xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision d2ba09c1)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #endif
47 
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <linux/mc146818rtc.h>
50 
51 struct cmos_rtc {
52 	struct rtc_device	*rtc;
53 	struct device		*dev;
54 	int			irq;
55 	struct resource		*iomem;
56 	time64_t		alarm_expires;
57 
58 	void			(*wake_on)(struct device *);
59 	void			(*wake_off)(struct device *);
60 
61 	u8			enabled_wake;
62 	u8			suspend_ctrl;
63 
64 	/* newer hardware extends the original register set */
65 	u8			day_alrm;
66 	u8			mon_alrm;
67 	u8			century;
68 
69 	struct rtc_wkalrm	saved_wkalrm;
70 };
71 
72 /* both platform and pnp busses use negative numbers for invalid irqs */
73 #define is_valid_irq(n)		((n) > 0)
74 
75 static const char driver_name[] = "rtc_cmos";
76 
77 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
78  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
79  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
80  */
81 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
82 
83 static inline int is_intr(u8 rtc_intr)
84 {
85 	if (!(rtc_intr & RTC_IRQF))
86 		return 0;
87 	return rtc_intr & RTC_IRQMASK;
88 }
89 
90 /*----------------------------------------------------------------*/
91 
92 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
93  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
94  * used in a broken "legacy replacement" mode.  The breakage includes
95  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
96  * other (better) use.
97  *
98  * When that broken mode is in use, platform glue provides a partial
99  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
100  * want to use HPET for anything except those IRQs though...
101  */
102 #ifdef CONFIG_HPET_EMULATE_RTC
103 #include <asm/hpet.h>
104 #else
105 
106 static inline int is_hpet_enabled(void)
107 {
108 	return 0;
109 }
110 
111 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
112 {
113 	return 0;
114 }
115 
116 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
117 {
118 	return 0;
119 }
120 
121 static inline int
122 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
123 {
124 	return 0;
125 }
126 
127 static inline int hpet_set_periodic_freq(unsigned long freq)
128 {
129 	return 0;
130 }
131 
132 static inline int hpet_rtc_dropped_irq(void)
133 {
134 	return 0;
135 }
136 
137 static inline int hpet_rtc_timer_init(void)
138 {
139 	return 0;
140 }
141 
142 extern irq_handler_t hpet_rtc_interrupt;
143 
144 static inline int hpet_register_irq_handler(irq_handler_t handler)
145 {
146 	return 0;
147 }
148 
149 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
150 {
151 	return 0;
152 }
153 
154 #endif
155 
156 /*----------------------------------------------------------------*/
157 
158 #ifdef RTC_PORT
159 
160 /* Most newer x86 systems have two register banks, the first used
161  * for RTC and NVRAM and the second only for NVRAM.  Caller must
162  * own rtc_lock ... and we won't worry about access during NMI.
163  */
164 #define can_bank2	true
165 
166 static inline unsigned char cmos_read_bank2(unsigned char addr)
167 {
168 	outb(addr, RTC_PORT(2));
169 	return inb(RTC_PORT(3));
170 }
171 
172 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
173 {
174 	outb(addr, RTC_PORT(2));
175 	outb(val, RTC_PORT(3));
176 }
177 
178 #else
179 
180 #define can_bank2	false
181 
182 static inline unsigned char cmos_read_bank2(unsigned char addr)
183 {
184 	return 0;
185 }
186 
187 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
188 {
189 }
190 
191 #endif
192 
193 /*----------------------------------------------------------------*/
194 
195 static int cmos_read_time(struct device *dev, struct rtc_time *t)
196 {
197 	/*
198 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
199 	 * which tells the caller that this RTC value is unusable.
200 	 */
201 	if (!pm_trace_rtc_valid())
202 		return -EIO;
203 
204 	/* REVISIT:  if the clock has a "century" register, use
205 	 * that instead of the heuristic in mc146818_get_time().
206 	 * That'll make Y3K compatility (year > 2070) easy!
207 	 */
208 	mc146818_get_time(t);
209 	return 0;
210 }
211 
212 static int cmos_set_time(struct device *dev, struct rtc_time *t)
213 {
214 	/* REVISIT:  set the "century" register if available
215 	 *
216 	 * NOTE: this ignores the issue whereby updating the seconds
217 	 * takes effect exactly 500ms after we write the register.
218 	 * (Also queueing and other delays before we get this far.)
219 	 */
220 	return mc146818_set_time(t);
221 }
222 
223 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
224 {
225 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
226 	unsigned char	rtc_control;
227 
228 	if (!is_valid_irq(cmos->irq))
229 		return -EIO;
230 
231 	/* Basic alarms only support hour, minute, and seconds fields.
232 	 * Some also support day and month, for alarms up to a year in
233 	 * the future.
