xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision c21b37f6)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
41 
42 
43 struct cmos_rtc {
44 	struct rtc_device	*rtc;
45 	struct device		*dev;
46 	int			irq;
47 	struct resource		*iomem;
48 
49 	void			(*wake_on)(struct device *);
50 	void			(*wake_off)(struct device *);
51 
52 	u8			enabled_wake;
53 	u8			suspend_ctrl;
54 
55 	/* newer hardware extends the original register set */
56 	u8			day_alrm;
57 	u8			mon_alrm;
58 	u8			century;
59 };
60 
61 /* both platform and pnp busses use negative numbers for invalid irqs */
62 #define is_valid_irq(n)		((n) >= 0)
63 
64 static const char driver_name[] = "rtc_cmos";
65 
66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
67  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
68  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
69  */
70 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
71 
72 static inline int is_intr(u8 rtc_intr)
73 {
74 	if (!(rtc_intr & RTC_IRQF))
75 		return 0;
76 	return rtc_intr & RTC_IRQMASK;
77 }
78 
79 /*----------------------------------------------------------------*/
80 
81 static int cmos_read_time(struct device *dev, struct rtc_time *t)
82 {
83 	/* REVISIT:  if the clock has a "century" register, use
84 	 * that instead of the heuristic in get_rtc_time().
85 	 * That'll make Y3K compatility (year > 2070) easy!
86 	 */
87 	get_rtc_time(t);
88 	return 0;
89 }
90 
91 static int cmos_set_time(struct device *dev, struct rtc_time *t)
92 {
93 	/* REVISIT:  set the "century" register if available
94 	 *
95 	 * NOTE: this ignores the issue whereby updating the seconds
96 	 * takes effect exactly 500ms after we write the register.
97 	 * (Also queueing and other delays before we get this far.)
98 	 */
99 	return set_rtc_time(t);
100 }
101 
102 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
103 {
104 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
105 	unsigned char	rtc_control;
106 
107 	if (!is_valid_irq(cmos->irq))
108 		return -EIO;
109 
110 	/* Basic alarms only support hour, minute, and seconds fields.
111 	 * Some also support day and month, for alarms up to a year in
112 	 * the future.
113 	 */
114 	t->time.tm_mday = -1;
115 	t->time.tm_mon = -1;
116 
117 	spin_lock_irq(&rtc_lock);
118 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
119 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
120 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
121 
122 	if (cmos->day_alrm) {
123 		t->time.tm_mday = CMOS_READ(cmos->day_alrm);
124 		if (!t->time.tm_mday)
125 			t->time.tm_mday = -1;
126 
127 		if (cmos->mon_alrm) {
128 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
129 			if (!t->time.tm_mon)
130 				t->time.tm_mon = -1;
131 		}
132 	}
133 
134 	rtc_control = CMOS_READ(RTC_CONTROL);
135 	spin_unlock_irq(&rtc_lock);
136 
137 	/* REVISIT this assumes PC style usage:  always BCD */
138 
139 	if (((unsigned)t->time.tm_sec) < 0x60)
140 		t->time.tm_sec = BCD2BIN(t->time.tm_sec);
141 	else
142 		t->time.tm_sec = -1;
143 	if (((unsigned)t->time.tm_min) < 0x60)
144 		t->time.tm_min = BCD2BIN(t->time.tm_min);
145 	else
146 		t->time.tm_min = -1;
147 	if (((unsigned)t->time.tm_hour) < 0x24)
148 		t->time.tm_hour = BCD2BIN(t->time.tm_hour);
149 	else
150 		t->time.tm_hour = -1;
151 
152 	if (cmos->day_alrm) {
153 		if (((unsigned)t->time.tm_mday) <= 0x31)
154 			t->time.tm_mday = BCD2BIN(t->time.tm_mday);
155 		else
156 			t->time.tm_mday = -1;
157 		if (cmos->mon_alrm) {
158 			if (((unsigned)t->time.tm_mon) <= 0x12)
159 				t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
160 			else
161 				t->time.tm_mon = -1;
162 		}
163 	}
164 	t->time.tm_year = -1;
165 
166 	t->enabled = !!(rtc_control & RTC_AIE);
167 	t->pending = 0;
168 
169 	return 0;
170 }
171 
172 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
173 {
