1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/mod_devicetable.h> 38 39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 40 #include <asm-generic/rtc.h> 41 42 43 struct cmos_rtc { 44 struct rtc_device *rtc; 45 struct device *dev; 46 int irq; 47 struct resource *iomem; 48 49 void (*wake_on)(struct device *); 50 void (*wake_off)(struct device *); 51 52 u8 enabled_wake; 53 u8 suspend_ctrl; 54 55 /* newer hardware extends the original register set */ 56 u8 day_alrm; 57 u8 mon_alrm; 58 u8 century; 59 }; 60 61 /* both platform and pnp busses use negative numbers for invalid irqs */ 62 #define is_valid_irq(n) ((n) >= 0) 63 64 static const char driver_name[] = "rtc_cmos"; 65 66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 67 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 68 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 69 */ 70 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 71 72 static inline int is_intr(u8 rtc_intr) 73 { 74 if (!(rtc_intr & RTC_IRQF)) 75 return 0; 76 return rtc_intr & RTC_IRQMASK; 77 } 78 79 /*----------------------------------------------------------------*/ 80 81 static int cmos_read_time(struct device *dev, struct rtc_time *t) 82 { 83 /* REVISIT: if the clock has a "century" register, use 84 * that instead of the heuristic in get_rtc_time(). 85 * That'll make Y3K compatility (year > 2070) easy! 86 */ 87 get_rtc_time(t); 88 return 0; 89 } 90 91 static int cmos_set_time(struct device *dev, struct rtc_time *t) 92 { 93 /* REVISIT: set the "century" register if available 94 * 95 * NOTE: this ignores the issue whereby updating the seconds 96 * takes effect exactly 500ms after we write the register. 97 * (Also queueing and other delays before we get this far.) 98 */ 99 return set_rtc_time(t); 100 } 101 102 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 103 { 104 struct cmos_rtc *cmos = dev_get_drvdata(dev); 105 unsigned char rtc_control; 106 107 if (!is_valid_irq(cmos->irq)) 108 return -EIO; 109 110 /* Basic alarms only support hour, minute, and seconds fields. 111 * Some also support day and month, for alarms up to a year in 112 * the future. 113 */ 114 t->time.tm_mday = -1; 115 t->time.tm_mon = -1; 116 117 spin_lock_irq(&rtc_lock); 118 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 119 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 120 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 121 122 if (cmos->day_alrm) { 123 t->time.tm_mday = CMOS_READ(cmos->day_alrm); 124 if (!t->time.tm_mday) 125 t->time.tm_mday = -1; 126 127 if (cmos->mon_alrm) { 128 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 129 if (!t->time.tm_mon) 130 t->time.tm_mon = -1; 131 } 132 } 133 134 rtc_control = CMOS_READ(RTC_CONTROL); 135 spin_unlock_irq(&rtc_lock); 136 137 /* REVISIT this assumes PC style usage: always BCD */ 138 139 if (((unsigned)t->time.tm_sec) < 0x60) 140 t->time.tm_sec = BCD2BIN(t->time.tm_sec); 141 else 142 t->time.tm_sec = -1; 143 if (((unsigned)t->time.tm_min) < 0x60) 144 t->time.tm_min = BCD2BIN(t->time.tm_min); 145 else 146 t->time.tm_min = -1; 147 if (((unsigned)t->time.tm_hour) < 0x24) 148 t->time.tm_hour = BCD2BIN(t->time.tm_hour); 149 else 150 t->time.tm_hour = -1; 151 152 if (cmos->day_alrm) { 153 if (((unsigned)t->time.tm_mday) <= 0x31) 154 t->time.tm_mday = BCD2BIN(t->time.tm_mday); 155 else 156 t->time.tm_mday = -1; 157 if (cmos->mon_alrm) { 158 if (((unsigned)t->time.tm_mon) <= 0x12) 159 t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1; 160 else 161 t->time.tm_mon = -1; 162 } 163 } 164 t->time.tm_year = -1; 165 166 t->enabled = !!