234 	 */
235 
236 	spin_lock_irq(&rtc_lock);
237 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
238 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
239 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
240 
241 	if (cmos->day_alrm) {
242 		/* ignore upper bits on readback per ACPI spec */
243 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
244 		if (!t->time.tm_mday)
245 			t->time.tm_mday = -1;
246 
247 		if (cmos->mon_alrm) {
248 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
249 			if (!t->time.tm_mon)
250 				t->time.tm_mon = -1;
251 		}
252 	}
253 
254 	rtc_control = CMOS_READ(RTC_CONTROL);
255 	spin_unlock_irq(&rtc_lock);
256 
257 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
258 		if (((unsigned)t->time.tm_sec) < 0x60)
259 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
260 		else
261 			t->time.tm_sec = -1;
262 		if (((unsigned)t->time.tm_min) < 0x60)
263 			t->time.tm_min = bcd2bin(t->time.tm_min);
264 		else
265 			t->time.tm_min = -1;
266 		if (((unsigned)t->time.tm_hour) < 0x24)
267 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
268 		else
269 			t->time.tm_hour = -1;
270 
271 		if (cmos->day_alrm) {
272 			if (((unsigned)t->time.tm_mday) <= 0x31)
273 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
274 			else
275 				t->time.tm_mday = -1;
276 
277 			if (cmos->mon_alrm) {
278 				if (((unsigned)t->time.tm_mon) <= 0x12)
279 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
280 				else
281 					t->time.tm_mon = -1;
282 			}
283 		}
284 	}
285 
286 	t->enabled = !!(rtc_control & RTC_AIE);
287 	t->pending = 0;
288 
289 	return 0;
290 }
291 
292 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
293 {
294 	unsigned char	rtc_intr;
295 
296 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
297 	 * allegedly some older rtcs need that to handle irqs properly
298 	 */
299 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
300 
301 	if (is_hpet_enabled())
302 		return;
303 
304 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
305 	if (is_intr(rtc_intr))
306 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
307 }
308 
309 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
310 {
311 	unsigned char	rtc_control;
312 
313 	/* flush any pending IRQ status, notably for update irqs,
314 	 * before we enable new IRQs
315 	 */
316 	rtc_control = CMOS_READ(RTC_CONTROL);
317 	cmos_checkintr(cmos, rtc_control);
318 
319 	rtc_control |= mask;
320 	CMOS_WRITE(rtc_control, RTC_CONTROL);
321 	hpet_set_rtc_irq_bit(mask);
322 
323 	cmos_checkintr(cmos, rtc_control);
324 }
325 
326 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
327 {
328 	unsigned char	rtc_control;
329 
330 	rtc_control = CMOS_READ(RTC_CONTROL);
331 	rtc_control &= ~mask;
332 	CMOS_WRITE(rtc_control, RTC_CONTROL);
333 	hpet_mask_rtc_irq_bit(mask);
334 
335 	cmos_checkintr(cmos, rtc_control);
336 }
337 
338 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
339 {
340 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
341 	struct rtc_time now;
342 
343 	cmos_read_time(dev, &now);
344 
345 	if (!cmos->day_alrm) {
346 		time64_t t_max_date;
347 		time64_t t_alrm;
348 
349 		t_max_date = rtc_tm_to_time64(&now);
350 		t_max_date += 24 * 60 * 60 - 1;
351 		t_alrm = rtc_tm_to_time64(&t->time);
352 		if (t_alrm > t_max_date) {
353 			dev_err(dev,
354 				"Alarms can be up to one day in the future\n");
355 			return -EINVAL;
356 		}
357 	} else if (!cmos->mon_alrm) {
358 		struct rtc_time max_date = now;
359 		time64_t t_max_date;
360 		time64_t t_alrm;
361 		int max_mday;
362 
363 		if (max_date.tm_mon == 11) {
364 			max_date.tm_mon = 0;
365 			max_date.tm_year += 1;
366 		} else {
367 			max_date.tm_mon += 1;
368 		}
369 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
370 		if (max_date.tm_mday > max_mday)
371 			max_date.tm_mday = max_mday;
372 
373 		t_max_date = rtc_tm_to_time64(&max_date);
374 		t_max_date -= 1;
375 		t_alrm = rtc_tm_to_time64(&t->time);
376 		if (t_alrm > t_max_date) {
377 			dev_err(dev,
378 				"Alarms can be up to one month in the future\n");
379 			return -EINVAL;
380 		}
381 	} else {
382 		struct rtc_time max_date = now;
383 		time64_t t_max_date;
384 		time64_t t_alrm;
385 		int max_mday;
386 
387 		max_date.tm_year += 1;
388 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
389 		if (max_date.tm_mday > max_mday)
390 			max_date.tm_mday = max_mday;
391 
392 		t_max_date = rtc_tm_to_time64(&max_date);
393 		t_max_date -= 1;
394 		t_alrm = rtc_tm_to_time64(&t->time);
395 		if (t_alrm > t_max_date) {
396 			dev_err(dev,
397 				"Alarms can be up to one year in the future\n");
398 			return -EINVAL;
399 		}
400 	}
401 
402 	return 0;
403 }
404 
405 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
406 {
407 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
408 	unsigned char mon, mday, hrs, min, sec, rtc_control;
409 	int ret;
410 
411 	if (!is_valid_irq(cmos->irq))
412 		return -EIO;
413 
414 	ret = cmos_validate_alarm(dev, t);
415 	if (ret < 0)
416 		return ret;
417 
418 	mon = t->time.tm_mon + 1;
419 	mday = t->time.tm_mday;
420 	hrs = t->time.tm_hour;
421 	min = t->time.tm_min;
422 	sec = t->time.tm_sec;
423 
424 	rtc_control = CMOS_READ(RTC_CONTROL);
425 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
426 		/* Writing 0xff means "don't care" or "match all".  */
427 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
428 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
429 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
430 		min = (min < 60) ? bin2bcd(min) : 0xff;
431 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
432 	}
433 
434 	spin_lock_irq(&rtc_lock);
435 
436 	/* next rtc irq must not be from previous alarm setting */
437 	cmos_irq_disable(cmos, RTC_AIE);
438 
439 	/* update alarm */
440 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
441 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
442 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
443 
444 	/* the system may support an "enhanced" alarm */
445 	if (cmos->day_alrm) {
446 		CMOS_WRITE(mday, cmos->day_alrm);
447 		if (cmos->mon_alrm)
448 			CMOS_WRITE(mon, cmos->mon_alrm);
449 	}
450 
451 	/* FIXME the HPET alarm glue currently ignores day_alrm
452 	 * and mon_alrm ...
