %d bytes nvram%s\n", 879 !is_valid_irq(rtc_irq) ? "no alarms" : 880 cmos_rtc.mon_alrm ? "alarms up to one year" : 881 cmos_rtc.day_alrm ? "alarms up to one month" : 882 "alarms up to one day", 883 cmos_rtc.century ? ", y3k" : "", 884 nvmem_cfg.size, 885 use_hpet_alarm() ? ", hpet irqs" : ""); 886 887 return 0; 888 889 cleanup2: 890 if (is_valid_irq(rtc_irq)) 891 free_irq(rtc_irq, cmos_rtc.rtc); 892 cleanup1: 893 cmos_rtc.dev = NULL; 894 cleanup0: 895 if (RTC_IOMAPPED) 896 release_region(ports->start, resource_size(ports)); 897 else 898 release_mem_region(ports->start, resource_size(ports)); 899 return retval; 900 } 901 902 static void cmos_do_shutdown(int rtc_irq) 903 { 904 spin_lock_irq(&rtc_lock); 905 if (is_valid_irq(rtc_irq)) 906 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 907 spin_unlock_irq(&rtc_lock); 908 } 909 910 static void cmos_do_remove(struct device *dev) 911 { 912 struct cmos_rtc *cmos = dev_get_drvdata(dev); 913 struct resource *ports; 914 915 cmos_do_shutdown(cmos->irq); 916 917 if (is_valid_irq(cmos->irq)) { 918 free_irq(cmos->irq, cmos->rtc); 919 if (use_hpet_alarm()) 920 hpet_unregister_irq_handler(cmos_interrupt); 921 } 922 923 cmos->rtc = NULL; 924 925 ports = cmos->iomem; 926 if (RTC_IOMAPPED) 927 release_region(ports->start, resource_size(ports)); 928 else 929 release_mem_region(ports->start, resource_size(ports)); 930 cmos->iomem = NULL; 931 932 cmos->dev = NULL; 933 } 934 935 static int cmos_aie_poweroff(struct device *dev) 936 { 937 struct cmos_rtc *cmos = dev_get_drvdata(dev); 938 struct rtc_time now; 939 time64_t t_now; 940 int retval = 0; 941 unsigned char rtc_control; 942 943 if (!cmos->alarm_expires) 944 return -EINVAL; 945 946 spin_lock_irq(&rtc_lock); 947 rtc_control = CMOS_READ(RTC_CONTROL); 948 spin_unlock_irq(&rtc_lock); 949 950 /* We only care about the situation where AIE is disabled. */ 951 if (rtc_control & RTC_AIE) 952 return -EBUSY; 953 954 cmos_read_time(dev, &now); 955 t_now = rtc_tm_to_time64(&now); 956 957 /* 958 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 959 * automatically right after shutdown on some buggy boxes. 960 * This automatic rebooting issue won't happen when the alarm 961 * time is larger than now+1 seconds. 962 * 963 * If the alarm time is equal to now+1 seconds, the issue can be 964 * prevented by cancelling the alarm. 965 */ 966 if (cmos->alarm_expires == t_now + 1) { 967 struct rtc_wkalrm alarm; 968 969 /* Cancel the AIE timer by configuring the past time. */ 970 rtc_time64_to_tm(t_now - 1, &alarm.time); 971 alarm.enabled = 0; 972 retval = cmos_set_alarm(dev, &alarm); 973 } else if (cmos->alarm_expires > t_now + 1) { 974 retval = -EBUSY; 975 } 976 977 return retval; 978 } 979 980 static int cmos_suspend(struct device *dev) 981 { 982 struct cmos_rtc *cmos = dev_get_drvdata(dev); 983 unsigned char tmp; 984 985 /* only the alarm might be a wakeup event source */ 986 spin_lock_irq(&rtc_lock); 987 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 988 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 989 unsigned char mask; 990 991 if (device_may_wakeup(dev)) 992 mask = RTC_IRQMASK & ~RTC_AIE; 993 else 994 mask = RTC_IRQMASK; 995 tmp &= ~mask; 996 CMOS_WRITE(tmp, RTC_CONTROL); 997 if (use_hpet_alarm()) 998 hpet_mask_rtc_irq_bit(mask); 999 cmos_checkintr(cmos, tmp); 1000 } 1001 spin_unlock_irq(&rtc_lock); 1002 1003 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) { 1004 cmos->enabled_wake = 1; 1005 if (cmos->wake_on) 1006 