xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision b627b4ed)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/log2.h>
39 
40 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
41 #include <asm-generic/rtc.h>
42 
43 struct cmos_rtc {
44 	struct rtc_device	*rtc;
45 	struct device		*dev;
46 	int			irq;
47 	struct resource		*iomem;
48 
49 	void			(*wake_on)(struct device *);
50 	void			(*wake_off)(struct device *);
51 
52 	u8			enabled_wake;
53 	u8			suspend_ctrl;
54 
55 	/* newer hardware extends the original register set */
56 	u8			day_alrm;
57 	u8			mon_alrm;
58 	u8			century;
59 };
60 
61 /* both platform and pnp busses use negative numbers for invalid irqs */
62 #define is_valid_irq(n)		((n) > 0)
63 
64 static const char driver_name[] = "rtc_cmos";
65 
66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
67  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
68  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
69  */
70 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
71 
72 static inline int is_intr(u8 rtc_intr)
73 {
74 	if (!(rtc_intr & RTC_IRQF))
75 		return 0;
76 	return rtc_intr & RTC_IRQMASK;
77 }
78 
79 /*----------------------------------------------------------------*/
80 
81 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
82  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
83  * used in a broken "legacy replacement" mode.  The breakage includes
84  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
85  * other (better) use.
86  *
87  * When that broken mode is in use, platform glue provides a partial
88  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
89  * want to use HPET for anything except those IRQs though...
90  */
91 #ifdef CONFIG_HPET_EMULATE_RTC
92 #include <asm/hpet.h>
93 #else
94 
95 static inline int is_hpet_enabled(void)
96 {
97 	return 0;
98 }
99 
100 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
101 {
102 	return 0;
103 }
104 
105 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
106 {
107 	return 0;
108 }
109 
110 static inline int
111 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
112 {
113 	return 0;
114 }
115 
116 static inline int hpet_set_periodic_freq(unsigned long freq)
117 {
118 	return 0;
119 }
120 
121 static inline int hpet_rtc_dropped_irq(void)
122 {
123 	return 0;
124 }
125 
126 static inline int hpet_rtc_timer_init(void)
127 {
128 	return 0;
129 }
130 
131 extern irq_handler_t hpet_rtc_interrupt;
132 
133 static inline int hpet_register_irq_handler(irq_handler_t handler)
134 {
135 	return 0;
136 }
137 
138 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
139 {
140 	return 0;
141 }
142 
143 #endif
144 
145 /*----------------------------------------------------------------*/
146 
147 #ifdef RTC_PORT
148 
149 /* Most newer x86 systems have two register banks, the first used
150  * for RTC and NVRAM and the second only for NVRAM.  Caller must
151  * own rtc_lock ... and we won't worry about access during NMI.
152  */
153 #define can_bank2	true
154 
155 static inline unsigned char cmos_read_bank2(unsigned char addr)
156 {
157 	outb(addr, RTC_PORT(2));
158 	return inb(RTC_PORT(3));
159 }
160 
161 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
162 {
163 	outb(addr, RTC_PORT(2));
164 	outb(val, RTC_PORT(2));
165 }
166 
167 #else
168 
169 #define can_bank2	false
170 
171 static inline unsigned char cmos_read_bank2(unsigned char addr)
172 {
173 	return 0;
174 }
175 
176 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
177 {
178 }
179 
180 #endif
181 
182 /*----------------------------------------------------------------*/
183 
184 static int cmos_read_time(struct device *dev, struct rtc_time *t)
185 {
186 	/* REVISIT:  if the clock has a "century" register, use
187 	 * that instead of the heuristic in get_rtc_time().
188 	 * That'll make Y3K compatility (year > 2070) easy!
189 	 */
190 	get_rtc_time(t);
191 	return 0;
192 }
193 
194 static int cmos_set_time(struct device *dev, struct rtc_time *t)
195 {
196 	/* REVISIT:  set the "century" register if available
197 	 *
198 	 * NOTE: this ignores the issue whereby updating the seconds
199 	 * takes effect exactly 500ms after we write the register.