453 	 */
454 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
455 
456 	if (t->enabled)
457 		cmos_irq_enable(cmos, RTC_AIE);
458 
459 	spin_unlock_irq(&rtc_lock);
460 
461 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
462 
463 	return 0;
464 }
465 
466 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
467 {
468 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
469 	unsigned long	flags;
470 
471 	if (!is_valid_irq(cmos->irq))
472 		return -EINVAL;
473 
474 	spin_lock_irqsave(&rtc_lock, flags);
475 
476 	if (enabled)
477 		cmos_irq_enable(cmos, RTC_AIE);
478 	else
479 		cmos_irq_disable(cmos, RTC_AIE);
480 
481 	spin_unlock_irqrestore(&rtc_lock, flags);
482 	return 0;
483 }
484 
485 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
486 
487 static int cmos_procfs(struct device *dev, struct seq_file *seq)
488 {
489 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
490 	unsigned char	rtc_control, valid;
491 
492 	spin_lock_irq(&rtc_lock);
493 	rtc_control = CMOS_READ(RTC_CONTROL);
494 	valid = CMOS_READ(RTC_VALID);
495 	spin_unlock_irq(&rtc_lock);
496 
497 	/* NOTE:  at least ICH6 reports battery status using a different
498 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
499 	 */
500 	seq_printf(seq,
501 		   "periodic_IRQ\t: %s\n"
502 		   "update_IRQ\t: %s\n"
503 		   "HPET_emulated\t: %s\n"
504 		   // "square_wave\t: %s\n"
505 		   "BCD\t\t: %s\n"
506 		   "DST_enable\t: %s\n"
507 		   "periodic_freq\t: %d\n"
508 		   "batt_status\t: %s\n",
509 		   (rtc_control & RTC_PIE) ? "yes" : "no",
510 		   (rtc_control & RTC_UIE) ? "yes" : "no",
511 		   is_hpet_enabled() ? "yes" : "no",
512 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
513 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
514 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
515 		   cmos->rtc->irq_freq,
516 		   (valid & RTC_VRT) ? "okay" : "dead");
517 
518 	return 0;
519 }
520 
521 #else
522 #define	cmos_procfs	NULL
523 #endif
524 
525 static const struct rtc_class_ops cmos_rtc_ops = {
526 	.read_time		= cmos_read_time,
527 	.set_time		= cmos_set_time,
528 	.read_alarm		= cmos_read_alarm,
529 	.set_alarm		= cmos_set_alarm,
530 	.proc			= cmos_procfs,
531 	.alarm_irq_enable	= cmos_alarm_irq_enable,
532 };
533 
534 /*----------------------------------------------------------------*/
535 
536 /*
537  * All these chips have at least 64 bytes of address space, shared by
538  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
539  * by boot firmware.  Modern chips have 128 or 256 bytes.
540  */
541 
542 #define NVRAM_OFFSET	(RTC_REG_D + 1)
543 
544 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
545 			   size_t count)
546 {
547 	unsigned char *buf = val;
548 	int	retval;
549 
550 	off += NVRAM_OFFSET;
551 	spin_lock_irq(&rtc_lock);
552 	for (retval = 0; count; count--, off++, retval++) {
553 		if (off < 128)
554 			*buf++ = CMOS_READ(off);
555 		else if (can_bank2)
556 			*buf++ = cmos_read_bank2(off);
557 		else
558 			break;
559 	}
560 	spin_unlock_irq(&rtc_lock);
561 
562 	return retval;
563 }
564 
565 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
566 			    size_t count)
567 {
568 	struct cmos_rtc	*cmos = priv;
569 	unsigned char	*buf = val;
570 	int		retval;
571 
572 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
573 	 * checksum on part of the NVRAM data.  That's currently ignored
574 	 * here.  If userspace is smart enough to know what fields of
575 	 * NVRAM to update, updating checksums is also part of its job.