(rtc_control & RTC_AIE); 167 t->pending = 0; 168 169 return 0; 170 } 171 172 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 173 { 174 struct cmos_rtc *cmos = dev_get_drvdata(dev); 175 unsigned char mon, mday, hrs, min, sec; 176 unsigned char rtc_control, rtc_intr; 177 178 if (!is_valid_irq(cmos->irq)) 179 return -EIO; 180 181 /* REVISIT this assumes PC style usage: always BCD */ 182 183 /* Writing 0xff means "don't care" or "match all". */ 184 185 mon = t->time.tm_mon; 186 mon = (mon < 12) ? BIN2BCD(mon) : 0xff; 187 mon++; 188 189 mday = t->time.tm_mday; 190 mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff; 191 192 hrs = t->time.tm_hour; 193 hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff; 194 195 min = t->time.tm_min; 196 min = (min < 60) ? BIN2BCD(min) : 0xff; 197 198 sec = t->time.tm_sec; 199 sec = (sec < 60) ? BIN2BCD(sec) : 0xff; 200 201 spin_lock_irq(&rtc_lock); 202 203 /* next rtc irq must not be from previous alarm setting */ 204 rtc_control = CMOS_READ(RTC_CONTROL); 205 rtc_control &= ~RTC_AIE; 206 CMOS_WRITE(rtc_control, RTC_CONTROL); 207 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 208 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 209 if (is_intr(rtc_intr)) 210 rtc_update_irq(cmos->rtc, 1, rtc_intr); 211 212 /* update alarm */ 213 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 214 CMOS_WRITE(min, RTC_MINUTES_ALARM); 215 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 216 217 /* the system may support an "enhanced" alarm */ 218 if (cmos->day_alrm) { 219 CMOS_WRITE(mday, cmos->day_alrm); 220 if (cmos->mon_alrm) 221 CMOS_WRITE(mon, cmos->mon_alrm); 222 } 223 224 if (t->enabled) { 225 rtc_control |= RTC_AIE; 226 CMOS_WRITE(rtc_control, RTC_CONTROL); 227 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 228 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 229 if (is_intr(rtc_intr)) 230 rtc_update_irq(cmos->rtc, 1, rtc_intr); 231 } 232 233 spin_unlock_irq(&rtc_lock); 234 235 return 0; 236 } 237 238 static int cmos_irq_set_freq(struct device *dev, int freq) 239 { 240 struct cmos_rtc *cmos = dev_get_drvdata(dev); 241 int f; 242 unsigned long flags; 243 244 if (!is_valid_irq(cmos->irq)) 245 return -ENXIO; 246 247 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */ 248 f = ffs(freq); 249 if (f != 0) { 250 if (f-- > 16 || freq != (1 << f)) 251 return -EINVAL; 252 f = 16 - f; 253 } 254 255 spin_lock_irqsave(&rtc_lock, flags); 256 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT); 257 spin_unlock_irqrestore(&rtc_lock, flags); 258 259 return 0; 260 } 261 262 static int cmos_irq_set_state(struct device *dev, int enabled) 263 { 264 struct cmos_rtc *cmos = dev_get_drvdata(dev); 265 unsigned char rtc_control, rtc_intr; 266 unsigned long flags; 267 268 if (!is_valid_irq(cmos->irq)) 269 return -ENXIO; 270 271 spin_lock_irqsave(&rtc_lock, flags); 272 rtc_control = CMOS_READ(RTC_CONTROL); 273 274 if (enabled) 275 rtc_control |= RTC_PIE; 276 else 277 rtc_control &= ~RTC_PIE; 278 279 CMOS_WRITE(rtc_control, RTC_CONTROL); 280 281 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 282 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 283 if (is_intr(rtc_intr)) 284 rtc_update_irq(cmos->rtc, 