200 	 * (Also queueing and other delays before we get this far.)
201 	 */
202 	return set_rtc_time(t);
203 }
204 
205 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
206 {
207 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
208 	unsigned char	rtc_control;
209 
210 	if (!is_valid_irq(cmos->irq))
211 		return -EIO;
212 
213 	/* Basic alarms only support hour, minute, and seconds fields.
214 	 * Some also support day and month, for alarms up to a year in
215 	 * the future.
216 	 */
217 	t->time.tm_mday = -1;
218 	t->time.tm_mon = -1;
219 
220 	spin_lock_irq(&rtc_lock);
221 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
222 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
223 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
224 
225 	if (cmos->day_alrm) {
226 		/* ignore upper bits on readback per ACPI spec */
227 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
228 		if (!t->time.tm_mday)
229 			t->time.tm_mday = -1;
230 
231 		if (cmos->mon_alrm) {
232 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
233 			if (!t->time.tm_mon)
234 				t->time.tm_mon = -1;
235 		}
236 	}
237 
238 	rtc_control = CMOS_READ(RTC_CONTROL);
239 	spin_unlock_irq(&rtc_lock);
240 
241 	/* REVISIT this assumes PC style usage:  always BCD */
242 
243 	if (((unsigned)t->time.tm_sec) < 0x60)
244 		t->time.tm_sec = bcd2bin(t->time.tm_sec);
245 	else
246 		t->time.tm_sec = -1;
247 	if (((unsigned)t->time.tm_min) < 0x60)
248 		t->time.tm_min = bcd2bin(t->time.tm_min);
249 	else
250 		t->time.tm_min = -1;
251 	if (((unsigned)t->time.tm_hour) < 0x24)
252 		t->time.tm_hour = bcd2bin(t->time.tm_hour);
253 	else
254 		t->time.tm_hour = -1;
255 
256 	if (cmos->day_alrm) {
257 		if (((unsigned)t->time.tm_mday) <= 0x31)
258 			t->time.tm_mday = bcd2bin(t->time.tm_mday);
259 		else
260 			t->time.tm_mday = -1;
261 		if (cmos->mon_alrm) {
262 			if (((unsigned)t->time.tm_mon) <= 0x12)
263 				t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1;
264 			else
265 				t->time.tm_mon = -1;
266 		}
267 	}
268 	t->time.tm_year = -1;
269 
270 	t->enabled = !!(rtc_control & RTC_AIE);
271 	t->pending = 0;
272 
273 	return 0;
274 }
275 
276 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
277 {
278 	unsigned char	rtc_intr;
279 
280 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
281 	 * allegedly some older rtcs need that to handle irqs properly
282 	 */
283 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
284 
285 	if (is_hpet_enabled())
286 		return;
287 
288 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
289 	if (is_intr(rtc_intr))
290 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
291 }
292 
293 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
294 {
295 	unsigned char	rtc_control;
296 
297 	/* flush any pending IRQ status, notably for update irqs,
298 	 * before we enable new IRQs
299 	 */
300 	rtc_control = CMOS_READ(RTC_CONTROL);
301 	cmos_checkintr(cmos, rtc_control);
302 
303 	rtc_control |= mask;
304 	CMOS_WRITE(rtc_control, RTC_CONTROL);
305 	hpet_set_rtc_irq_bit(mask);
306 
307 	cmos_checkintr(cmos, rtc_control);
308 }
309 
310 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
311 {
312 	unsigned char	rtc_control;
313 
314 	rtc_control = CMOS_READ(RTC_CONTROL);
315 	rtc_control &= ~mask;
316 	CMOS_WRITE(rtc_control, RTC_CONTROL);
317 	hpet_mask_rtc_irq_bit(mask);
318 
319 	cmos_checkintr(cmos, rtc_control);
320 }
321 
322 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
323 {