cmos->wake_on(dev); 1007 else 1008 enable_irq_wake(cmos->irq); 1009 } 1010 1011 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm)); 1012 cmos_read_alarm(dev, &cmos->saved_wkalrm); 1013 1014 dev_dbg(dev, "suspend%s, ctrl %02x\n", 1015 (tmp & RTC_AIE) ? ", alarm may wake" : "", 1016 tmp); 1017 1018 return 0; 1019 } 1020 1021 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 1022 * after a detour through G3 "mechanical off", although the ACPI spec 1023 * says wakeup should only work from G1/S4 "hibernate". To most users, 1024 * distinctions between S4 and S5 are pointless. So when the hardware 1025 * allows, don't draw that distinction. 1026 */ 1027 static inline int cmos_poweroff(struct device *dev) 1028 { 1029 if (!IS_ENABLED(CONFIG_PM)) 1030 return -ENOSYS; 1031 1032 return cmos_suspend(dev); 1033 } 1034 1035 static void cmos_check_wkalrm(struct device *dev) 1036 { 1037 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1038 struct rtc_wkalrm current_alarm; 1039 time64_t t_now; 1040 time64_t t_current_expires; 1041 time64_t t_saved_expires; 1042 struct rtc_time now; 1043 1044 /* Check if we have RTC Alarm armed */ 1045 if (!(cmos->suspend_ctrl & RTC_AIE)) 1046 return; 1047 1048 cmos_read_time(dev, &now); 1049 t_now = rtc_tm_to_time64(&now); 1050 1051 /* 1052 * ACPI RTC wake event is cleared after resume from STR, 1053 * ACK the rtc irq here 1054 */ 1055 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) { 1056 cmos_interrupt(0, (void *)cmos->rtc); 1057 return; 1058 } 1059 1060 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm)); 1061 cmos_read_alarm(dev, ¤t_alarm); 1062 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 1063 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 1064 if (t_current_expires != t_saved_expires || 1065 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 1066 cmos_set_alarm(dev, &cmos->saved_wkalrm); 1067 } 1068 } 1069 1070 static void cmos_check_acpi_rtc_status(struct device *dev, 1071 unsigned char *rtc_control); 1072 1073 static int __maybe_unused cmos_resume(struct device *dev) 1074 { 1075 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1076 unsigned char tmp; 1077 1078 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) { 1079 if (cmos->wake_off) 1080 cmos->wake_off(dev); 1081 else 1082 disable_irq_wake(cmos->irq); 1083 cmos->enabled_wake = 0; 1084 } 1085 1086 /* The BIOS might have changed the alarm, restore it */ 1087 cmos_check_wkalrm(dev); 1088 1089 spin_lock_irq(&rtc_lock); 1090 tmp = cmos->suspend_ctrl; 1091 cmos->suspend_ctrl = 0; 1092 /* re-enable any irqs previously active */ 1093 if (tmp & RTC_IRQMASK) { 1094 unsigned char mask; 1095 1096 if (device_may_wakeup(dev) && use_hpet_alarm()) 1097 hpet_rtc_timer_init(); 1098 1099 do { 1100 CMOS_WRITE(tmp, RTC_CONTROL); 1101 if (use_hpet_alarm()) 1102 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 1103 1104 mask = CMOS_READ(RTC_INTR_FLAGS); 1105 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 1106 if (!use_hpet_alarm() || !is_intr(mask)) 1107 break; 1108 1109 /* force one-shot behavior if HPET blocked 1110 * the wake alarm's irq 1111 */ 1112 rtc_update_irq(cmos->rtc, 1, mask); 1113 tmp &= ~RTC_AIE; 1114 hpet_mask_rtc_irq_bit(RTC_AIE); 1115 } while (mask & RTC_AIE); 1116 1117 if (tmp & RTC_AIE) 1118 cmos_check_acpi_rtc_status(dev, &tmp); 1119 } 1120 spin_unlock_irq(&rtc_lock); 1121 1122 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 1123 1124 return 0; 1125 } 1126 1127 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 1128 1129 /*----------------------------------------------------------------*/ 1130 1131 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 1132 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 1133 * probably list them in similar PNPBIOS tables; so PNP is more common. 