174 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
175 	unsigned char	mon, mday, hrs, min, sec;
176 	unsigned char	rtc_control, rtc_intr;
177 
178 	if (!is_valid_irq(cmos->irq))
179 		return -EIO;
180 
181 	/* REVISIT this assumes PC style usage:  always BCD */
182 
183 	/* Writing 0xff means "don't care" or "match all".  */
184 
185 	mon = t->time.tm_mon;
186 	mon = (mon < 12) ? BIN2BCD(mon) : 0xff;
187 	mon++;
188 
189 	mday = t->time.tm_mday;
190 	mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
191 
192 	hrs = t->time.tm_hour;
193 	hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
194 
195 	min = t->time.tm_min;
196 	min = (min < 60) ? BIN2BCD(min) : 0xff;
197 
198 	sec = t->time.tm_sec;
199 	sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
200 
201 	spin_lock_irq(&rtc_lock);
202 
203 	/* next rtc irq must not be from previous alarm setting */
204 	rtc_control = CMOS_READ(RTC_CONTROL);
205 	rtc_control &= ~RTC_AIE;
206 	CMOS_WRITE(rtc_control, RTC_CONTROL);
207 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
208 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
209 	if (is_intr(rtc_intr))
210 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
211 
212 	/* update alarm */
213 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
214 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
215 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
216 
217 	/* the system may support an "enhanced" alarm */
218 	if (cmos->day_alrm) {
219 		CMOS_WRITE(mday, cmos->day_alrm);
220 		if (cmos->mon_alrm)
221 			CMOS_WRITE(mon, cmos->mon_alrm);
222 	}
223 
224 	if (t->enabled) {
225 		rtc_control |= RTC_AIE;
226 		CMOS_WRITE(rtc_control, RTC_CONTROL);
227 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
228 		rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
229 		if (is_intr(rtc_intr))
230 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
231 	}
232 
233 	spin_unlock_irq(&rtc_lock);
234 
235 	return 0;
236 }
237 
238 static int cmos_irq_set_freq(struct device *dev, int freq)
239 {
240 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
241 	int		f;
242 	unsigned long	flags;
243 
244 	if (!is_valid_irq(cmos->irq))
245 		return -ENXIO;
246 
247 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
248 	f = ffs(freq);
249 	if (f != 0) {
250 		if (f-- > 16 || freq != (1 << f))
251 			return -EINVAL;
252 		f = 16 - f;
253 	}
254 
255 	spin_lock_irqsave(&rtc_lock, flags);
256 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
257 	spin_unlock_irqrestore(&rtc_lock, flags);
258 
259 	return 0;
260 }
261 
262 static int cmos_irq_set_state(struct device *dev, int enabled)
263 {
264 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
265 	unsigned char	rtc_control, rtc_intr;
266 	unsigned long	flags;
267 
268 	if (!is_valid_irq(cmos->irq))
269 		return -ENXIO;
270 
271 	spin_lock_irqsave(&rtc_lock, flags);
272 	rtc_control = CMOS_READ(RTC_CONTROL);
273 
274 	if (enabled)
275 		rtc_control |= RTC_PIE;
276 	else
277 		rtc_control &= ~RTC_PIE;
278 
279 	CMOS_WRITE(rtc_control, RTC_CONTROL);
280 
281 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
282 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
283 	if (is_intr(rtc_intr))
284 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
285 
286 	spin_unlock_irqrestore(&rtc_lock, flags);
287 	return 0;
288 }
289 
290 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
291 
292 static int
293 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
294 {
295 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
296 	unsigned char	rtc_control, rtc_intr;
297 	unsigned long	flags;
298 
299 	switch (cmd) {
300 	case RTC_AIE_OFF:
301 	case RTC_AIE_ON:
302 	case RTC_UIE_OFF:
303 	case RTC_UIE_ON:
304 	case RTC_PIE_OFF:
305 	case RTC_PIE_ON:
306 		if (!is_valid_irq(cmos->irq))
307 			return -EINVAL;
308 		break;
309 	default:
310 		return -ENOIOCTLCMD;