324 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
325 	unsigned char	mon, mday, hrs, min, sec;
326 
327 	if (!is_valid_irq(cmos->irq))
328 		return -EIO;
329 
330 	/* REVISIT this assumes PC style usage:  always BCD */
331 
332 	/* Writing 0xff means "don't care" or "match all".  */
333 
334 	mon = t->time.tm_mon + 1;
335 	mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
336 
337 	mday = t->time.tm_mday;
338 	mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
339 
340 	hrs = t->time.tm_hour;
341 	hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
342 
343 	min = t->time.tm_min;
344 	min = (min < 60) ? bin2bcd(min) : 0xff;
345 
346 	sec = t->time.tm_sec;
347 	sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 
349 	spin_lock_irq(&rtc_lock);
350 
351 	/* next rtc irq must not be from previous alarm setting */
352 	cmos_irq_disable(cmos, RTC_AIE);
353 
354 	/* update alarm */
355 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
356 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
357 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
358 
359 	/* the system may support an "enhanced" alarm */
360 	if (cmos->day_alrm) {
361 		CMOS_WRITE(mday, cmos->day_alrm);
362 		if (cmos->mon_alrm)
363 			CMOS_WRITE(mon, cmos->mon_alrm);
364 	}
365 
366 	/* FIXME the HPET alarm glue currently ignores day_alrm
367 	 * and mon_alrm ...
368 	 */
369 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
370 
371 	if (t->enabled)
372 		cmos_irq_enable(cmos, RTC_AIE);
373 
374 	spin_unlock_irq(&rtc_lock);
375 
376 	return 0;
377 }
378 
379 static int cmos_irq_set_freq(struct device *dev, int freq)
380 {
381 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
382 	int		f;
383 	unsigned long	flags;
384 
385 	if (!is_valid_irq(cmos->irq))
386 		return -ENXIO;
387 
388 	if (!is_power_of_2(freq))
389 		return -EINVAL;
390 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
391 	f = ffs(freq);
392 	if (f-- > 16)
393 		return -EINVAL;
394 	f = 16 - f;
395 
396 	spin_lock_irqsave(&rtc_lock, flags);
397 	hpet_set_periodic_freq(freq);
398 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
399 	spin_unlock_irqrestore(&rtc_lock, flags);
400 
401 	return 0;
402 }
403 
404 static int cmos_irq_set_state(struct device *dev, int enabled)
405 {
406 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
407 	unsigned long	flags;
408 
409 	if (!is_valid_irq(cmos->irq))
410 		return -ENXIO;
411 
412 	spin_lock_irqsave(&rtc_lock, flags);
413 
414 	if (enabled)
415 		cmos_irq_enable(cmos, RTC_PIE);
416 	else
417 		cmos_irq_disable(cmos, RTC_PIE);
418 
419 	spin_unlock_irqrestore(&rtc_lock, flags);
420 	return 0;
421 }
422 
423 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
424 
425 static int
426 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
427 {
428 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
429 	unsigned long	flags;
430 
431 	switch (cmd) {
432 	case RTC_AIE_OFF:
433 	case RTC_AIE_ON:
434 	case RTC_UIE_OFF:
435 	case RTC_UIE_ON:
436 		if (!is_valid_irq(cmos->irq))
437 			return -EINVAL;
438 		break;
439 	/* PIE ON/OFF is handled by cmos_irq_set_state() */
440 	default:
441 		return -ENOIOCTLCMD;
442 	}
443 
444 	spin_lock_irqsave(&rtc_lock, flags);
445 	switch (cmd) {
446 	case RTC_AIE_OFF:	/* alarm off */
447 		cmos_irq_disable(cmos, RTC_AIE);
448 		break;
449 	case RTC_AIE_ON:	/* alarm on */
450 		cmos_irq_enable(cmos, RTC_AIE);
451 		break;
452 	case RTC_UIE_OFF:	/* update off */
453 		cmos_irq_disable(cmos, RTC_UIE);