576 	 */
577 	off += NVRAM_OFFSET;
578 	spin_lock_irq(&rtc_lock);
579 	for (retval = 0; count; count--, off++, retval++) {
580 		/* don't trash RTC registers */
581 		if (off == cmos->day_alrm
582 				|| off == cmos->mon_alrm
583 				|| off == cmos->century)
584 			buf++;
585 		else if (off < 128)
586 			CMOS_WRITE(*buf++, off);
587 		else if (can_bank2)
588 			cmos_write_bank2(*buf++, off);
589 		else
590 			break;
591 	}
592 	spin_unlock_irq(&rtc_lock);
593 
594 	return retval;
595 }
596 
597 /*----------------------------------------------------------------*/
598 
599 static struct cmos_rtc	cmos_rtc;
600 
601 static irqreturn_t cmos_interrupt(int irq, void *p)
602 {
603 	u8		irqstat;
604 	u8		rtc_control;
605 
606 	spin_lock(&rtc_lock);
607 
608 	/* When the HPET interrupt handler calls us, the interrupt
609 	 * status is passed as arg1 instead of the irq number.  But
610 	 * always clear irq status, even when HPET is in the way.
611 	 *
612 	 * Note that HPET and RTC are almost certainly out of phase,
613 	 * giving different IRQ status ...
614 	 */
615 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
616 	rtc_control = CMOS_READ(RTC_CONTROL);
617 	if (is_hpet_enabled())
618 		irqstat = (unsigned long)irq & 0xF0;
619 
620 	/* If we were suspended, RTC_CONTROL may not be accurate since the
621 	 * bios may have cleared it.
622 	 */
623 	if (!cmos_rtc.suspend_ctrl)
624 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
625 	else
626 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
627 
628 	/* All Linux RTC alarms should be treated as if they were oneshot.
629 	 * Similar code may be needed in system wakeup paths, in case the
630 	 * alarm woke the system.
631 	 */
632 	if (irqstat & RTC_AIE) {
633 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
634 		rtc_control &= ~RTC_AIE;
635 		CMOS_WRITE(rtc_control, RTC_CONTROL);
636 		hpet_mask_rtc_irq_bit(RTC_AIE);
637 		CMOS_READ(RTC_INTR_FLAGS);
638 	}
639 	spin_unlock(&rtc_lock);
640 
641 	if (is_intr(irqstat)) {
642 		rtc_update_irq(p, 1, irqstat);
643 		return IRQ_HANDLED;
644 	} else
645 		return IRQ_NONE;
646 }
647 
648 #ifdef	CONFIG_PNP
649 #define	INITSECTION
650 
651 #else
652 #define	INITSECTION	__init
653 #endif
654 
655 static int INITSECTION
656 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
657 {
658 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
659 	int				retval = 0;
660 	unsigned char			rtc_control;
661 	unsigned			address_space;
662 	u32				flags = 0;
663 	struct nvmem_config nvmem_cfg = {
664 		.name = "cmos_nvram",
665 		.word_size = 1,
666 		.stride = 1,
667 		.reg_read = cmos_nvram_read,
668 		.reg_write = cmos_nvram_write,
669 		.priv = &cmos_rtc,
670 	};
671 
672 	/* there can be only one ... */
673 	if (cmos_rtc.dev)
674 		return -EBUSY;
675 
676 	if (!ports)
677 		return -ENODEV;
678 
679 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
680 	 *
681 	 * REVISIT non-x86 systems may instead use memory space resources
682 	 * (needing ioremap etc), not i/o space resources like this ...
683 	 */
684 	if (RTC_IOMAPPED)
685 		ports = request_region(ports->start, resource_size(ports),
686 				       driver_name);
687 	else
688 		ports = request_mem_region(ports->start, resource_size(ports),
689 					   driver_name);
690 	if (!ports) {
691 		dev_dbg(dev, "i/o registers already in use\n");
692 		return -EBUSY;
693 	}
694 
695 	cmos_rtc.irq = rtc_irq;
696 	cmos_rtc.iomem = ports;
697 
698 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
699 	 * driver did, but don't reject unknown configs.   Old hardware
700 	 * won't address 128 bytes.  Newer chips have multiple banks,
701 	 * though they may not be listed in one I/O resource.
702 	 */
703 #if	defined(CONFIG_ATARI)
704 	address_space = 64;
705 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
706 			|| defined(__sparc__) || defined(__mips__) \
707 			|| defined(__powerpc__)
708 	address_space = 128;
709 #else
710 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
711 	address_space = 128;
712 #endif
713 	if (can_bank2 && ports->end > (ports->start + 1))
714 		address_space = 256;
715 
716 	/* For ACPI systems extension info comes from the FADT.  On others,
717 	 * board specific setup provides it as appropriate.  Systems where
718 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
719 	 * some almost-clones) can provide hooks to make that behave.
720 	 *
721 	 * Note that ACPI doesn't preclude putting these registers into
722 	 * "extended" areas of the chip, including some that we won't yet
723 	 * expect CMOS_READ and friends to handle.