311 	}
312 
313 	spin_lock_irqsave(&rtc_lock, flags);
314 	rtc_control = CMOS_READ(RTC_CONTROL);
315 	switch (cmd) {
316 	case RTC_AIE_OFF:	/* alarm off */
317 		rtc_control &= ~RTC_AIE;
318 		break;
319 	case RTC_AIE_ON:	/* alarm on */
320 		rtc_control |= RTC_AIE;
321 		break;
322 	case RTC_UIE_OFF:	/* update off */
323 		rtc_control &= ~RTC_UIE;
324 		break;
325 	case RTC_UIE_ON:	/* update on */
326 		rtc_control |= RTC_UIE;
327 		break;
328 	case RTC_PIE_OFF:	/* periodic off */
329 		rtc_control &= ~RTC_PIE;
330 		break;
331 	case RTC_PIE_ON:	/* periodic on */
332 		rtc_control |= RTC_PIE;
333 		break;
334 	}
335 	CMOS_WRITE(rtc_control, RTC_CONTROL);
336 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
337 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
338 	if (is_intr(rtc_intr))
339 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
340 	spin_unlock_irqrestore(&rtc_lock, flags);
341 	return 0;
342 }
343 
344 #else
345 #define	cmos_rtc_ioctl	NULL
346 #endif
347 
348 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
349 
350 static int cmos_procfs(struct device *dev, struct seq_file *seq)
351 {
352 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
353 	unsigned char	rtc_control, valid;
354 
355 	spin_lock_irq(&rtc_lock);
356 	rtc_control = CMOS_READ(RTC_CONTROL);
357 	valid = CMOS_READ(RTC_VALID);
358 	spin_unlock_irq(&rtc_lock);
359 
360 	/* NOTE:  at least ICH6 reports battery status using a different
361 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
362 	 */
363 	return seq_printf(seq,
364 			"periodic_IRQ\t: %s\n"
365 			"update_IRQ\t: %s\n"
366 			// "square_wave\t: %s\n"
367 			// "BCD\t\t: %s\n"
368 			"DST_enable\t: %s\n"
369 			"periodic_freq\t: %d\n"
370 			"batt_status\t: %s\n",
371 			(rtc_control & RTC_PIE) ? "yes" : "no",
372 			(rtc_control & RTC_UIE) ? "yes" : "no",
373 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
374 			// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
375 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
376 			cmos->rtc->irq_freq,
377 			(valid & RTC_VRT) ? "okay" : "dead");
378 }
379 
380 #else
381 #define	cmos_procfs	NULL
382 #endif
383 
384 static const struct rtc_class_ops cmos_rtc_ops = {
385 	.ioctl		= cmos_rtc_ioctl,
386 	.read_time	= cmos_read_time,
387 	.set_time	= cmos_set_time,
388 	.read_alarm	= cmos_read_alarm,
389 	.set_alarm	= cmos_set_alarm,
390 	.proc		= cmos_procfs,
391 	.irq_set_freq	= cmos_irq_set_freq,
392 	.irq_set_state	= cmos_irq_set_state,
393 };
394 
395 /*----------------------------------------------------------------*/
396 
397 static struct cmos_rtc	cmos_rtc;
398 
399 static irqreturn_t cmos_interrupt(int irq, void *p)
400 {
401 	u8		irqstat;
402 
403 	spin_lock(&rtc_lock);
404 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
405 	irqstat &= (CMOS_READ(RTC_CONTROL) & RTC_IRQMASK) | RTC_IRQF;
406 	spin_unlock(&rtc_lock);
407 
408 	if (is_intr(irqstat)) {
409 		rtc_update_irq(p, 1, irqstat);
410 		return IRQ_HANDLED;
411 	} else
412 		return IRQ_NONE;
413 }
414 
415 #ifdef	CONFIG_PNP
416 #define	is_pnp()	1
417 #define	INITSECTION
418 
419 #else
420 #define	is_pnp()	0
421 #define	INITSECTION	__init
422 #endif
423 
424 static int INITSECTION
425 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
426 {
427 	struct cmos_rtc_board_info	*info = dev->platform_data;
428 	int				retval = 0;
429 	unsigned char			rtc_control;
430 
431 	/* there can be only one ... */
432 	if (cmos_rtc.dev)
433 		return -EBUSY;
434 
435 	if (!ports)
436 		return -ENODEV;
437 
438 	cmos_rtc.irq = rtc_irq;
439 	cmos_rtc.iomem = ports;
440 
441 	/* For ACPI systems extension info comes from the FADT.  On others,
442 	 * board specific setup provides it as appropriate.  Systems where
443 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
444 	 * some almost-clones) can provide hooks to make that behave.
