1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/spinlock.h> 39 #include <linux/platform_device.h> 40 #include <linux/log2.h> 41 #include <linux/pm.h> 42 #include <linux/of.h> 43 #include <linux/of_platform.h> 44 #ifdef CONFIG_X86 45 #include <asm/i8259.h> 46 #endif 47 48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 49 #include <linux/mc146818rtc.h> 50 51 struct cmos_rtc { 52 struct rtc_device *rtc; 53 struct device *dev; 54 int irq; 55 struct resource *iomem; 56 time64_t alarm_expires; 57 58 void (*wake_on)(struct device *); 59 void (*wake_off)(struct device *); 60 61 u8 enabled_wake; 62 u8 suspend_ctrl; 63 64 /* newer hardware extends the original register set */ 65 u8 day_alrm; 66 u8 mon_alrm; 67 u8 century; 68 69 struct rtc_wkalrm saved_wkalrm; 70 }; 71 72 /* both platform and pnp busses use negative numbers for invalid irqs */ 73 #define is_valid_irq(n) ((n) > 0) 74 75 static const char driver_name[] = "rtc_cmos"; 76 77 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 78 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 79 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 80 */ 81 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 82 83 static inline int is_intr(u8 rtc_intr) 84 { 85 if (!(rtc_intr & RTC_IRQF)) 86 return 0; 87 return rtc_intr & RTC_IRQMASK; 88 } 89 90 /*----------------------------------------------------------------*/ 91 92 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 93 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 94 * used in a broken "legacy replacement" mode. The breakage includes 95 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 96 * other (better) use. 97 * 98 * When that broken mode is in use, platform glue provides a partial 99 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 100 * want to use HPET for anything except those IRQs though... 101 */ 102 #ifdef CONFIG_HPET_EMULATE_RTC 103 #include <asm/hpet.h> 104 #else 105 106 static inline int is_hpet_enabled(void) 107 { 108 return 0; 109 } 110 111 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 112 { 113 return 0; 114 } 115 116 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 117 { 118 return 0; 119 } 120 121 static inline int 122 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 123 { 124 return 0; 125 } 126 127 static inline int hpet_set_periodic_freq(unsigned long freq) 128 { 129 return 0; 130 } 131 132 static inline int hpet_rtc_dropped_irq(void) 133 { 134 return 0; 135 } 136 137 static inline int hpet_rtc_timer_init(void) 138 { 139 return 0; 140 } 141 142 extern irq_handler_t hpet_rtc_interrupt; 143 144 static inline int hpet_register_irq_handler(irq_handler_t handler) 145 { 146 return 0; 147 } 148 149 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 150 { 151 return 0; 152 } 153 154 #endif 155 156 /*----------------------------------------------------------------*/ 157 158 #ifdef RTC_PORT 159 160 /* Most newer x86 systems have two register banks, the first used 161 * for RTC and NVRAM and the second only for NVRAM. Caller must 162 * own rtc_lock ... and we won't worry about access during NMI. 163 */ 164 #define can_bank2 true 165 166 static inline unsigned char cmos_read_bank2(unsigned char addr) 167 { 168 outb(addr, RTC_PORT(2)); 169 return inb(RTC_PORT(3)); 170 } 171 172 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 173 { 174 outb(addr, RTC_PORT(2)); 175 outb(val, RTC_PORT(3)); 176 } 177 178 #else 179 180 #define can_bank2 false 181 182 static inline unsigned char cmos_read_bank2(unsigned char addr) 183 { 184 return 0; 185 } 186 187 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 188 { 189 } 190 191 #endif 192 193 /*----------------------------------------------------------------*/ 194 195 static int cmos_read_time(struct device *dev, struct rtc_time *t) 196 { 197 /* 198 * If pm_trace abused the RTC for storage, set the timespec to 0, 199 * which tells the caller that this RTC value is unusable. 200 */ 201 if (!pm_trace_rtc_valid()) 202 return -EIO; 203 204 /* REVISIT: if the clock has a "century" register, use 205 * that instead of the heuristic in mc146818_get_time(). 206 * That'll make Y3K compatility (year > 2070) easy! 207 */ 208 mc146818_get_time(t); 209 return 0; 210 } 211 212 static int cmos_set_time(struct device *dev, struct rtc_time *t) 213 { 214 /* REVISIT: set the "century" register if available 215 * 216 * NOTE: this ignores the issue whereby updating the seconds 217 * takes effect exactly 500ms after we write the register. 