454 		break;
455 	case RTC_UIE_ON:	/* update on */
456 		cmos_irq_enable(cmos, RTC_UIE);
457 		break;
458 	}
459 	spin_unlock_irqrestore(&rtc_lock, flags);
460 	return 0;
461 }
462 
463 #else
464 #define	cmos_rtc_ioctl	NULL
465 #endif
466 
467 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
468 
469 static int cmos_procfs(struct device *dev, struct seq_file *seq)
470 {
471 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
472 	unsigned char	rtc_control, valid;
473 
474 	spin_lock_irq(&rtc_lock);
475 	rtc_control = CMOS_READ(RTC_CONTROL);
476 	valid = CMOS_READ(RTC_VALID);
477 	spin_unlock_irq(&rtc_lock);
478 
479 	/* NOTE:  at least ICH6 reports battery status using a different
480 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
481 	 */
482 	return seq_printf(seq,
483 			"periodic_IRQ\t: %s\n"
484 			"update_IRQ\t: %s\n"
485 			"HPET_emulated\t: %s\n"
486 			// "square_wave\t: %s\n"
487 			// "BCD\t\t: %s\n"
488 			"DST_enable\t: %s\n"
489 			"periodic_freq\t: %d\n"
490 			"batt_status\t: %s\n",
491 			(rtc_control & RTC_PIE) ? "yes" : "no",
492 			(rtc_control & RTC_UIE) ? "yes" : "no",
493 			is_hpet_enabled() ? "yes" : "no",
494 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
495 			// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
496 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
497 			cmos->rtc->irq_freq,
498 			(valid & RTC_VRT) ? "okay" : "dead");
499 }
500 
501 #else
502 #define	cmos_procfs	NULL
503 #endif
504 
505 static const struct rtc_class_ops cmos_rtc_ops = {
506 	.ioctl		= cmos_rtc_ioctl,
507 	.read_time	= cmos_read_time,
508 	.set_time	= cmos_set_time,
509 	.read_alarm	= cmos_read_alarm,
510 	.set_alarm	= cmos_set_alarm,
511 	.proc		= cmos_procfs,
512 	.irq_set_freq	= cmos_irq_set_freq,
513 	.irq_set_state	= cmos_irq_set_state,
514 };
515 
516 /*----------------------------------------------------------------*/
517 
518 /*
519  * All these chips have at least 64 bytes of address space, shared by
520  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
521  * by boot firmware.  Modern chips have 128 or 256 bytes.
522  */
523 
524 #define NVRAM_OFFSET	(RTC_REG_D + 1)
525 
526 static ssize_t
527 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
528 		char *buf, loff_t off, size_t count)
529 {
530 	int	retval;
531 
532 	if (unlikely(off >= attr->size))
533 		return 0;
534 	if (unlikely(off < 0))
535 		return -EINVAL;
536 	if ((off + count) > attr->size)
537 		count = attr->size - off;
538 
539 	off += NVRAM_OFFSET;
540 	spin_lock_irq(&rtc_lock);
541 	for (retval = 0; count; count--, off++, retval++) {
542 		if (off < 128)
543 			*buf++ = CMOS_READ(off);
544 		else if (can_bank2)
545 			*buf++ = cmos_read_bank2(off);
546 		else
547 			break;
548 	}
549 	spin_unlock_irq(&rtc_lock);
550 
551 	return retval;
552 }
553 
554 static ssize_t
555 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
556 		char *buf, loff_t off, size_t count)
557 {
558 	struct cmos_rtc	*cmos;
559 	int		retval;
560 
561 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
562 	if (unlikely(off >= attr->size))
563 		return -EFBIG;
564 	if (unlikely(off < 0))
565 		return -EINVAL;
566 	if ((off + count) > attr->size)
567 		count = attr->size - off;
568 
569 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
570 	 * checksum on part of the NVRAM data.  That's currently ignored
571 	 * here.  If userspace is smart enough to know what fields of
572 	 * NVRAM to update, updating checksums is also part of its job.