445 	 */
446 	if (info) {
447 		cmos_rtc.day_alrm = info->rtc_day_alarm;
448 		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
449 		cmos_rtc.century = info->rtc_century;
450 
451 		if (info->wake_on && info->wake_off) {
452 			cmos_rtc.wake_on = info->wake_on;
453 			cmos_rtc.wake_off = info->wake_off;
454 		}
455 	}
456 
457 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
458 				&cmos_rtc_ops, THIS_MODULE);
459 	if (IS_ERR(cmos_rtc.rtc))
460 		return PTR_ERR(cmos_rtc.rtc);
461 
462 	cmos_rtc.dev = dev;
463 	dev_set_drvdata(dev, &cmos_rtc);
464 
465 	/* platform and pnp busses handle resources incompatibly.
466 	 *
467 	 * REVISIT for non-x86 systems we may need to handle io memory
468 	 * resources: ioremap them, and request_mem_region().
469 	 */
470 	if (is_pnp()) {
471 		retval = request_resource(&ioport_resource, ports);
472 		if (retval < 0) {
473 			dev_dbg(dev, "i/o registers already in use\n");
474 			goto cleanup0;
475 		}
476 	}
477 	rename_region(ports, cmos_rtc.rtc->dev.bus_id);
478 
479 	spin_lock_irq(&rtc_lock);
480 
481 	/* force periodic irq to CMOS reset default of 1024Hz;
482 	 *
483 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
484 	 * doesn't use 32KHz here ... for portability we might need to
485 	 * do something about other clock frequencies.
486 	 */
487 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
488 	cmos_rtc.rtc->irq_freq = 1024;
489 
490 	/* disable irqs.
491 	 *
492 	 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
493 	 * allegedly some older rtcs need that to handle irqs properly
494 	 */
495 	rtc_control = CMOS_READ(RTC_CONTROL);
496 	rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
497 	CMOS_WRITE(rtc_control, RTC_CONTROL);
498 	CMOS_READ(RTC_INTR_FLAGS);
499 
500 	spin_unlock_irq(&rtc_lock);
501 
502 	/* FIXME teach the alarm code how to handle binary mode;
503 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
504 	 */
505 	if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
506 		dev_dbg(dev, "only 24-hr BCD mode supported\n");
507 		retval = -ENXIO;
508 		goto cleanup1;
509 	}
510 
511 	if (is_valid_irq(rtc_irq))
512 		retval = request_irq(rtc_irq, cmos_interrupt, IRQF_DISABLED,
513 				cmos_rtc.rtc->dev.bus_id,
514 				cmos_rtc.rtc);
515 	if (retval < 0) {
516 		dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
517 		goto cleanup1;
518 	}
519 
520 	/* REVISIT optionally make 50 or 114 bytes NVRAM available,
521 	 * like rtc-ds1553, rtc-ds1742 ... this will often include
522 	 * registers for century, and day/month alarm.