218 * (Also queueing and other delays before we get this far.) 219 */ 220 return mc146818_set_time(t); 221 } 222 223 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 224 { 225 struct cmos_rtc *cmos = dev_get_drvdata(dev); 226 unsigned char rtc_control; 227 228 if (!is_valid_irq(cmos->irq)) 229 return -EIO; 230 231 /* Basic alarms only support hour, minute, and seconds fields. 232 * Some also support day and month, for alarms up to a year in 233 * the future. 234 */ 235 236 spin_lock_irq(&rtc_lock); 237 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 238 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 239 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 240 241 if (cmos->day_alrm) { 242 /* ignore upper bits on readback per ACPI spec */ 243 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 244 if (!t->time.tm_mday) 245 t->time.tm_mday = -1; 246 247 if (cmos->mon_alrm) { 248 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 249 if (!t->time.tm_mon) 250 t->time.tm_mon = -1; 251 } 252 } 253 254 rtc_control = CMOS_READ(RTC_CONTROL); 255 spin_unlock_irq(&rtc_lock); 256 257 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 258 if (((unsigned)t->time.tm_sec) < 0x60) 259 t->time.tm_sec = bcd2bin(t->time.tm_sec); 260 else 261 t->time.tm_sec = -1; 262 if (((unsigned)t->time.tm_min) < 0x60) 263 t->time.tm_min = bcd2bin(t->time.tm_min); 264 else 265 t->time.tm_min = -1; 266 if (((unsigned)t->time.tm_hour) < 0x24) 267 t->time.tm_hour = bcd2bin(t->time.tm_hour); 268 else 269 t->time.tm_hour = -1; 270 271 if (cmos->day_alrm) { 272 if (((unsigned)t->time.tm_mday) <= 0x31) 273 t->time.tm_mday = bcd2bin(t->time.tm_mday); 274 else 275 t->time.tm_mday = -1; 276 277 if (cmos->mon_alrm) { 278 if (((unsigned)t->time.tm_mon) <= 0x12) 279 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 280 else 281 t->time.tm_mon = -1; 282 } 283 } 284 } 285 286 t->enabled = !!(rtc_control & RTC_AIE); 287 t->pending = 0; 288 289 return 0; 290 } 291 292 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 293 { 294 unsigned char rtc_intr; 295 296 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 297 * allegedly some older rtcs need that to handle irqs properly 298 */ 299 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 300 301 if (is_hpet_enabled()) 302 return; 303 304 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 305 if (is_intr(rtc_intr)) 306 rtc_update_irq(cmos->rtc, 1, rtc_intr); 307 } 308 309 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 310 { 311 unsigned char rtc_control; 312 313 /* flush any pending IRQ status, notably for update irqs, 314 * before we enable new IRQs 315 */ 316 rtc_control = CMOS_READ(RTC_CONTROL); 317 cmos_checkintr(cmos, rtc_control); 318 319 rtc_control |= mask; 320 CMOS_WRITE(rtc_control, RTC_CONTROL); 321 hpet_set_rtc_irq_bit(mask); 322 323 cmos_checkintr(cmos, rtc_control); 324 } 325 326 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 327 { 328 unsigned char rtc_control; 329 330 rtc_control = CMOS_READ(RTC_CONTROL); 331 rtc_control &= ~mask; 332 CMOS_WRITE(rtc_control, RTC_CONTROL); 333 hpet_mask_rtc_irq_bit(mask); 334 335 cmos_checkintr(cmos, rtc_control); 336 } 337 338 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) 339 { 340 struct cmos_rtc *cmos = dev_get_drvdata(dev); 341 struct rtc_time now; 342 343 cmos_read_time(dev, &now); 344 345 if (!cmos->day_alrm) { 346 time64_t t_max_date; 347 time64_t t_alrm; 348 349 t_max_date = rtc_tm_to_time64(&now); 350 t_max_date += 24 * 60 * 60 - 1; 351 t_alrm = rtc_tm_to_time64(&t->time); 352 if (t_alrm > t_max_date) { 353 dev_err(dev, 354 "Alarms can be up to one day in the future\n"); 355 return -EINVAL; 356 } 357 } else if (!cmos->mon_alrm) { 358 struct rtc_time max_date = now; 359 time64_t t_max_date; 360 time64_t t_alrm; 361 int max_mday; 362 363 if (max_date.tm_mon == 11) { 364 max_date.tm_mon = 0; 365 max_date.tm_year += 1; 366 } else { 367 max_date.tm_mon += 1; 368 } 369 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 370 if (max_date.tm_mday > max_mday) 371 max_date.tm_mday = max_mday; 372 373 t_max_date = rtc_tm_to_time64(&max_date); 374 t_max_date -= 1; 375 t_alrm = rtc_tm_to_time64(&t->time); 376 if (t_alrm > t_max_date) { 377 dev_err(dev, 378 "Alarms can be up to one month in the future\n"); 379 return -EINVAL; 380 } 381 } else { 382 struct rtc_time max_date = now; 383 time64_t t_max_date; 384 time64_t t_alrm; 385 int max_mday; 386 387 max_date.tm_year += 1; 388 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 389 if (max_date.tm_mday > max_mday) 390 max_date.tm_mday = max_mday; 391 392 t_max_date = rtc_tm_to_time64(&max_date); 393 t_max_date -= 1; 394 t_alrm = rtc_tm_to_time64(&t->time); 395 if (t_alrm > t_max_date) { 396 dev_err(dev, 397 "Alarms can be up to one year