724 	 */
725 	if (info) {
726 		if (info->flags)
727 			flags = info->flags;
728 		if (info->address_space)
729 			address_space = info->address_space;
730 
731 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
732 			cmos_rtc.day_alrm = info->rtc_day_alarm;
733 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
734 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
735 		if (info->rtc_century && info->rtc_century < 128)
736 			cmos_rtc.century = info->rtc_century;
737 
738 		if (info->wake_on && info->wake_off) {
739 			cmos_rtc.wake_on = info->wake_on;
740 			cmos_rtc.wake_off = info->wake_off;
741 		}
742 	}
743 
744 	cmos_rtc.dev = dev;
745 	dev_set_drvdata(dev, &cmos_rtc);
746 
747 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
748 	if (IS_ERR(cmos_rtc.rtc)) {
749 		retval = PTR_ERR(cmos_rtc.rtc);
750 		goto cleanup0;
751 	}
752 
753 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
754 
755 	spin_lock_irq(&rtc_lock);
756 
757 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
758 		/* force periodic irq to CMOS reset default of 1024Hz;
759 		 *
760 		 * REVISIT it's been reported that at least one x86_64 ALI
761 		 * mobo doesn't use 32KHz here ... for portability we might
762 		 * need to do something about other clock frequencies.
763 		 */
764 		cmos_rtc.rtc->irq_freq = 1024;
765 		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
766 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
767 	}
768 
769 	/* disable irqs */
770 	if (is_valid_irq(rtc_irq))
771 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
772 
773 	rtc_control = CMOS_READ(RTC_CONTROL);
774 
775 	spin_unlock_irq(&rtc_lock);
776 
777 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
778 		dev_warn(dev, "only 24-hr supported\n");
779 		retval = -ENXIO;
780 		goto cleanup1;
781 	}
782 
783 	hpet_rtc_timer_init();
784 
785 	if (is_valid_irq(rtc_irq)) {
786 		irq_handler_t rtc_cmos_int_handler;
787 
788 		if (is_hpet_enabled()) {
789 			rtc_cmos_int_handler = hpet_rtc_interrupt;
790 			retval = hpet_register_irq_handler(cmos_interrupt);
791 			if (retval) {
792 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
793 				dev_warn(dev, "hpet_register_irq_handler "
794 						" failed in rtc_init().");
795 				goto cleanup1;
796 			}
797 		} else
798 			rtc_cmos_int_handler = cmos_interrupt;
799 
800 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
801 				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
802 				cmos_rtc.rtc);
803 		if (retval < 0) {
804 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
805 			goto cleanup1;
806 		}
807 	}
808 
809 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
810 	cmos_rtc.rtc->nvram_old_abi = true;
811 	retval = rtc_register_device(cmos_rtc.rtc);
812 	if (retval)
813 		goto cleanup2;
814 
815 	/* export at least the first block of NVRAM */
816 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
817 	if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
818 		dev_err(dev, "nvmem registration failed\n");
819 
820 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
821 		 !is_valid_irq(rtc_irq) ? "no alarms" :
822 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
823 		 cmos_rtc.day_alrm ? "alarms up to one month" :
824 		 "alarms up to one day",
825 		 cmos_rtc.century ? ", y3k" : "",
826 		 nvmem_cfg.size,
827 		 is_hpet_enabled() ? ", hpet irqs" : "");
828 
829 	return 0;
830 
831 cleanup2:
832 	if (is_valid_irq(rtc_irq))
833 		free_irq(rtc_irq, cmos_rtc.rtc);
834 cleanup1:
835 	cmos_rtc.dev = NULL;
836 cleanup0:
837 	if (RTC_IOMAPPED)
838 		release_region(ports->start, resource_size(ports));
839 	else
840 		release_mem_region(ports->start, resource_size(ports));
841 	return retval;
842 }
843 
844 static void cmos_do_shutdown(int rtc_irq)
845 {
846 	spin_lock_irq(&rtc_lock);
847 	if (is_valid_irq(rtc_irq))
848 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
849 	spin_unlock_irq(&rtc_lock);
850 }
851 
852 static void cmos_do_remove(struct device *dev)
853 {
854 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
855 	struct resource *ports;
856 
857 	cmos_do_shutdown(cmos->irq);
858 
859 	if (is_valid_irq(cmos->irq)) {
860 		free_irq(cmos->irq, cmos->rtc);
861 		hpet_unregister_irq_handler(cmos_interrupt);
862 	}
863 
864 	cmos->rtc = NULL;
865 
866 	ports = cmos->iomem;
867 	if (RTC_IOMAPPED)
868 		release_region(ports->start, resource_size(ports));
869 	else
870 		release_mem_region(ports->start, resource_size(ports));
871 	cmos->iomem = NULL;
872 
873 	cmos->dev = NULL;
874 }
875 
876 static int cmos_aie_poweroff(struct device *dev)
877 {
878 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
879 	struct rtc_time now;
880 	time64_t t_now;
881 	int retval = 0;
882 	unsigned char rtc_control;
883 
884 	if (!cmos->alarm_expires)
885 		return -EINVAL;
886 
887 	spin_lock_irq(&rtc_lock);
888 	rtc_control = CMOS_READ(RTC_CONTROL);
889 	spin_unlock_irq(&rtc_lock);
890 
891 	/* We only care about the situation where AIE is disabled. */
892 	if (rtc_control & RTC_AIE)
893 		return -EBUSY;
894 
895 	cmos_read_time(dev, &now);
896 	t_now = rtc_tm_to_time64(&now);
897 
898 	/*
899 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
900 	 * automatically right after shutdown on some buggy boxes.