573 	 */
574 	off += NVRAM_OFFSET;
575 	spin_lock_irq(&rtc_lock);
576 	for (retval = 0; count; count--, off++, retval++) {
577 		/* don't trash RTC registers */
578 		if (off == cmos->day_alrm
579 				|| off == cmos->mon_alrm
580 				|| off == cmos->century)
581 			buf++;
582 		else if (off < 128)
583 			CMOS_WRITE(*buf++, off);
584 		else if (can_bank2)
585 			cmos_write_bank2(*buf++, off);
586 		else
587 			break;
588 	}
589 	spin_unlock_irq(&rtc_lock);
590 
591 	return retval;
592 }
593 
594 static struct bin_attribute nvram = {
595 	.attr = {
596 		.name	= "nvram",
597 		.mode	= S_IRUGO | S_IWUSR,
598 	},
599 
600 	.read	= cmos_nvram_read,
601 	.write	= cmos_nvram_write,
602 	/* size gets set up later */
603 };
604 
605 /*----------------------------------------------------------------*/
606 
607 static struct cmos_rtc	cmos_rtc;
608 
609 static irqreturn_t cmos_interrupt(int irq, void *p)
610 {
611 	u8		irqstat;
612 	u8		rtc_control;
613 
614 	spin_lock(&rtc_lock);
615 
616 	/* When the HPET interrupt handler calls us, the interrupt
617 	 * status is passed as arg1 instead of the irq number.  But
618 	 * always clear irq status, even when HPET is in the way.
619 	 *
620 	 * Note that HPET and RTC are almost certainly out of phase,
621 	 * giving different IRQ status ...
622 	 */
623 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
624 	rtc_control = CMOS_READ(RTC_CONTROL);
625 	if (is_hpet_enabled())
626 		irqstat = (unsigned long)irq & 0xF0;
627 	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
628 
629 	/* All Linux RTC alarms should be treated as if they were oneshot.
630 	 * Similar code may be needed in system wakeup paths, in case the
631 	 * alarm woke the system.
632 	 */
633 	if (irqstat & RTC_AIE) {
634 		rtc_control &= ~RTC_AIE;
635 		CMOS_WRITE(rtc_control, RTC_CONTROL);
636 		hpet_mask_rtc_irq_bit(RTC_AIE);
637 
638 		CMOS_READ(RTC_INTR_FLAGS);
639 	}
640 	spin_unlock(&rtc_lock);
641 
642 	if (is_intr(irqstat)) {
643 		rtc_update_irq(p, 1, irqstat);
644 		return IRQ_HANDLED;
645 	} else
646 		return IRQ_NONE;
647 }
648 
649 #ifdef	CONFIG_PNP
650 #define	INITSECTION
651 
652 #else
653 #define	INITSECTION	__init
654 #endif
655 
656 static int INITSECTION
657 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
658 {
659 	struct cmos_rtc_board_info	*info = dev->platform_data;
660 	int				retval = 0;
661 	unsigned char			rtc_control;
662 	unsigned			address_space;
663 
664 	/* there can be only one ... */
665 	if (cmos_rtc.dev)
666 		return -EBUSY;
667 
668 	if (!ports)
669 		return -ENODEV;
670 
671 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
672 	 *
673 	 * REVISIT non-x86 systems may instead use memory space resources
674 	 * (needing ioremap etc), not i/o space resources like this ...
675 	 */
676 	ports = request_region(ports->start,
677 			ports->end + 1 - ports->start,
678 			driver_name);
679 	if (!ports) {
680 		dev_dbg(dev, "i/o registers already in use\n");
681 		return -EBUSY;
682 	}
683 
684 	cmos_rtc.irq = rtc_irq;
685 	cmos_rtc.iomem = ports;
686 
687 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
688 	 * driver did, but don't reject unknown configs.   Old hardware
689 	 * won't address 128 bytes.  Newer chips have multiple banks,
690 	 * though they may not be listed in one I/O resource.
691 	 */
692 #if	defined(CONFIG_ATARI)
693 	address_space = 64;
694 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__sparc__)
695 	address_space = 128;
696 #else
697 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
698 	address_space = 128;
699 #endif
700 	if (can_bank2 && ports->end > (ports->start + 1))
701 		address_space = 256;
702 
703 	/* For ACPI systems extension info comes from the FADT.  On others,
704 	 * board specific setup provides it as appropriate.  Systems where
705 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
706 	 * some almost-clones) can provide hooks to make that behave.