523 	 */
524 
525 	pr_info("%s: alarms up to one %s%s\n",
526 			cmos_rtc.rtc->dev.bus_id,
527 			is_valid_irq(rtc_irq)
528 				?  (cmos_rtc.mon_alrm
529 					? "year"
530 					: (cmos_rtc.day_alrm
531 						? "month" : "day"))
532 				: "no",
533 			cmos_rtc.century ? ", y3k" : ""
534 			);
535 
536 	return 0;
537 
538 cleanup1:
539 	rename_region(ports, NULL);
540 cleanup0:
541 	rtc_device_unregister(cmos_rtc.rtc);
542 	return retval;
543 }
544 
545 static void cmos_do_shutdown(void)
546 {
547 	unsigned char	rtc_control;
548 
549 	spin_lock_irq(&rtc_lock);
550 	rtc_control = CMOS_READ(RTC_CONTROL);
551 	rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
552 	CMOS_WRITE(rtc_control, RTC_CONTROL);
553 	CMOS_READ(RTC_INTR_FLAGS);
554 	spin_unlock_irq(&rtc_lock);
555 }
556 
557 static void __exit cmos_do_remove(struct device *dev)
558 {
559 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
560 
561 	cmos_do_shutdown();
562 
563 	if (is_pnp())
564 		release_resource(cmos->iomem);
565 	rename_region(cmos->iomem, NULL);
566 
567 	if (is_valid_irq(cmos->irq))
568 		free_irq(cmos->irq, cmos_rtc.rtc);
569 
570 	rtc_device_unregister(cmos_rtc.rtc);
571 
572 	cmos_rtc.dev = NULL;
573 	dev_set_drvdata(dev, NULL);
574 }
575 
576 #ifdef	CONFIG_PM
577 
578 static int cmos_suspend(struct device *dev, pm_message_t mesg)
579 {
580 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
581 	int		do_wake = device_may_wakeup(dev);
582 	unsigned char	tmp;
583 
584 	/* only the alarm might be a wakeup event source */
585 	spin_lock_irq(&rtc_lock);
586 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
587 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
588 		unsigned char	irqstat;
589 
590 		if (do_wake)
591 			tmp &= ~(RTC_PIE|RTC_UIE);
592 		else
593 			tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
594 		CMOS_WRITE(tmp, RTC_CONTROL);
595 		irqstat = CMOS_READ(RTC_INTR_FLAGS);
596 		irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF;
597 		if (is_intr(irqstat))
598 			rtc_update_irq(cmos->rtc, 1, irqstat);
599 	}
600 	spin_unlock_irq(&rtc_lock);
601 
602 	if (tmp & RTC_AIE) {
603 		cmos->enabled_wake = 1;
604 		if (cmos->wake_on)
605 			cmos->wake_on(dev);
606 		else
607 			enable_irq_wake(cmos->irq);
608 	}
609 
610 	pr_debug("%s: suspend%s, ctrl %02x\n",
611 			cmos_rtc.rtc->dev.bus_id,
612 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
613 			tmp);
614 
615 	return 0;
616 }
617 
618 static int cmos_resume(struct device *dev)
619 {
620 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
621 	unsigned char	tmp = cmos->suspend_ctrl;
622 
623 	/* re-enable any irqs previously active */
624 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
625 
626 		if (cmos->enabled_wake) {
627 			if (cmos->wake_off)
628 				cmos->wake_off(dev);
629 			else
630 				disable_irq_wake(cmos->irq);
631 			cmos->enabled_wake = 0;
632 		}
633 
634 		spin_lock_irq(&rtc_lock);
635 		CMOS_WRITE(tmp, RTC_CONTROL);
636 		tmp = CMOS_READ(RTC_INTR_FLAGS);
637 		tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
638 		if (is_intr(tmp))
639 			rtc_update_irq(cmos->rtc, 1, tmp);
640 		spin_unlock_irq(&rtc_lock);
641 	}
642 
643 	pr_debug("%s: resume, ctrl %02x\n",
644 			cmos_rtc.rtc->dev.bus_id,
645 			cmos->suspend_ctrl);
646 
647 
648 	return 0;
649 }
650 
651 #else
652 #define	cmos_suspend	NULL
653 #define	cmos_resume	NULL
654 #endif
655 
656 /*----------------------------------------------------------------*/
657 
658 /* The "CMOS" RTC normally lives on the platform_bus.  On ACPI systems,
659  * the device node will always be created as a PNPACPI device.