901 	 * This automatic rebooting issue won't happen when the alarm
902 	 * time is larger than now+1 seconds.
903 	 *
904 	 * If the alarm time is equal to now+1 seconds, the issue can be
905 	 * prevented by cancelling the alarm.
906 	 */
907 	if (cmos->alarm_expires == t_now + 1) {
908 		struct rtc_wkalrm alarm;
909 
910 		/* Cancel the AIE timer by configuring the past time. */
911 		rtc_time64_to_tm(t_now - 1, &alarm.time);
912 		alarm.enabled = 0;
913 		retval = cmos_set_alarm(dev, &alarm);
914 	} else if (cmos->alarm_expires > t_now + 1) {
915 		retval = -EBUSY;
916 	}
917 
918 	return retval;
919 }
920 
921 static int cmos_suspend(struct device *dev)
922 {
923 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
924 	unsigned char	tmp;
925 
926 	/* only the alarm might be a wakeup event source */
927 	spin_lock_irq(&rtc_lock);
928 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
929 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
930 		unsigned char	mask;
931 
932 		if (device_may_wakeup(dev))
933 			mask = RTC_IRQMASK & ~RTC_AIE;
934 		else
935 			mask = RTC_IRQMASK;
936 		tmp &= ~mask;
937 		CMOS_WRITE(tmp, RTC_CONTROL);
938 		hpet_mask_rtc_irq_bit(mask);
939 
940 		cmos_checkintr(cmos, tmp);
941 	}
942 	spin_unlock_irq(&rtc_lock);
943 
944 	if (tmp & RTC_AIE) {
945 		cmos->enabled_wake = 1;
946 		if (cmos->wake_on)
947 			cmos->wake_on(dev);
948 		else
949 			enable_irq_wake(cmos->irq);
950 	}
951 
952 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
953 
954 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
955 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
956 			tmp);
957 
958 	return 0;
959 }
960 
961 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
962  * after a detour through G3 "mechanical off", although the ACPI spec
963  * says wakeup should only work from G1/S4 "hibernate".  To most users,
964  * distinctions between S4 and S5 are pointless.  So when the hardware
965  * allows, don't draw that distinction.
966  */
967 static inline int cmos_poweroff(struct device *dev)
968 {
969 	if (!IS_ENABLED(CONFIG_PM))
970 		return -ENOSYS;
971 
972 	return cmos_suspend(dev);
973 }
974 
975 static void cmos_check_wkalrm(struct device *dev)
976 {
977 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
978 	struct rtc_wkalrm current_alarm;
979 	time64_t t_current_expires;
980 	time64_t t_saved_expires;
981 
982 	cmos_read_alarm(dev, &current_alarm);
983 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
984 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
985 	if (t_current_expires != t_saved_expires ||
986 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
987 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
988 	}
989 }
990 
991 static void cmos_check_acpi_rtc_status(struct device *dev,
992 				       unsigned char *rtc_control);
993 
994 static int __maybe_unused cmos_resume(struct device *dev)
995 {
996 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
997 	unsigned char tmp;
998 
999 	if (cmos->enabled_wake) {
1000 		if (cmos->wake_off)
1001 			cmos->wake_off(dev);
1002 		else
1003 			disable_irq_wake(cmos->irq);
1004 		cmos->enabled_wake = 0;
1005 	}
1006 
1007 	/* The BIOS might have changed the alarm, restore it */
1008 	cmos_check_wkalrm(dev);
1009 
1010 	spin_lock_irq(&rtc_lock);
1011 	tmp = cmos->suspend_ctrl;
1012 	cmos->suspend_ctrl = 0;
1013 	/* re-enable any irqs previously active */
1014 	if (tmp & RTC_IRQMASK) {
1015 		unsigned char	mask;
1016 
1017 		if (device_may_wakeup(dev))
1018 			hpet_rtc_timer_init();
1019 
1020 		do {
1021 			CMOS_WRITE(tmp, RTC_CONTROL);
1022 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1023 
1024 			mask = CMOS_READ(RTC_INTR_FLAGS);
1025 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1026 			if (!is_hpet_enabled() || !is_intr(mask))
1027 				break;
1028 
1029 			/* force one-shot behavior if HPET blocked
1030 			 * the wake alarm's irq
1031 			 */
1032 			rtc_update_irq(cmos->rtc, 1, mask);
1033 			tmp &= ~RTC_AIE;
1034 			hpet_mask_rtc_irq_bit(RTC_AIE);
1035 		} while (mask & RTC_AIE);
1036 
1037 		if (tmp & RTC_AIE)
1038 			cmos_check_acpi_rtc_status(dev, &tmp);
1039 	}
1040 	spin_unlock_irq(&rtc_lock);
1041 
1042 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1043 
1044 	return 0;
1045 }
1046 
1047 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1048 
1049 /*----------------------------------------------------------------*/
1050 
1051 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1052  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1053  * probably list them in similar PNPBIOS tables; so PNP is more common.