in the future\n"); 398 return -EINVAL; 399 } 400 } 401 402 return 0; 403 } 404 405 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 406 { 407 struct cmos_rtc *cmos = dev_get_drvdata(dev); 408 unsigned char mon, mday, hrs, min, sec, rtc_control; 409 int ret; 410 411 if (!is_valid_irq(cmos->irq)) 412 return -EIO; 413 414 ret = cmos_validate_alarm(dev, t); 415 if (ret < 0) 416 return ret; 417 418 mon = t->time.tm_mon + 1; 419 mday = t->time.tm_mday; 420 hrs = t->time.tm_hour; 421 min = t->time.tm_min; 422 sec = t->time.tm_sec; 423 424 rtc_control = CMOS_READ(RTC_CONTROL); 425 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 426 /* Writing 0xff means "don't care" or "match all". */ 427 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 428 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 429 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 430 min = (min < 60) ? bin2bcd(min) : 0xff; 431 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 432 } 433 434 spin_lock_irq(&rtc_lock); 435 436 /* next rtc irq must not be from previous alarm setting */ 437 cmos_irq_disable(cmos, RTC_AIE); 438 439 /* update alarm */ 440 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 441 CMOS_WRITE(min, RTC_MINUTES_ALARM); 442 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 443 444 /* the system may support an "enhanced" alarm */ 445 if (cmos->day_alrm) { 446 CMOS_WRITE(mday, cmos->day_alrm); 447 if (cmos->mon_alrm) 448 CMOS_WRITE(mon, cmos->mon_alrm); 449 } 450 451 /* FIXME the HPET alarm glue currently ignores day_alrm 452 * and mon_alrm ... 453 */ 454 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 455 456 if (t->enabled) 457 cmos_irq_enable(cmos, RTC_AIE); 458 459 spin_unlock_irq(&rtc_lock); 460 461 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 462 463 return 0; 464 } 465 466 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 467 { 468 struct cmos_rtc *cmos = dev_get_drvdata(dev); 469 unsigned long flags; 470 471 if (!is_valid_irq(cmos->irq)) 472 return -EINVAL; 473 474 spin_lock_irqsave(&rtc_lock, flags); 475 476 if (enabled) 477 cmos_irq_enable(cmos, RTC_AIE); 478 else 479 cmos_irq_disable(cmos, RTC_AIE); 480 481 spin_unlock_irqrestore(&rtc_lock, flags); 482 return 0; 483 } 484 485 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 486 487 static int cmos_procfs(struct device *dev, struct seq_file *seq) 488 { 489 struct cmos_rtc *cmos = dev_get_drvdata(dev); 490 unsigned char rtc_control, valid; 491 492 spin_lock_irq(&rtc_lock); 493 rtc_control = CMOS_READ(RTC_CONTROL); 494 valid = CMOS_READ(RTC_VALID); 495 spin_unlock_irq(&rtc_lock); 496 497 /* NOTE: at least ICH6 reports battery status using a different 498 * (non-RTC) bit; and SQWE is ignored on many current systems. 499 */ 500 seq_printf(seq, 501 "periodic_IRQ\t: %s\n" 502 "update_IRQ\t: %s\n" 503 "HPET_emulated\t: %s\n" 504 // "square_wave\t: %s\n" 505 "BCD\t\t: %s\n" 506 "DST_enable\t: %s\n" 507 "periodic_freq\t: %d\n" 508 "batt_status\t: %s\n", 509 (rtc_control & RTC_PIE) ? "yes" : "no", 510 (rtc_control & RTC_UIE) ? "yes" : "no", 511 is_hpet_enabled() ? "yes" : "no", 512 // (rtc_control & RTC_SQWE) ? "yes" : "no", 513 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 514 (rtc_control & RTC_DST_EN) ? "yes" : "no", 515 cmos->rtc->irq_freq, 516 (valid & RTC_VRT) ? "okay" : "dead"); 517 518 return 0; 519 } 520 521 #else 522 #define cmos_procfs NULL 523 #endif 524 525 static const struct rtc_class_ops cmos_rtc_ops = { 526 .read_time = cmos_read_time, 527 .set_time = cmos_set_time, 528 .read_alarm = cmos_read_alarm, 529 .set_alarm = cmos_set_alarm, 530 .proc = cmos_procfs, 531 .alarm_irq_enable = cmos_alarm_irq_enable, 532 }; 533 534 /*----------------------------------------------------------------*/ 535 536 /* 537 * All these chips have at least 64 bytes of address space, shared by 538 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 539 * by boot firmware. Modern chips have 128 or 256 bytes. 