660  */
661 
662 #ifdef	CONFIG_PNP
663 
664 #include <linux/pnp.h>
665 
666 static int __devinit
667 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
668 {
669 	/* REVISIT paranoia argues for a shutdown notifier, since PNP
670 	 * drivers can't provide shutdown() methods to disable IRQs.
671 	 * Or better yet, fix PNP to allow those methods...
672 	 */
673 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
674 		/* Some machines contain a PNP entry for the RTC, but
675 		 * don't define the IRQ. It should always be safe to
676 		 * hardcode it in these cases
677 		 */
678 		return cmos_do_probe(&pnp->dev, &pnp->res.port_resource[0], 8);
679 	else
680 		return cmos_do_probe(&pnp->dev,
681 				     &pnp->res.port_resource[0],
682 				     pnp->res.irq_resource[0].start);
683 }
684 
685 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
686 {
687 	cmos_do_remove(&pnp->dev);
688 }
689 
690 #ifdef	CONFIG_PM
691 
692 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
693 {
694 	return cmos_suspend(&pnp->dev, mesg);
695 }
696 
697 static int cmos_pnp_resume(struct pnp_dev *pnp)
698 {
699 	return cmos_resume(&pnp->dev);
700 }
701 
702 #else
703 #define	cmos_pnp_suspend	NULL
704 #define	cmos_pnp_resume		NULL
705 #endif
706 
707 
708 static const struct pnp_device_id rtc_ids[] = {
709 	{ .id = "PNP0b00", },
710 	{ .id = "PNP0b01", },
711 	{ .id = "PNP0b02", },
712 	{ },
713 };
714 MODULE_DEVICE_TABLE(pnp, rtc_ids);
715 
716 static struct pnp_driver cmos_pnp_driver = {
717 	.name		= (char *) driver_name,
718 	.id_table	= rtc_ids,
719 	.probe		= cmos_pnp_probe,
720 	.remove		= __exit_p(cmos_pnp_remove),
721 
722 	/* flag ensures resume() gets called, and stops syslog spam */
723 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
724 	.suspend	= cmos_pnp_suspend,
725 	.resume		= cmos_pnp_resume,
726 };
727 
728 static int __init cmos_init(void)
729 {
730 	return pnp_register_driver(&cmos_pnp_driver);
731 }
732 module_init(cmos_init);
733 
734 static void __exit cmos_exit(void)
735 {
736 	pnp_unregister_driver(&cmos_pnp_driver);
737 }
738 module_exit(cmos_exit);
739 
740 #else	/* no PNP */
741 
742 /*----------------------------------------------------------------*/
743 
744 /* Platform setup should have set up an RTC device, when PNP is
745  * unavailable ... this could happen even on (older) PCs.
746  */
747 
748 static int __init cmos_platform_probe(struct platform_device *pdev)
749 {
750 	return cmos_do_probe(&pdev->dev,
751 			platform_get_resource(pdev, IORESOURCE_IO, 0),
752 			platform_get_irq(pdev, 0));
753 }
754 
755 static int __exit cmos_platform_remove(struct platform_device *pdev)
756 {
757 	cmos_do_remove(&pdev->dev);
758 	return 0;
759 }
760 
761 static void cmos_platform_shutdown(struct platform_device *pdev)
762 {
763 	cmos_do_shutdown();
764 }
765 
766 static struct platform_driver cmos_platform_driver = {
767 	.remove		= __exit_p(cmos_platform_remove),
768 	.shutdown	= cmos_platform_shutdown,
769 	.driver = {
770 		.name		= (char *) driver_name,
771 		.suspend	= cmos_suspend,
772 		.resume		= cmos_resume,
773 	}
774 };
775 
776 static int __init cmos_init(void)
777 {
778 	return platform_driver_probe(&cmos_platform_driver,
779 			cmos_platform_probe);
780 }
781 module_init(cmos_init);
782 
783 static void __exit cmos_exit(void)
784 {
785 	platform_driver_unregister(&cmos_platform_driver);
786 }
787 module_exit(cmos_exit);
788 
789 
790 #endif	/* !PNP */
791 
792 MODULE_AUTHOR("David Brownell");
793 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
794 MODULE_LICENSE("GPL");
795