1134 * 1135 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 1136 * predate even PNPBIOS should set up platform_bus devices. 1137 */ 1138 1139 #ifdef CONFIG_ACPI 1140 1141 #include <linux/acpi.h> 1142 1143 static u32 rtc_handler(void *context) 1144 { 1145 struct device *dev = context; 1146 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1147 unsigned char rtc_control = 0; 1148 unsigned char rtc_intr; 1149 unsigned long flags; 1150 1151 1152 /* 1153 * Always update rtc irq when ACPI is used as RTC Alarm. 1154 * Or else, ACPI SCI is enabled during suspend/resume only, 1155 * update rtc irq in that case. 1156 */ 1157 if (cmos_use_acpi_alarm()) 1158 cmos_interrupt(0, (void *)cmos->rtc); 1159 else { 1160 /* Fix me: can we use cmos_interrupt() here as well? */ 1161 spin_lock_irqsave(&rtc_lock, flags); 1162 if (cmos_rtc.suspend_ctrl) 1163 rtc_control = CMOS_READ(RTC_CONTROL); 1164 if (rtc_control & RTC_AIE) { 1165 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 1166 CMOS_WRITE(rtc_control, RTC_CONTROL); 1167 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 1168 rtc_update_irq(cmos->rtc, 1, rtc_intr); 1169 } 1170 spin_unlock_irqrestore(&rtc_lock, flags); 1171 } 1172 1173 pm_wakeup_hard_event(dev); 1174 acpi_clear_event(ACPI_EVENT_RTC); 1175 acpi_disable_event(ACPI_EVENT_RTC, 0); 1176 return ACPI_INTERRUPT_HANDLED; 1177 } 1178 1179 static inline void rtc_wake_setup(struct device *dev) 1180 { 1181 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 1182 /* 1183 * After the RTC handler is installed, the Fixed_RTC event should 1184 * be disabled. Only when the RTC alarm is set will it be enabled. 1185 */ 1186 acpi_clear_event(ACPI_EVENT_RTC); 1187 acpi_disable_event(ACPI_EVENT_RTC, 0); 1188 } 1189 1190 static void rtc_wake_on(struct device *dev) 1191 { 1192 acpi_clear_event(ACPI_EVENT_RTC); 1193 acpi_enable_event(ACPI_EVENT_RTC, 0); 1194 } 1195 1196 static void rtc_wake_off(struct device *dev) 1197 { 1198 acpi_disable_event(ACPI_EVENT_RTC, 0); 1199 } 1200 1201 #ifdef CONFIG_X86 1202 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */ 1203 static void use_acpi_alarm_quirks(void) 1204 { 1205 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 1206 return; 1207 1208 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0)) 1209 return; 1210 1211 if (!is_hpet_enabled()) 1212 return; 1213 1214 if (dmi_get_bios_year() < 2015) 1215 return; 1216 1217 use_acpi_alarm = true; 1218 } 1219 #else 1220 static inline void use_acpi_alarm_quirks(void) { } 1221 #endif 1222 1223 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1224 * its device node and pass extra config data. This helps its driver use 1225 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1226 * that this board's RTC is wakeup-capable (per ACPI spec). 