707 	 *
708 	 * Note that ACPI doesn't preclude putting these registers into
709 	 * "extended" areas of the chip, including some that we won't yet
710 	 * expect CMOS_READ and friends to handle.
711 	 */
712 	if (info) {
713 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
714 			cmos_rtc.day_alrm = info->rtc_day_alarm;
715 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
716 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
717 		if (info->rtc_century && info->rtc_century < 128)
718 			cmos_rtc.century = info->rtc_century;
719 
720 		if (info->wake_on && info->wake_off) {
721 			cmos_rtc.wake_on = info->wake_on;
722 			cmos_rtc.wake_off = info->wake_off;
723 		}
724 	}
725 
726 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
727 				&cmos_rtc_ops, THIS_MODULE);
728 	if (IS_ERR(cmos_rtc.rtc)) {
729 		retval = PTR_ERR(cmos_rtc.rtc);
730 		goto cleanup0;
731 	}
732 
733 	cmos_rtc.dev = dev;
734 	dev_set_drvdata(dev, &cmos_rtc);
735 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
736 
737 	spin_lock_irq(&rtc_lock);
738 
739 	/* force periodic irq to CMOS reset default of 1024Hz;
740 	 *
741 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
742 	 * doesn't use 32KHz here ... for portability we might need to
743 	 * do something about other clock frequencies.
744 	 */
745 	cmos_rtc.rtc->irq_freq = 1024;
746 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
747 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
748 
749 	/* disable irqs */
750 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
751 
752 	rtc_control = CMOS_READ(RTC_CONTROL);
753 
754 	spin_unlock_irq(&rtc_lock);
755 
756 	/* FIXME teach the alarm code how to handle binary mode;
757 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
758 	 */
759 	if (is_valid_irq(rtc_irq) &&
760 	    (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) {
761 		dev_dbg(dev, "only 24-hr BCD mode supported\n");
762 		retval = -ENXIO;
763 		goto cleanup1;
764 	}
765 
766 	if (is_valid_irq(rtc_irq)) {
767 		irq_handler_t rtc_cmos_int_handler;
768 
769 		if (is_hpet_enabled()) {
770 			int err;
771 
772 			rtc_cmos_int_handler = hpet_rtc_interrupt;
773 			err = hpet_register_irq_handler(cmos_interrupt);
774 			if (err != 0) {
775 				printk(KERN_WARNING "hpet_register_irq_handler "
776 						" failed in rtc_init().");
777 				goto cleanup1;
778 			}
779 		} else
780 			rtc_cmos_int_handler = cmos_interrupt;
781 
782 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
783 				IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
784 				cmos_rtc.rtc);
785 		if (retval < 0) {
786 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
787 			goto cleanup1;
788 		}
789 	}
790 	hpet_rtc_timer_init();
791 
792 	/* export at least the first block of NVRAM */
793 	nvram.size = address_space - NVRAM_OFFSET;
794 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
795 	if (retval < 0) {
796 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
797 		goto cleanup2;
798 	}
799 
800 	pr_info("%s: alarms up to one %s%s, %zd bytes nvram%s\n",
801 			dev_name(&cmos_rtc.rtc->dev),
802 			is_valid_irq(rtc_irq)
803 				?  (cmos_rtc.mon_alrm
804 					? "year"
805 					: (cmos_rtc.day_alrm
806 						? "month" : "day"))
807 				: "no",
808 			cmos_rtc.century ? ", y3k" : "",
809 			nvram.size,
810 			is_hpet_enabled() ? ", hpet irqs" : "");
811 
812 	return 0;
813 
814 cleanup2:
815 	if (is_valid_irq(rtc_irq))
816 		free_irq(rtc_irq, cmos_rtc.rtc);
817 cleanup1:
818 	cmos_rtc.dev = NULL;
819 	rtc_device_unregister(cmos_rtc.rtc);
820 cleanup0:
821 	release_region(ports->start, ports->end + 1 - ports->start);
822 	return retval;
823 }
824 
825 static void cmos_do_shutdown(void)
826 {
827 	spin_lock_irq(&rtc_lock);
828 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