540 */ 541 542 #define NVRAM_OFFSET (RTC_REG_D + 1) 543 544 static int cmos_nvram_read(void *priv, unsigned int off, void *val, 545 size_t count) 546 { 547 unsigned char *buf = val; 548 int retval; 549 550 off += NVRAM_OFFSET; 551 spin_lock_irq(&rtc_lock); 552 for (retval = 0; count; count--, off++, retval++) { 553 if (off < 128) 554 *buf++ = CMOS_READ(off); 555 else if (can_bank2) 556 *buf++ = cmos_read_bank2(off); 557 else 558 break; 559 } 560 spin_unlock_irq(&rtc_lock); 561 562 return retval; 563 } 564 565 static int cmos_nvram_write(void *priv, unsigned int off, void *val, 566 size_t count) 567 { 568 struct cmos_rtc *cmos = priv; 569 unsigned char *buf = val; 570 int retval; 571 572 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 573 * checksum on part of the NVRAM data. That's currently ignored 574 * here. If userspace is smart enough to know what fields of 575 * NVRAM to update, updating checksums is also part of its job. 576 */ 577 off += NVRAM_OFFSET; 578 spin_lock_irq(&rtc_lock); 579 for (retval = 0; count; count--, off++, retval++) { 580 /* don't trash RTC registers */ 581 if (off == cmos->day_alrm 582 || off == cmos->mon_alrm 583 || off == cmos->century) 584 buf++; 585 else if (off < 128) 586 CMOS_WRITE(*buf++, off); 587 else if (can_bank2) 588 cmos_write_bank2(*buf++, off); 589 else 590 break; 591 } 592 spin_unlock_irq(&rtc_lock); 593 594 return retval; 595 } 596 597 /*----------------------------------------------------------------*/ 598 599 static struct cmos_rtc cmos_rtc; 600 601 static irqreturn_t cmos_interrupt(int irq, void *p) 602 { 603 u8 irqstat; 604 u8 rtc_control; 605 606 spin_lock(&rtc_lock); 607 608 /* When the HPET interrupt handler calls us, the interrupt 609 * status is passed as arg1 instead of the irq number. But 610 * always clear irq status, even when HPET is in the way. 611 * 612 * Note that HPET and RTC are almost certainly out of phase, 613 * giving different IRQ status ... 614 */ 615 irqstat = CMOS_READ(RTC_INTR_FLAGS); 616 rtc_control = CMOS_READ(RTC_CONTROL); 617 if (is_hpet_enabled()) 618 irqstat = (unsigned long)irq & 0xF0; 619 620 /* If we were suspended, RTC_CONTROL may not be accurate since the 621 * bios may have cleared it. 622 */ 623 if (!cmos_rtc.suspend_ctrl) 624 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 625 else 626 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 627 628 /* All Linux RTC alarms should be treated as if they were oneshot. 629 * Similar code may be needed in system wakeup paths, in case the 630 * alarm woke the system. 631 */ 632 if (irqstat & RTC_AIE) { 633 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 634 rtc_control &= ~RTC_AIE; 635 CMOS_WRITE(rtc_control, RTC_CONTROL); 636 hpet_mask_rtc_irq_bit(RTC_AIE); 637 CMOS_READ(RTC_INTR_FLAGS); 638 } 639 spin_unlock(&rtc_lock); 640 641 if (is_intr(irqstat)) { 642 rtc_update_irq(p, 1, irqstat); 643 return IRQ_HANDLED; 644 } else 645 return IRQ_NONE; 646 } 647 648 #ifdef CONFIG_PNP 649 #define INITSECTION 650 651 #else 652 #define INITSECTION __init 653 #endif 654 655 static int INITSECTION 656 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 657 { 658 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 659 int retval = 0; 660 unsigned char rtc_control; 661 unsigned address_space; 662 u32 flags = 0; 663 struct nvmem_config nvmem_cfg = { 664 .name = "cmos_nvram", 665 .word_size = 1, 666 .stride = 1, 667 .reg_read = cmos_nvram_read, 668 .reg_write = cmos_nvram_write, 669 .priv = &cmos_rtc, 670 }; 671 672 /* there can be only one ... */ 673 if (cmos_rtc.dev) 674 return -EBUSY; 675 676 if (!ports) 677 return -ENODEV; 678 679 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 680 * 681 * REVISIT non-x86 systems may instead use memory space resources 682 * (needing ioremap etc), not i/o space resources like this ... 683 */ 684 if (RTC_IOMAPPED) 685 ports = request_region(ports->start, resource_size(ports), 686 driver_name); 687 else 688 ports = request_mem_region(ports->start, resource_size(ports), 689 driver_name); 690 if (!ports) { 691 dev_dbg(dev, "i/o registers already in use\n"); 692 return -EBUSY; 693 } 694 695 cmos_rtc.irq = rtc_irq; 696 cmos_rtc.iomem = ports; 697 698 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 699 * driver did, but don't reject unknown configs. Old hardware 700 * won't address 128 bytes. Newer chips have multiple banks, 701 * though they may not be listed in one I/O resource. 702 */ 703 #if defined(CONFIG_ATARI) 704 address_space = 64; 705 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 706 || defined(__sparc__) || defined(__mips__) \ 707 || defined(__powerpc__) 708 address_space = 128; 709 #else 710 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 711 address_space = 128; 712 #endif 713 if (can_bank2 && ports->end > (ports->start + 1)) 714 address_space = 256; 715 716 /* For ACPI systems extension info comes from the FADT. On others, 717 * board specific setup provides it as appropriate. Systems where 718 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 719 * some almost-clones) can provide hooks to make that behave. 720 * 721 * Note that ACPI doesn't preclude putting these registers into 722 * "extended" areas of the chip, including some that we won't yet 723 * expect CMOS_READ and friends to handle. 