1227 */ 1228 static struct cmos_rtc_board_info acpi_rtc_info; 1229 1230 static void cmos_wake_setup(struct device *dev) 1231 { 1232 if (acpi_disabled) 1233 return; 1234 1235 use_acpi_alarm_quirks(); 1236 1237 rtc_wake_setup(dev); 1238 acpi_rtc_info.wake_on = rtc_wake_on; 1239 acpi_rtc_info.wake_off = rtc_wake_off; 1240 1241 /* workaround bug in some ACPI tables */ 1242 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1243 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1244 acpi_gbl_FADT.month_alarm); 1245 acpi_gbl_FADT.month_alarm = 0; 1246 } 1247 1248 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1249 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1250 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1251 1252 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1253 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1254 dev_info(dev, "RTC can wake from S4\n"); 1255 1256 dev->platform_data = &acpi_rtc_info; 1257 1258 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1259 device_init_wakeup(dev, 1); 1260 } 1261 1262 static void cmos_check_acpi_rtc_status(struct device *dev, 1263 unsigned char *rtc_control) 1264 { 1265 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1266 acpi_event_status rtc_status; 1267 acpi_status status; 1268 1269 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 1270 return; 1271 1272 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 1273 if (ACPI_FAILURE(status)) { 1274 dev_err(dev, "Could not get RTC status\n"); 1275 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 1276 unsigned char mask; 1277 *rtc_control &= ~RTC_AIE; 1278 CMOS_WRITE(*rtc_control, RTC_CONTROL); 1279 mask = CMOS_READ(RTC_INTR_FLAGS); 1280 rtc_update_irq(cmos->rtc, 1, mask); 1281 } 1282 } 1283 1284 #else 1285 1286 static void cmos_wake_setup(struct device *dev) 1287 { 1288 } 1289 1290 static void cmos_check_acpi_rtc_status(struct device *dev, 1291 unsigned char *rtc_control) 1292 { 1293 } 1294 1295 #endif 1296 1297 #ifdef CONFIG_PNP 1298 1299 #include <linux/pnp.h> 1300 1301 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1302 { 1303 cmos_wake_setup(&pnp->dev); 1304 1305 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { 1306 unsigned int irq = 0; 1307 #ifdef CONFIG_X86 1308 /* Some machines contain a PNP entry for the RTC, but 1309 * don't define the IRQ. It should always be safe to 1310 * hardcode it on systems with a legacy PIC. 1311 */ 1312 if (nr_legacy_irqs()) 1313 irq = RTC_IRQ; 1314 #endif 1315 return cmos_do_probe(&pnp->dev, 1316 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); 1317 } else { 1318 return cmos_do_probe(&pnp->dev, 1319 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1320 pnp_irq(pnp, 0)); 1321 } 1322 } 1323 1324 static void cmos_pnp_remove(struct pnp_dev *pnp) 1325 { 1326 cmos_do_remove(&pnp->dev); 1327 } 1328 1329 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1330 { 1331 struct device *dev = &pnp->dev; 1332 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1333 1334 if (system_state == SYSTEM_POWER_OFF) { 1335 int retval = cmos_poweroff(dev); 1336 1337 if (cmos_aie_poweroff(dev) < 0 && !retval) 1338 return; 1339 } 1340 1341 cmos_do_shutdown(cmos->irq); 1342 } 1343 1344 static const struct pnp_device_id rtc_ids[] = { 1345 { .id = "PNP0b00", }, 1346 { .id = "PNP0b01", }, 1347 { .id = "PNP0b02", }, 1348 { }, 1349 }; 1350 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1351 1352 static struct pnp_driver cmos_pnp_driver = { 1353 .name = driver_name, 1354 .id_table = rtc_ids, 1355 .probe = cmos_pnp_probe, 1356 .remove = cmos_pnp_remove, 1357 .shutdown = cmos_pnp_shutdown, 1358 1359 /* flag ensures resume() gets called, and stops syslog spam */ 1360 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1361 .driver = { 1362 .pm = &cmos_pm_ops, 1363 }, 1364 }; 1365 1366 #endif /* CONFIG_PNP */ 1367 1368 #ifdef CONFIG_OF 1369 