829 	spin_unlock_irq(&rtc_lock);
830 }
831 
832 static void __exit cmos_do_remove(struct device *dev)
833 {
834 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
835 	struct resource *ports;
836 
837 	cmos_do_shutdown();
838 
839 	sysfs_remove_bin_file(&dev->kobj, &nvram);
840 
841 	if (is_valid_irq(cmos->irq)) {
842 		free_irq(cmos->irq, cmos->rtc);
843 		hpet_unregister_irq_handler(cmos_interrupt);
844 	}
845 
846 	rtc_device_unregister(cmos->rtc);
847 	cmos->rtc = NULL;
848 
849 	ports = cmos->iomem;
850 	release_region(ports->start, ports->end + 1 - ports->start);
851 	cmos->iomem = NULL;
852 
853 	cmos->dev = NULL;
854 	dev_set_drvdata(dev, NULL);
855 }
856 
857 #ifdef	CONFIG_PM
858 
859 static int cmos_suspend(struct device *dev, pm_message_t mesg)
860 {
861 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
862 	unsigned char	tmp;
863 
864 	/* only the alarm might be a wakeup event source */
865 	spin_lock_irq(&rtc_lock);
866 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
867 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
868 		unsigned char	mask;
869 
870 		if (device_may_wakeup(dev))
871 			mask = RTC_IRQMASK & ~RTC_AIE;
872 		else
873 			mask = RTC_IRQMASK;
874 		tmp &= ~mask;
875 		CMOS_WRITE(tmp, RTC_CONTROL);
876 		hpet_mask_rtc_irq_bit(mask);
877 
878 		cmos_checkintr(cmos, tmp);
879 	}
880 	spin_unlock_irq(&rtc_lock);
881 
882 	if (tmp & RTC_AIE) {
883 		cmos->enabled_wake = 1;
884 		if (cmos->wake_on)
885 			cmos->wake_on(dev);
886 		else
887 			enable_irq_wake(cmos->irq);
888 	}
889 
890 	pr_debug("%s: suspend%s, ctrl %02x\n",
891 			dev_name(&cmos_rtc.rtc->dev),
892 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
893 			tmp);
894 
895 	return 0;
896 }
897 
898 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
899  * after a detour through G3 "mechanical off", although the ACPI spec
900  * says wakeup should only work from G1/S4 "hibernate".  To most users,
901  * distinctions between S4 and S5 are pointless.  So when the hardware
902  * allows, don't draw that distinction.
903  */
904 static inline int cmos_poweroff(struct device *dev)
905 {
906 	return cmos_suspend(dev, PMSG_HIBERNATE);
907 }
908 
909 static int cmos_resume(struct device *dev)
910 {
911 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
912 	unsigned char	tmp = cmos->suspend_ctrl;
913 
914 	/* re-enable any irqs previously active */
915 	if (tmp & RTC_IRQMASK) {
916 		unsigned char	mask;
917 
918 		if (cmos->enabled_wake) {
919 			if (cmos->wake_off)
920 				cmos->wake_off(dev);
921 			else
922 				disable_irq_wake(cmos->irq);
923 			cmos->enabled_wake = 0;
924 		}
925 
926 		spin_lock_irq(&rtc_lock);
927 		do {
928 			CMOS_WRITE(tmp, RTC_CONTROL);
929 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
930 
931 			mask = CMOS_READ(RTC_INTR_FLAGS);
932 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
933 			if (!is_hpet_enabled() || !is_intr(mask))
934 				break;
935 
936 			/* force one-shot behavior if HPET blocked
937 			 * the wake alarm's irq
938 			 */
939 			rtc_update_irq(cmos->rtc, 1, mask);
940 			tmp &= ~RTC_AIE;
941 			hpet_mask_rtc_irq_bit(RTC_AIE);
942 		} while (mask & RTC_AIE);
943 		spin_unlock_irq(&rtc_lock);
944 	}
945 
946 	pr_debug("%s: resume, ctrl %02x\n",
947 			dev_name(&cmos_rtc.rtc->dev),
948 			tmp);
949 
950 	return 0;
951 }
952 
953 #else
954 #define	cmos_suspend	NULL
955 #define	cmos_resume	NULL
956 
957 static inline int cmos_poweroff(struct device *dev)
958 {
959 	return -ENOSYS;
960 }
961 
962 #endif
963 
964 /*----------------------------------------------------------------*/
965 
966 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
967  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
968  * probably list them in similar PNPBIOS tables; so PNP is more common.