1054  *
1055  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1056  * predate even PNPBIOS should set up platform_bus devices.
1057  */
1058 
1059 #ifdef	CONFIG_ACPI
1060 
1061 #include <linux/acpi.h>
1062 
1063 static u32 rtc_handler(void *context)
1064 {
1065 	struct device *dev = context;
1066 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1067 	unsigned char rtc_control = 0;
1068 	unsigned char rtc_intr;
1069 	unsigned long flags;
1070 
1071 	spin_lock_irqsave(&rtc_lock, flags);
1072 	if (cmos_rtc.suspend_ctrl)
1073 		rtc_control = CMOS_READ(RTC_CONTROL);
1074 	if (rtc_control & RTC_AIE) {
1075 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1076 		CMOS_WRITE(rtc_control, RTC_CONTROL);
1077 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1078 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1079 	}
1080 	spin_unlock_irqrestore(&rtc_lock, flags);
1081 
1082 	pm_wakeup_hard_event(dev);
1083 	acpi_clear_event(ACPI_EVENT_RTC);
1084 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1085 	return ACPI_INTERRUPT_HANDLED;
1086 }
1087 
1088 static inline void rtc_wake_setup(struct device *dev)
1089 {
1090 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1091 	/*
1092 	 * After the RTC handler is installed, the Fixed_RTC event should
1093 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1094 	 */
1095 	acpi_clear_event(ACPI_EVENT_RTC);
1096 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1097 }
1098 
1099 static void rtc_wake_on(struct device *dev)
1100 {
1101 	acpi_clear_event(ACPI_EVENT_RTC);
1102 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1103 }
1104 
1105 static void rtc_wake_off(struct device *dev)
1106 {
1107 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1108 }
1109 
1110 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1111  * its device node and pass extra config data.  This helps its driver use
1112  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1113  * that this board's RTC is wakeup-capable (per ACPI spec).
1114  */
1115 static struct cmos_rtc_board_info acpi_rtc_info;
1116 
1117 static void cmos_wake_setup(struct device *dev)
1118 {
1119 	if (acpi_disabled)
1120 		return;
1121 
1122 	rtc_wake_setup(dev);
1123 	acpi_rtc_info.wake_on = rtc_wake_on;
1124 	acpi_rtc_info.wake_off = rtc_wake_off;
1125 
1126 	/* workaround bug in some ACPI tables */
1127 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1128 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1129 			acpi_gbl_FADT.month_alarm);
1130 		acpi_gbl_FADT.month_alarm = 0;
1131 	}
1132 
1133 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1134 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1135 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1136 
1137 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1138 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1139 		dev_info(dev, "RTC can wake from S4\n");
1140 
1141 	dev->platform_data = &acpi_rtc_info;
1142 
1143 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1144 	device_init_wakeup(dev, 1);
1145 }
1146 
1147 static void cmos_check_acpi_rtc_status(struct device *dev,
1148 				       unsigned char *rtc_control)
1149 {
1150 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1151 	acpi_event_status rtc_status;
1152 	acpi_status status;
1153 
1154 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1155 		return;
1156 
1157 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1158 	if (ACPI_FAILURE(status)) {
1159 		dev_err(dev, "Could not get RTC status\n");
1160 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1161 		unsigned char mask;
1162 		*rtc_control &= ~RTC_AIE;
1163 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1164 		mask = CMOS_READ(RTC_INTR_FLAGS);
1165 		rtc_update_irq(cmos->rtc, 1, mask);
1166 	}
1167 }
1168 
1169 #else
1170 
1171 static void cmos_wake_setup(struct device *dev)
1172 {
1173 }
1174 
1175 static void cmos_check_acpi_rtc_status(struct device *dev,
1176 				       unsigned char *rtc_control)
1177 {
1178 }
1179 
1180 #endif
1181 
1182 #ifdef	CONFIG_PNP
1183 
1184 #include <linux/pnp.h>
1185 
1186 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1187 {
1188 	cmos_wake_setup(&pnp->dev);
1189 
1190 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1191 		unsigned int irq = 0;
1192 #ifdef CONFIG_X86
1193 		/* Some machines contain a PNP entry for the RTC, but
1194 		 * don't define the IRQ. It should always be safe to
1195 		 * hardcode it on systems with a legacy PIC.