724 */ 725 if (info) { 726 if (info->flags) 727 flags = info->flags; 728 if (info->address_space) 729 address_space = info->address_space; 730 731 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 732 cmos_rtc.day_alrm = info->rtc_day_alarm; 733 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 734 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 735 if (info->rtc_century && info->rtc_century < 128) 736 cmos_rtc.century = info->rtc_century; 737 738 if (info->wake_on && info->wake_off) { 739 cmos_rtc.wake_on = info->wake_on; 740 cmos_rtc.wake_off = info->wake_off; 741 } 742 } 743 744 cmos_rtc.dev = dev; 745 dev_set_drvdata(dev, &cmos_rtc); 746 747 cmos_rtc.rtc = devm_rtc_allocate_device(dev); 748 if (IS_ERR(cmos_rtc.rtc)) { 749 retval = PTR_ERR(cmos_rtc.rtc); 750 goto cleanup0; 751 } 752 753 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 754 755 spin_lock_irq(&rtc_lock); 756 757 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 758 /* force periodic irq to CMOS reset default of 1024Hz; 759 * 760 * REVISIT it's been reported that at least one x86_64 ALI 761 * mobo doesn't use 32KHz here ... for portability we might 762 * need to do something about other clock frequencies. 763 */ 764 cmos_rtc.rtc->irq_freq = 1024; 765 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 766 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 767 } 768 769 /* disable irqs */ 770 if (is_valid_irq(rtc_irq)) 771 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 772 773 rtc_control = CMOS_READ(RTC_CONTROL); 774 775 spin_unlock_irq(&rtc_lock); 776 777 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 778 dev_warn(dev, "only 24-hr supported\n"); 779 retval = -ENXIO; 780 goto cleanup1; 781 } 782 783 hpet_rtc_timer_init(); 784 785 if (is_valid_irq(rtc_irq)) { 786 irq_handler_t rtc_cmos_int_handler; 787 788 if (is_hpet_enabled()) { 789 rtc_cmos_int_handler = hpet_rtc_interrupt; 790 retval = hpet_register_irq_handler(cmos_interrupt); 791 if (retval) { 792 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 793 dev_warn(dev, "hpet_register_irq_handler " 794 " failed in rtc_init()."); 795 goto cleanup1; 796 } 797 } else 798 rtc_cmos_int_handler = cmos_interrupt; 799 800 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 801 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev), 802 cmos_rtc.rtc); 803 if (retval < 0) { 804 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 805 goto cleanup1; 806 } 807 } 808 809 cmos_rtc.rtc->ops = &cmos_rtc_ops; 810 cmos_rtc.rtc->nvram_old_abi = true; 811 retval = rtc_register_device(cmos_rtc.rtc); 812 if (retval) 813 goto cleanup2; 814 815 /* export at least the first block of NVRAM */ 816 nvmem_cfg.size = address_space - NVRAM_OFFSET; 817 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg)) 818 dev_err(dev, "nvmem registration failed\n"); 819 820 dev_info(dev, "%s%s, %d bytes nvram%s\n", 821 !is_valid_irq(rtc_irq) ? "no alarms" : 822 cmos_rtc.mon_alrm ? "alarms up to one year" : 823 cmos_rtc.day_alrm ? "alarms up to one month" : 824 "alarms up to one day", 825 cmos_rtc.century ? ", y3k" : "", 826 nvmem_cfg.size, 827 is_hpet_enabled() ? ", hpet irqs" : ""); 828 829 return 0; 830 831 cleanup2: 832 if (is_valid_irq(rtc_irq)) 833 free_irq(rtc_irq, cmos_rtc.rtc); 834 cleanup1: 835 cmos_rtc.dev = NULL; 836 cleanup0: 837 if (RTC_IOMAPPED) 838 release_region(ports->start, resource_size(ports)); 839 else 840 release_mem_region(ports->start, resource_size(ports)); 841 return retval; 842 } 843 844 static void cmos_do_shutdown(int rtc_irq) 845 { 846 spin_lock_irq(&rtc_lock); 847 if (is_valid_irq(rtc_irq)) 848 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 849 spin_unlock_irq(&rtc_lock); 850 } 851 852 static void cmos_do_remove(struct device *dev) 853 { 854 struct cmos_rtc *cmos = dev_get_drvdata(dev); 855 struct resource *ports; 856 857 cmos_do_shutdown(cmos->irq); 858 859 if (is_valid_irq(cmos->irq)) { 860 free_irq(cmos->irq, cmos->rtc); 861 hpet_unregister_irq_handler(cmos_interrupt); 862 } 863 864 cmos->rtc = NULL; 865 866 ports = cmos->iomem; 867 if (RTC_IOMAPPED) 868 release_region(ports->start, resource_size(ports)); 869 else 870 release_mem_region(ports->start, resource_size(ports)); 871 cmos->iomem = NULL; 872 873 cmos->dev = NULL; 874 } 875 876 static int cmos_aie_poweroff(struct device *dev) 877 { 878 struct cmos_rtc *cmos = dev_get_drvdata(dev); 879 struct rtc_time now; 880 time64_t t_now; 881 int retval = 0; 882 unsigned char rtc_control; 883 884 if (!cmos->alarm_expires) 885 return -EINVAL; 886 887 spin_lock_irq(&rtc_lock); 888 rtc_control = CMOS_READ(RTC_CONTROL); 889 spin_unlock_irq(&rtc_lock); 890 891 /* We only care about the situation where AIE is disabled. */ 892 if (rtc_control & RTC_AIE) 893 return -EBUSY; 894 895 cmos_read_time(dev, &now); 896 t_now = rtc_tm_to_time64(&now); 897 898 /* 899 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 900 * automatically right after shutdown on some buggy boxes. 