1, rtc_intr); 285 286 spin_unlock_irqrestore(&rtc_lock, flags); 287 return 0; 288 } 289 290 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE) 291 292 static int 293 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 294 { 295 struct cmos_rtc *cmos = dev_get_drvdata(dev); 296 unsigned char rtc_control, rtc_intr; 297 unsigned long flags; 298 299 switch (cmd) { 300 case RTC_AIE_OFF: 301 case RTC_AIE_ON: 302 case RTC_UIE_OFF: 303 case RTC_UIE_ON: 304 case RTC_PIE_OFF: 305 case RTC_PIE_ON: 306 if (!is_valid_irq(cmos->irq)) 307 return -EINVAL; 308 break; 309 default: 310 return -ENOIOCTLCMD; 311 } 312 313 spin_lock_irqsave(&rtc_lock, flags); 314 rtc_control = CMOS_READ(RTC_CONTROL); 315 switch (cmd) { 316 case RTC_AIE_OFF: /* alarm off */ 317 rtc_control &= ~RTC_AIE; 318 break; 319 case RTC_AIE_ON: /* alarm on */ 320 rtc_control |= RTC_AIE; 321 break; 322 case RTC_UIE_OFF: /* update off */ 323 rtc_control &= ~RTC_UIE; 324 break; 325 case RTC_UIE_ON: /* update on */ 326 rtc_control |= RTC_UIE; 327 break; 328 case RTC_PIE_OFF: /* periodic off */ 329 rtc_control &= ~RTC_PIE; 330 break; 331 case RTC_PIE_ON: /* periodic on */ 332 rtc_control |= RTC_PIE; 333 break; 334 } 335 CMOS_WRITE(rtc_control, RTC_CONTROL); 336 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 337 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 338 if (is_intr(rtc_intr)) 339 rtc_update_irq(cmos->rtc, 1, rtc_intr); 340 spin_unlock_irqrestore(&rtc_lock, flags); 341 return 0; 342 } 343 344 #else 345 #define cmos_rtc_ioctl NULL 346 #endif 347 348 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 349 350 static int cmos_procfs(struct device *dev, struct seq_file *seq) 351 { 352 struct cmos_rtc *cmos = dev_get_drvdata(dev); 353 unsigned char rtc_control, valid; 354 355 spin_lock_irq(&rtc_lock); 356 rtc_control = CMOS_READ(RTC_CONTROL); 357 valid = CMOS_READ(RTC_VALID); 358 spin_unlock_irq(&rtc_lock); 359 360 /* NOTE: at least ICH6 reports battery status using a different 361 * (non-RTC) bit; and SQWE is ignored on many current systems. 362 */ 363 return seq_printf(seq, 364 "periodic_IRQ\t: %s\n" 365 "update_IRQ\t: %s\n" 366 // "square_wave\t: %s\n" 367 // "BCD\t\t: %s\n" 368 "DST_enable\t: %s\n" 369 "periodic_freq\t: %d\n" 370 "batt_status\t: %s\n", 371 (rtc_control & RTC_PIE) ? "yes" : "no", 372 (rtc_control & RTC_UIE) ? "yes" : "no", 373 // (rtc_control & RTC_SQWE) ? "yes" : "no", 374 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 375 (rtc_control & RTC_DST_EN) ? "yes" : "no", 376 cmos->rtc->irq_freq, 377 (valid & RTC_VRT) ? "okay" : "dead"); 378 } 379 380 #else 381 #define cmos_procfs NULL 382 #endif 383 384 static const struct rtc_class_ops cmos_rtc_ops = { 385 .ioctl = cmos_rtc_ioctl, 386 .read_time = cmos_read_time, 387 .set_time = cmos_set_time, 388 .read_alarm = cmos_read_alarm, 389 .set_alarm = cmos_set_alarm, 390 .proc = cmos_procfs, 391 .irq_set_freq = cmos_irq_set_freq, 392 .irq_set_state = cmos_irq_set_state, 393 }; 394 395 /*----------------------------------------------------------------*/ 396 397 static struct cmos_rtc cmos_rtc; 398 399 static irqreturn_t cmos_interrupt(int irq, void *p) 400 { 401 u8 irqstat; 402 403 spin_lock(&rtc_lock); 404 irqstat = CMOS_READ(RTC_INTR_FLAGS); 405 irqstat &= (CMOS_READ(RTC_CONTROL) & RTC_IRQMASK) | RTC_IRQF; 406 spin_unlock(&rtc_lock); 407 408 if (is_intr(irqstat)) { 409 rtc_update_irq(p, 