static const struct of_device_id of_cmos_match[] = { 1370 { 1371 .compatible = "motorola,mc146818", 1372 }, 1373 { }, 1374 }; 1375 MODULE_DEVICE_TABLE(of, of_cmos_match); 1376 1377 static __init void cmos_of_init(struct platform_device *pdev) 1378 { 1379 struct device_node *node = pdev->dev.of_node; 1380 const __be32 *val; 1381 1382 if (!node) 1383 return; 1384 1385 val = of_get_property(node, "ctrl-reg", NULL); 1386 if (val) 1387 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1388 1389 val = of_get_property(node, "freq-reg", NULL); 1390 if (val) 1391 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1392 } 1393 #else 1394 static inline void cmos_of_init(struct platform_device *pdev) {} 1395 #endif 1396 /*----------------------------------------------------------------*/ 1397 1398 /* Platform setup should have set up an RTC device, when PNP is 1399 * unavailable ... this could happen even on (older) PCs. 1400 */ 1401 1402 static int __init cmos_platform_probe(struct platform_device *pdev) 1403 { 1404 struct resource *resource; 1405 int irq; 1406 1407 cmos_of_init(pdev); 1408 cmos_wake_setup(&pdev->dev); 1409 1410 if (RTC_IOMAPPED) 1411 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1412 else 1413 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1414 irq = platform_get_irq(pdev, 0); 1415 if (irq < 0) 1416 irq = -1; 1417 1418 return cmos_do_probe(&pdev->dev, resource, irq); 1419 } 1420 1421 static int cmos_platform_remove(struct platform_device *pdev) 1422 { 1423 cmos_do_remove(&pdev->dev); 1424 return 0; 1425 } 1426 1427 static void cmos_platform_shutdown(struct platform_device *pdev) 1428 { 1429 struct device *dev = &pdev->dev; 1430 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1431 1432 if (system_state == SYSTEM_POWER_OFF) { 1433 int retval = cmos_poweroff(dev); 1434 1435 if (cmos_aie_poweroff(dev) < 0 && !retval) 1436 return; 1437 } 1438 1439 cmos_do_shutdown(cmos->irq); 1440 } 1441 1442 /* work with hotplug and coldplug */ 1443 MODULE_ALIAS("platform:rtc_cmos"); 1444 1445 static struct platform_driver cmos_platform_driver = { 1446 .remove = cmos_platform_remove, 1447 .shutdown = cmos_platform_shutdown, 1448 .driver = { 1449 .name = driver_name, 1450 .pm = &cmos_pm_ops, 1451 .of_match_table = of_match_ptr(of_cmos_match), 1452 } 1453 }; 1454 1455 #ifdef CONFIG_PNP 1456 static bool pnp_driver_registered; 1457 #endif 1458 static bool platform_driver_registered; 1459 1460 static int __init cmos_init(void) 1461 { 1462 int retval = 0; 1463 1464 #ifdef CONFIG_PNP 1465 retval = pnp_register_driver(&cmos_pnp_driver); 1466 if (retval == 0) 1467 pnp_driver_registered = true; 1468 #endif 1469 1470 if (!cmos_rtc.dev) { 1471 retval = platform_driver_probe(&cmos_platform_driver, 1472 cmos_platform_probe); 1473 if (retval == 0) 1474 platform_driver_registered = true; 1475 } 1476 1477 if (retval == 0) 1478 return 0; 1479 1480 #ifdef CONFIG_PNP 1481 if (pnp_driver_registered) 1482 pnp_unregister_driver(&cmos_pnp_driver); 1483 #endif 1484 return retval; 1485 } 1486 module_init(cmos_init); 1487 1488 static void __exit cmos_exit(void) 1489 { 1490 #ifdef CONFIG_PNP 1491 if (pnp_driver_registered) 1492 pnp_unregister_driver(&cmos_pnp_driver); 1493 #endif 1494 if (platform_driver_registered) 1495 platform_driver_unregister(&cmos_platform_driver); 1496 } 1497 module_exit(cmos_exit); 1498 1499 1500 MODULE_AUTHOR("David Brownell"); 1501 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1502 MODULE_LICENSE("GPL"); 1503