901 * This automatic rebooting issue won't happen when the alarm 902 * time is larger than now+1 seconds. 903 * 904 * If the alarm time is equal to now+1 seconds, the issue can be 905 * prevented by cancelling the alarm. 906 */ 907 if (cmos->alarm_expires == t_now + 1) { 908 struct rtc_wkalrm alarm; 909 910 /* Cancel the AIE timer by configuring the past time. */ 911 rtc_time64_to_tm(t_now - 1, &alarm.time); 912 alarm.enabled = 0; 913 retval = cmos_set_alarm(dev, &alarm); 914 } else if (cmos->alarm_expires > t_now + 1) { 915 retval = -EBUSY; 916 } 917 918 return retval; 919 } 920 921 static int cmos_suspend(struct device *dev) 922 { 923 struct cmos_rtc *cmos = dev_get_drvdata(dev); 924 unsigned char tmp; 925 926 /* only the alarm might be a wakeup event source */ 927 spin_lock_irq(&rtc_lock); 928 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 929 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 930 unsigned char mask; 931 932 if (device_may_wakeup(dev)) 933 mask = RTC_IRQMASK & ~RTC_AIE; 934 else 935 mask = RTC_IRQMASK; 936 tmp &= ~mask; 937 CMOS_WRITE(tmp, RTC_CONTROL); 938 hpet_mask_rtc_irq_bit(mask); 939 940 cmos_checkintr(cmos, tmp); 941 } 942 spin_unlock_irq(&rtc_lock); 943 944 if (tmp & RTC_AIE) { 945 cmos->enabled_wake = 1; 946 if (cmos->wake_on) 947 cmos->wake_on(dev); 948 else 949 enable_irq_wake(cmos->irq); 950 } 951 952 cmos_read_alarm(dev, &cmos->saved_wkalrm); 953 954 dev_dbg(dev, "suspend%s, ctrl %02x\n", 955 (tmp & RTC_AIE) ? ", alarm may wake" : "", 956 tmp); 957 958 return 0; 959 } 960 961 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 962 * after a detour through G3 "mechanical off", although the ACPI spec 963 * says wakeup should only work from G1/S4 "hibernate". To most users, 964 * distinctions between S4 and S5 are pointless. So when the hardware 965 * allows, don't draw that distinction. 966 */ 967 static inline int cmos_poweroff(struct device *dev) 968 { 969 if (!IS_ENABLED(CONFIG_PM)) 970 return -ENOSYS; 971 972 return cmos_suspend(dev); 973 } 974 975 static void cmos_check_wkalrm(struct device *dev) 976 { 977 struct cmos_rtc *cmos = dev_get_drvdata(dev); 978 struct rtc_wkalrm current_alarm; 979 time64_t t_current_expires; 980 time64_t t_saved_expires; 981 982 cmos_read_alarm(dev, ¤t_alarm); 983 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 984 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 985 if (t_current_expires != t_saved_expires || 986 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 987 cmos_set_alarm(dev, &cmos->saved_wkalrm); 988 } 989 } 990 991 static void cmos_check_acpi_rtc_status(struct device *dev, 992 unsigned char *rtc_control); 993 994 static int __maybe_unused cmos_resume(struct device *dev) 995 { 996 struct cmos_rtc *cmos = dev_get_drvdata(dev); 997 unsigned char tmp; 998 999 if (cmos->enabled_wake) { 1000 if (cmos->wake_off) 1001 cmos->wake_off(dev); 1002 else 1003 disable_irq_wake(cmos->irq); 1004 cmos->enabled_wake = 0; 1005 } 1006 1007 /* The BIOS might have changed the alarm, restore it */ 1008 cmos_check_wkalrm(dev); 1009 1010 spin_lock_irq(&rtc_lock); 1011 tmp = cmos->suspend_ctrl; 1012 cmos->suspend_ctrl = 0; 1013 /* re-enable any irqs previously active */ 1014 if (tmp & RTC_IRQMASK) { 1015 unsigned char mask; 1016 1017 if (device_may_wakeup(dev)) 1018 hpet_rtc_timer_init(); 1019 1020 do { 1021 CMOS_WRITE(tmp, RTC_CONTROL); 1022 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 1023 1024 mask = CMOS_READ(RTC_INTR_FLAGS); 1025 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 1026 if (!is_hpet_enabled() || !is_intr(mask)) 1027 break; 1028 1029 /* force one-shot behavior if HPET blocked 1030 * the wake alarm's irq 1031 */ 1032 rtc_update_irq(cmos->rtc, 1, mask); 1033 tmp &= ~RTC_AIE; 1034 hpet_mask_rtc_irq_bit(RTC_AIE); 1035 } while (mask & RTC_AIE); 1036 1037 if (tmp & RTC_AIE) 1038 cmos_check_acpi_rtc_status(dev, &tmp); 1039 } 1040 spin_unlock_irq(&rtc_lock); 1041 1042 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 1043 1044 return 0; 1045 } 1046 1047 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 1048 1049 /*----------------------------------------------------------------*/ 1050 1051 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 1052 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 1053 * probably list them in similar PNPBIOS tables; so PNP is more common. 