1, irqstat); 410 return IRQ_HANDLED; 411 } else 412 return IRQ_NONE; 413 } 414 415 #ifdef CONFIG_PNP 416 #define is_pnp() 1 417 #define INITSECTION 418 419 #else 420 #define is_pnp() 0 421 #define INITSECTION __init 422 #endif 423 424 static int INITSECTION 425 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 426 { 427 struct cmos_rtc_board_info *info = dev->platform_data; 428 int retval = 0; 429 unsigned char rtc_control; 430 431 /* there can be only one ... */ 432 if (cmos_rtc.dev) 433 return -EBUSY; 434 435 if (!ports) 436 return -ENODEV; 437 438 cmos_rtc.irq = rtc_irq; 439 cmos_rtc.iomem = ports; 440 441 /* For ACPI systems extension info comes from the FADT. On others, 442 * board specific setup provides it as appropriate. Systems where 443 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 444 * some almost-clones) can provide hooks to make that behave. 445 */ 446 if (info) { 447 cmos_rtc.day_alrm = info->rtc_day_alarm; 448 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 449 cmos_rtc.century = info->rtc_century; 450 451 if (info->wake_on && info->wake_off) { 452 cmos_rtc.wake_on = info->wake_on; 453 cmos_rtc.wake_off = info->wake_off; 454 } 455 } 456 457 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 458 &cmos_rtc_ops, THIS_MODULE); 459 if (IS_ERR(cmos_rtc.rtc)) 460 return PTR_ERR(cmos_rtc.rtc); 461 462 cmos_rtc.dev = dev; 463 dev_set_drvdata(dev, &cmos_rtc); 464 465 /* platform and pnp busses handle resources incompatibly. 466 * 467 * REVISIT for non-x86 systems we may need to handle io memory 468 * resources: ioremap them, and request_mem_region(). 469 */ 470 if (is_pnp()) { 471 retval = request_resource(&ioport_resource, ports); 472 if (retval < 0) { 473 dev_dbg(dev, "i/o registers already in use\n"); 474 goto cleanup0; 475 } 476 } 477 rename_region(ports, cmos_rtc.rtc->dev.bus_id); 478 479 spin_lock_irq(&rtc_lock); 480 481 /* force periodic irq to CMOS reset default of 1024Hz; 482 * 483 * REVISIT it's been reported that at least one x86_64 ALI mobo 484 * doesn't use 32KHz here ... for portability we might need to 485 * do something about other clock frequencies. 486 */ 487 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 488 cmos_rtc.rtc->irq_freq = 1024; 489 490 /* disable irqs. 491 * 492 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 493 * allegedly some older rtcs need that to handle irqs properly 494 */ 495 rtc_control = CMOS_READ(RTC_CONTROL); 496 rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE); 497 CMOS_WRITE(rtc_control, RTC_CONTROL); 498 CMOS_READ(RTC_INTR_FLAGS); 499 500 spin_unlock_irq(&rtc_lock); 501 502 /* FIXME teach the alarm code how to handle binary mode; 503 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 504 */ 505 if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) { 506 dev_dbg(dev, "only 24-hr BCD mode supported\n"); 507 retval = -ENXIO; 508 goto cleanup1; 509 } 510 511 if (is_valid_irq(rtc_irq)) 512 retval = request_irq(rtc_irq, cmos_interrupt, IRQF_DISABLED, 513 cmos_rtc.rtc->dev.bus_id, 514 cmos_rtc.rtc); 515 if (retval < 0) { 516 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 517 goto cleanup1; 518 } 519 520 /* REVISIT optionally make 50 or 114 bytes NVRAM available, 521 * like rtc-ds1553, rtc-ds1742 ... this will often include 522 * registers for century, and day/month alarm. 