1196 		 */
1197 		if (nr_legacy_irqs())
1198 			irq = 8;
1199 #endif
1200 		return cmos_do_probe(&pnp->dev,
1201 				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1202 	} else {
1203 		return cmos_do_probe(&pnp->dev,
1204 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1205 				pnp_irq(pnp, 0));
1206 	}
1207 }
1208 
1209 static void cmos_pnp_remove(struct pnp_dev *pnp)
1210 {
1211 	cmos_do_remove(&pnp->dev);
1212 }
1213 
1214 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215 {
1216 	struct device *dev = &pnp->dev;
1217 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1218 
1219 	if (system_state == SYSTEM_POWER_OFF) {
1220 		int retval = cmos_poweroff(dev);
1221 
1222 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1223 			return;
1224 	}
1225 
1226 	cmos_do_shutdown(cmos->irq);
1227 }
1228 
1229 static const struct pnp_device_id rtc_ids[] = {
1230 	{ .id = "PNP0b00", },
1231 	{ .id = "PNP0b01", },
1232 	{ .id = "PNP0b02", },
1233 	{ },
1234 };
1235 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236 
1237 static struct pnp_driver cmos_pnp_driver = {
1238 	.name		= (char *) driver_name,
1239 	.id_table	= rtc_ids,
1240 	.probe		= cmos_pnp_probe,
1241 	.remove		= cmos_pnp_remove,
1242 	.shutdown	= cmos_pnp_shutdown,
1243 
1244 	/* flag ensures resume() gets called, and stops syslog spam */
1245 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1246 	.driver		= {
1247 			.pm = &cmos_pm_ops,
1248 	},
1249 };
1250 
1251 #endif	/* CONFIG_PNP */
1252 
1253 #ifdef CONFIG_OF
1254 static const struct of_device_id of_cmos_match[] = {
1255 	{
1256 		.compatible = "motorola,mc146818",
1257 	},
1258 	{ },
1259 };
1260 MODULE_DEVICE_TABLE(of, of_cmos_match);
1261 
1262 static __init void cmos_of_init(struct platform_device *pdev)
1263 {
1264 	struct device_node *node = pdev->dev.of_node;
1265 	const __be32 *val;
1266 
1267 	if (!node)
1268 		return;
1269 
1270 	val = of_get_property(node, "ctrl-reg", NULL);
1271 	if (val)
1272 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1273 
1274 	val = of_get_property(node, "freq-reg", NULL);
1275 	if (val)
1276 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1277 }
1278 #else
1279 static inline void cmos_of_init(struct platform_device *pdev) {}
1280 #endif
1281 /*----------------------------------------------------------------*/
1282 
1283 /* Platform setup should have set up an RTC device, when PNP is
1284  * unavailable ... this could happen even on (older) PCs.
1285  */
1286 
1287 static int __init cmos_platform_probe(struct platform_device *pdev)
1288 {
1289 	struct resource *resource;
1290 	int irq;
1291 
1292 	cmos_of_init(pdev);
1293 	cmos_wake_setup(&pdev->dev);
1294 
1295 	if (RTC_IOMAPPED)
1296 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1297 	else
1298 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1299 	irq = platform_get_irq(pdev, 0);
1300 	if (irq < 0)
1301 		irq = -1;
1302 
1303 	return cmos_do_probe(&pdev->dev, resource, irq);
1304 }
1305 
1306 static int cmos_platform_remove(struct platform_device *pdev)
1307 {
1308 	cmos_do_remove(&pdev->dev);
1309 	return 0;
1310 }
1311 
1312 static void cmos_platform_shutdown(struct platform_device *pdev)
1313 {
1314 	struct device *dev = &pdev->dev;
1315 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1316 
1317 	if (system_state == SYSTEM_POWER_OFF) {
1318 		int retval = cmos_poweroff(dev);
1319 
1320 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1321 			return;
1322 	}
1323 
1324 	cmos_do_shutdown(cmos->irq);
1325 }
1326 
1327 /* work with hotplug and coldplug */
1328 MODULE_ALIAS("platform:rtc_cmos");
1329 
1330 static struct platform_driver cmos_platform_driver = {
1331 	.remove		= cmos_platform_remove,
1332 	.shutdown	= cmos_platform_shutdown,
1333 	.driver = {
1334 		.name		= driver_name,
1335 		.pm		= &cmos_pm_ops,
1336 		.of_match_table = of_match_ptr(of_cmos_match),
1337 	}
1338 };
1339 
1340 #ifdef CONFIG_PNP
1341 static bool pnp_driver_registered;
1342 #endif
1343 static bool platform_driver_registered;
1344 
1345 static int __init cmos_init(void)
1346 {
1347 	int retval = 0;
1348 
1349 #ifdef	CONFIG_PNP
1350 	retval = pnp_register_driver(&cmos_pnp_driver);
1351 	if (retval == 0)
1352 		pnp_driver_registered = true;
1353 #endif
1354 
1355 	if (!cmos_rtc.dev) {
1356 		retval = platform_driver_probe(&cmos_platform_driver,
1357 					       cmos_platform_probe);
1358 		if (retval == 0)
1359 			platform_driver_registered = true;
1360 	}
1361 
1362 	if (retval == 0)
1363 		return 0;
1364 
1365 #ifdef	CONFIG_PNP
1366 	if (pnp_driver_registered)
1367 		pnp_unregister_driver(&cmos_pnp_driver);
1368 #endif
1369 	return retval;
1370 }
1371 module_init(cmos_init);
1372 
1373 static void __exit cmos_exit(void)
1374 {
1375 #ifdef	CONFIG_PNP
1376 	if (pnp_driver_registered)
1377 		pnp_unregister_driver(&cmos_pnp_driver);
1378 #endif
1379 	if (platform_driver_registered)
1380 		platform_driver_unregister(&cmos_platform_driver);
1381 }
1382 module_exit(cmos_exit);
1383 
1384 
1385 MODULE_AUTHOR("David Brownell");
1386 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1387 MODULE_LICENSE("GPL");
1388