1054 * 1055 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 1056 * predate even PNPBIOS should set up platform_bus devices. 1057 */ 1058 1059 #ifdef CONFIG_ACPI 1060 1061 #include <linux/acpi.h> 1062 1063 static u32 rtc_handler(void *context) 1064 { 1065 struct device *dev = context; 1066 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1067 unsigned char rtc_control = 0; 1068 unsigned char rtc_intr; 1069 unsigned long flags; 1070 1071 spin_lock_irqsave(&rtc_lock, flags); 1072 if (cmos_rtc.suspend_ctrl) 1073 rtc_control = CMOS_READ(RTC_CONTROL); 1074 if (rtc_control & RTC_AIE) { 1075 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 1076 CMOS_WRITE(rtc_control, RTC_CONTROL); 1077 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 1078 rtc_update_irq(cmos->rtc, 1, rtc_intr); 1079 } 1080 spin_unlock_irqrestore(&rtc_lock, flags); 1081 1082 pm_wakeup_hard_event(dev); 1083 acpi_clear_event(ACPI_EVENT_RTC); 1084 acpi_disable_event(ACPI_EVENT_RTC, 0); 1085 return ACPI_INTERRUPT_HANDLED; 1086 } 1087 1088 static inline void rtc_wake_setup(struct device *dev) 1089 { 1090 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 1091 /* 1092 * After the RTC handler is installed, the Fixed_RTC event should 1093 * be disabled. Only when the RTC alarm is set will it be enabled. 1094 */ 1095 acpi_clear_event(ACPI_EVENT_RTC); 1096 acpi_disable_event(ACPI_EVENT_RTC, 0); 1097 } 1098 1099 static void rtc_wake_on(struct device *dev) 1100 { 1101 acpi_clear_event(ACPI_EVENT_RTC); 1102 acpi_enable_event(ACPI_EVENT_RTC, 0); 1103 } 1104 1105 static void rtc_wake_off(struct device *dev) 1106 { 1107 acpi_disable_event(ACPI_EVENT_RTC, 0); 1108 } 1109 1110 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1111 * its device node and pass extra config data. This helps its driver use 1112 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1113 * that this board's RTC is wakeup-capable (per ACPI spec). 1114 */ 1115 static struct cmos_rtc_board_info acpi_rtc_info; 1116 1117 static void cmos_wake_setup(struct device *dev) 1118 { 1119 if (acpi_disabled) 1120 return; 1121 1122 rtc_wake_setup(dev); 1123 acpi_rtc_info.wake_on = rtc_wake_on; 1124 acpi_rtc_info.wake_off = rtc_wake_off; 1125 1126 /* workaround bug in some ACPI tables */ 1127 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1128 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1129 acpi_gbl_FADT.month_alarm); 1130 acpi_gbl_FADT.month_alarm = 0; 1131 } 1132 1133 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1134 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1135 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1136 1137 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1138 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1139 dev_info(dev, "RTC can wake from S4\n"); 1140 1141 dev->platform_data = &acpi_rtc_info; 1142 1143 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1144 device_init_wakeup(dev, 1); 1145 } 1146 1147 static void cmos_check_acpi_rtc_status(struct device *dev, 1148 unsigned char *rtc_control) 1149 { 1150 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1151 acpi_event_status rtc_status; 1152 acpi_status status; 1153 1154 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 1155 return; 1156 1157 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 1158 if (ACPI_FAILURE(status)) { 1159 dev_err(dev, "Could not get RTC status\n"); 1160 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 1161 unsigned char mask; 1162 *rtc_control &= ~RTC_AIE; 1163 CMOS_WRITE(*rtc_control, RTC_CONTROL); 1164 mask = CMOS_READ(RTC_INTR_FLAGS); 1165 rtc_update_irq(cmos->rtc, 1, mask); 1166 } 1167 } 1168 1169 #else 1170 1171 static void cmos_wake_setup(struct device *dev) 1172 { 1173 } 1174 1175 static void cmos_check_acpi_rtc_status(struct device *dev, 1176 unsigned char *rtc_control) 1177 { 1178 } 1179 1180 #endif 1181 1182 #ifdef CONFIG_PNP 1183 1184 #include <linux/pnp.h> 1185 1186 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1187 { 1188 cmos_wake_setup(&pnp->dev); 1189 1190 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { 1191 unsigned int irq = 0; 1192 #ifdef CONFIG_X86 1193 /* Some machines contain a PNP entry for the RTC, but 1194 * don't define the IRQ. It should always be safe to 1195 * hardcode it on systems with a legacy PIC. 1196 */ 1197 if (nr_legacy_irqs()) 1198 irq = 8; 1199 #endif 1200 return cmos_do_probe(&pnp->dev, 1201 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); 1202 } else { 1203 return cmos_do_probe(&pnp->dev, 1204 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1205 pnp_irq(pnp, 0)); 1206 } 1207 } 1208 