523 */ 524 525 pr_info("%s: alarms up to one %s%s\n", 526 cmos_rtc.rtc->dev.bus_id, 527 is_valid_irq(rtc_irq) 528 ? (cmos_rtc.mon_alrm 529 ? "year" 530 : (cmos_rtc.day_alrm 531 ? "month" : "day")) 532 : "no", 533 cmos_rtc.century ? ", y3k" : "" 534 ); 535 536 return 0; 537 538 cleanup1: 539 rename_region(ports, NULL); 540 cleanup0: 541 rtc_device_unregister(cmos_rtc.rtc); 542 return retval; 543 } 544 545 static void cmos_do_shutdown(void) 546 { 547 unsigned char rtc_control; 548 549 spin_lock_irq(&rtc_lock); 550 rtc_control = CMOS_READ(RTC_CONTROL); 551 rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE); 552 CMOS_WRITE(rtc_control, RTC_CONTROL); 553 CMOS_READ(RTC_INTR_FLAGS); 554 spin_unlock_irq(&rtc_lock); 555 } 556 557 static void __exit cmos_do_remove(struct device *dev) 558 { 559 struct cmos_rtc *cmos = dev_get_drvdata(dev); 560 561 cmos_do_shutdown(); 562 563 if (is_pnp()) 564 release_resource(cmos->iomem); 565 rename_region(cmos->iomem, NULL); 566 567 if (is_valid_irq(cmos->irq)) 568 free_irq(cmos->irq, cmos_rtc.rtc); 569 570 rtc_device_unregister(cmos_rtc.rtc); 571 572 cmos_rtc.dev = NULL; 573 dev_set_drvdata(dev, NULL); 574 } 575 576 #ifdef CONFIG_PM 577 578 static int cmos_suspend(struct device *dev, pm_message_t mesg) 579 { 580 struct cmos_rtc *cmos = dev_get_drvdata(dev); 581 int do_wake = device_may_wakeup(dev); 582 unsigned char tmp; 583 584 /* only the alarm might be a wakeup event source */ 585 spin_lock_irq(&rtc_lock); 586 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 587 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 588 unsigned char irqstat; 589 590 if (do_wake) 591 tmp &= ~(RTC_PIE|RTC_UIE); 592 else 593 tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE); 594 CMOS_WRITE(tmp, RTC_CONTROL); 595 irqstat = CMOS_READ(RTC_INTR_FLAGS); 596 irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF; 597 if (is_intr(irqstat)) 598 rtc_update_irq(cmos->rtc, 1, irqstat); 599 } 600 spin_unlock_irq(&rtc_lock); 601 602 if (tmp & RTC_AIE) { 603 cmos->enabled_wake = 1; 604 if (cmos->wake_on) 605 cmos->wake_on(dev); 606 else 607 enable_irq_wake(cmos->irq); 608 } 609 610 pr_debug("%s: suspend%s, ctrl %02x\n", 611 cmos_rtc.rtc->dev.bus_id, 612 (tmp & RTC_AIE) ? ", alarm may wake" : "", 613 tmp); 614 615 return 0; 616 } 617 618 static int cmos_resume(struct device *dev) 619 { 620 struct cmos_rtc *cmos = dev_get_drvdata(dev); 621 unsigned char tmp = cmos->suspend_ctrl; 622 623 /* re-enable any irqs previously active */ 624 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 625 626 if (cmos->enabled_wake) { 627 if (cmos->wake_off) 628 cmos->wake_off(dev); 629 else 630 disable_irq_wake(cmos->irq); 631 cmos->enabled_wake = 0; 632 } 633 634 spin_lock_irq(&rtc_lock); 635 CMOS_WRITE(tmp, RTC_CONTROL); 636 tmp = CMOS_READ(RTC_INTR_FLAGS); 637 tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 638 if (is_intr(tmp)) 639 rtc_update_irq(cmos->rtc, 1, tmp); 640 spin_unlock_irq(&rtc_lock); 641 } 642 643 pr_debug("%s: resume, ctrl %02x\n", 644 cmos_rtc.rtc->dev.bus_id, 645 cmos->suspend_ctrl); 646 647 648 return 0; 649 } 650 651 #else 652 #define cmos_suspend NULL 653 #define cmos_resume NULL 654 #endif 655 656 /*----------------------------------------------------------------*/ 657 658 /* The "CMOS" RTC normally lives on the platform_bus. On ACPI systems, 659 * the device node will always be created as a PNPACPI device. 660 */ 661 662 #ifdef CONFIG_PNP 663 664 #include <linux/pnp.h> 665 666 static int __devinit 667 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 668 { 669 /* REVISIT paranoia argues for a shutdown notifier, since PNP 670 * drivers can't provide shutdown() methods to disable IRQs. 671 * Or better yet, fix PNP to allow those methods... 672 */ 673 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0)) 674 /* Some machines contain a PNP entry for the RTC, but 675 * don't define the IRQ. It should always be safe to 676 * hardcode it in these cases 677 */ 678 return cmos_do_probe(&pnp->dev, &pnp->res.port_resource[0], 8); 679 else 680 return cmos_do_probe(&pnp->dev, 681 &pnp->res.port_resource[0], 682 pnp->res.irq_resource[0].start); 683 } 684 685 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 686 { 687 cmos_do_remove(&pnp->dev); 688 } 689 690 #ifdef CONFIG_PM 691 692 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg) 693 { 694 return cmos_suspend(&pnp->dev, mesg); 695 } 696 697 static int cmos_pnp_resume(struct pnp_dev *pnp) 698 { 699 return cmos_resume(&pnp->dev); 700 } 701 702 #else 703 #define cmos_pnp_suspend NULL 704 #define cmos_pnp_resume NULL 705 #endif 706 707 708 static const struct pnp_device_id rtc_ids[] = { 709 { .id = "PNP0b00", }, 710 { .id = "PNP0b01", }, 711 { .id = "PNP0b02", }, 712 { }, 713 }; 714 MODULE_DEVICE_TABLE(pnp, rtc_ids); 715 716 static struct pnp_driver cmos_pnp_driver = { 717 .name = (char *) driver_name, 718 .id_table = rtc_ids, 719 .probe = cmos_pnp_probe, 720 .remove = __exit_p(cmos_pnp_remove), 721 722 /* flag ensures resume() gets called, and stops syslog spam */ 723 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 724 .suspend = cmos_pnp_suspend, 725 .resume = cmos_pnp_resume, 726 }; 727 728 static int __init cmos_init(void) 729 { 730 return pnp_register_driver(&cmos_pnp_driver); 731 } 732 module_init(cmos_init); 733 734 static void __exit cmos_exit(void) 735 { 736 pnp_unregister_driver(&cmos_pnp_driver); 737 } 738 module_exit(cmos_exit); 739 740 #else /* no PNP */ 741 742 /*----------------------------------------------------------------*/ 743 744 /* Platform setup should have set up an RTC device, when PNP is 745 * unavailable ... this could happen even on (older) PCs. 746 */ 747 748 static int __init cmos_platform_probe(struct platform_device *pdev) 749 { 750 return cmos_do_probe(&pdev->dev, 751 platform_get_resource(pdev, IORESOURCE_IO, 0), 752 platform_get_irq(pdev, 0)); 753 } 754 755 static int __exit cmos_platform_remove(struct platform_device *pdev) 756 { 757 cmos_do_remove(&pdev->dev); 758 return 0; 759 } 760 761 static void cmos_platform_shutdown(struct platform_device *pdev) 762 { 763 cmos_do_shutdown(); 764 } 765 766 static struct platform_driver cmos_platform_driver = { 767 .remove = __exit_p(cmos_platform_remove), 768 .shutdown = cmos_platform_shutdown, 769 .driver = { 770 .name = (char *) driver_name, 771 .suspend = cmos_suspend, 772 .resume = cmos_resume, 773 } 774 }; 775 776 static int __init cmos_init(void) 777 { 778 return platform_driver_probe(&cmos_platform_driver, 779 cmos_platform_probe); 780 } 781 module_init(cmos_init); 782 783 static void __exit cmos_exit(void) 784 { 785 platform_driver_unregister(&cmos_platform_driver); 786 } 787 module_exit(cmos_exit); 788 789 790 #endif /* !PNP */ 791 792 MODULE_AUTHOR("David Brownell"); 793 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 794 MODULE_LICENSE("GPL"); 795