1209 static void cmos_pnp_remove(struct pnp_dev *pnp) 1210 { 1211 cmos_do_remove(&pnp->dev); 1212 } 1213 1214 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1215 { 1216 struct device *dev = &pnp->dev; 1217 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1218 1219 if (system_state == SYSTEM_POWER_OFF) { 1220 int retval = cmos_poweroff(dev); 1221 1222 if (cmos_aie_poweroff(dev) < 0 && !retval) 1223 return; 1224 } 1225 1226 cmos_do_shutdown(cmos->irq); 1227 } 1228 1229 static const struct pnp_device_id rtc_ids[] = { 1230 { .id = "PNP0b00", }, 1231 { .id = "PNP0b01", }, 1232 { .id = "PNP0b02", }, 1233 { }, 1234 }; 1235 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1236 1237 static struct pnp_driver cmos_pnp_driver = { 1238 .name = (char *) driver_name, 1239 .id_table = rtc_ids, 1240 .probe = cmos_pnp_probe, 1241 .remove = cmos_pnp_remove, 1242 .shutdown = cmos_pnp_shutdown, 1243 1244 /* flag ensures resume() gets called, and stops syslog spam */ 1245 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1246 .driver = { 1247 .pm = &cmos_pm_ops, 1248 }, 1249 }; 1250 1251 #endif /* CONFIG_PNP */ 1252 1253 #ifdef CONFIG_OF 1254 static const struct of_device_id of_cmos_match[] = { 1255 { 1256 .compatible = "motorola,mc146818", 1257 }, 1258 { }, 1259 }; 1260 MODULE_DEVICE_TABLE(of, of_cmos_match); 1261 1262 static __init void cmos_of_init(struct platform_device *pdev) 1263 { 1264 struct device_node *node = pdev->dev.of_node; 1265 const __be32 *val; 1266 1267 if (!node) 1268 return; 1269 1270 val = of_get_property(node, "ctrl-reg", NULL); 1271 if (val) 1272 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1273 1274 val = of_get_property(node, "freq-reg", NULL); 1275 if (val) 1276 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1277 } 1278 #else 1279 static inline void cmos_of_init(struct platform_device *pdev) {} 1280 #endif 1281 /*----------------------------------------------------------------*/ 1282 1283 /* Platform setup should have set up an RTC device, when PNP is 1284 * unavailable ... this could happen even on (older) PCs. 1285 */ 1286 1287 static int __init cmos_platform_probe(struct platform_device *pdev) 1288 { 1289 struct resource *resource; 1290 int irq; 1291 1292 cmos_of_init(pdev); 1293 cmos_wake_setup(&pdev->dev); 1294 1295 if (RTC_IOMAPPED) 1296 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1297 else 1298 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1299 irq = platform_get_irq(pdev, 0); 1300 if (irq < 0) 1301 irq = -1; 1302 1303 return cmos_do_probe(&pdev->dev, resource, irq); 1304 } 1305 1306 static int cmos_platform_remove(struct platform_device *pdev) 1307 { 1308 cmos_do_remove(&pdev->dev); 1309 return 0; 1310 } 1311 1312 static void cmos_platform_shutdown(struct platform_device *pdev) 1313 { 1314 struct device *dev = &pdev->dev; 1315 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1316 1317 if (system_state == SYSTEM_POWER_OFF) { 1318 int retval = cmos_poweroff(dev); 1319 1320 if (cmos_aie_poweroff(dev) < 0 && !retval) 1321 return; 1322 } 1323 1324 cmos_do_shutdown(cmos->irq); 1325 } 1326 1327 /* work with hotplug and coldplug */ 1328 MODULE_ALIAS("platform:rtc_cmos"); 1329 1330 static struct platform_driver cmos_platform_driver = { 1331 .remove = cmos_platform_remove, 1332 .shutdown = cmos_platform_shutdown, 1333 .driver = { 1334 .name = driver_name, 1335 .pm = &cmos_pm_ops, 1336 .of_match_table = of_match_ptr(of_cmos_match), 1337 } 1338 }; 1339 1340 #ifdef CONFIG_PNP 1341 static bool pnp_driver_registered; 1342 #endif 1343 static bool platform_driver_registered; 1344 1345 static int __init cmos_init(void) 1346 { 1347 int retval = 0; 1348 1349 #ifdef CONFIG_PNP 1350 retval = pnp_register_driver(&cmos_pnp_driver); 1351 if (retval == 0) 1352 pnp_driver_registered = true; 1353 #endif 1354 1355 if (!cmos_rtc.dev) { 1356 retval = platform_driver_probe(&cmos_platform_driver, 1357 cmos_platform_probe); 1358 if (retval == 0) 1359 platform_driver_registered = true; 1360 } 1361 1362 if (retval == 0) 1363 return 0; 1364 1365 #ifdef CONFIG_PNP 1366 if (pnp_driver_registered) 1367 pnp_unregister_driver(&cmos_pnp_driver); 1368 #endif 1369 return retval; 1370 } 1371 module_init(cmos_init); 1372 1373 static void __exit cmos_exit(void) 1374 { 1375 #ifdef CONFIG_PNP 1376 if (pnp_driver_registered) 1377 pnp_unregister_driver(&cmos_pnp_driver); 1378 #endif 1379 if (platform_driver_registered) 1380 platform_driver_unregister(&cmos_platform_driver); 1381 } 1382 module_exit(cmos_exit); 1383 1384 1385 MODULE_AUTHOR("David Brownell"); 1386 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1387 MODULE_LICENSE("GPL"); 1388