969  *
970  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
971  * predate even PNPBIOS should set up platform_bus devices.
972  */
973 
974 #ifdef	CONFIG_ACPI
975 
976 #include <linux/acpi.h>
977 
978 #ifdef	CONFIG_PM
979 static u32 rtc_handler(void *context)
980 {
981 	acpi_clear_event(ACPI_EVENT_RTC);
982 	acpi_disable_event(ACPI_EVENT_RTC, 0);
983 	return ACPI_INTERRUPT_HANDLED;
984 }
985 
986 static inline void rtc_wake_setup(void)
987 {
988 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
989 	/*
990 	 * After the RTC handler is installed, the Fixed_RTC event should
991 	 * be disabled. Only when the RTC alarm is set will it be enabled.
992 	 */
993 	acpi_clear_event(ACPI_EVENT_RTC);
994 	acpi_disable_event(ACPI_EVENT_RTC, 0);
995 }
996 
997 static void rtc_wake_on(struct device *dev)
998 {
999 	acpi_clear_event(ACPI_EVENT_RTC);
1000 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1001 }
1002 
1003 static void rtc_wake_off(struct device *dev)
1004 {
1005 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1006 }
1007 #else
1008 #define rtc_wake_setup()	do{}while(0)
1009 #define rtc_wake_on		NULL
1010 #define rtc_wake_off		NULL
1011 #endif
1012 
1013 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1014  * its device node and pass extra config data.  This helps its driver use
1015  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1016  * that this board's RTC is wakeup-capable (per ACPI spec).
1017  */
1018 static struct cmos_rtc_board_info acpi_rtc_info;
1019 
1020 static void __devinit
1021 cmos_wake_setup(struct device *dev)
1022 {
1023 	if (acpi_disabled)
1024 		return;
1025 
1026 	rtc_wake_setup();
1027 	acpi_rtc_info.wake_on = rtc_wake_on;
1028 	acpi_rtc_info.wake_off = rtc_wake_off;
1029 
1030 	/* workaround bug in some ACPI tables */
1031 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1032 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1033 			acpi_gbl_FADT.month_alarm);
1034 		acpi_gbl_FADT.month_alarm = 0;
1035 	}
1036 
1037 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1038 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1039 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1040 
1041 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1042 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1043 		dev_info(dev, "RTC can wake from S4\n");
1044 
1045 	dev->platform_data = &acpi_rtc_info;
1046 
1047 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1048 	device_init_wakeup(dev, 1);
1049 }
1050 
1051 #else
1052 
1053 static void __devinit
1054 cmos_wake_setup(struct device *dev)
1055 {
1056 }
1057 
1058 #endif
1059 
1060 #ifdef	CONFIG_PNP
1061 
1062 #include <linux/pnp.h>
1063 
1064 static int __devinit
1065 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1066 {
1067 	cmos_wake_setup(&pnp->dev);
1068 
1069 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1070 		/* Some machines contain a PNP entry for the RTC, but
1071 		 * don't define the IRQ. It should always be safe to
1072 		 * hardcode it in these cases
1073 		 */
1074 		return cmos_do_probe(&pnp->dev,
1075 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1076 	else
1077 		return cmos_do_probe(&pnp->dev,
1078 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1079 				pnp_irq(pnp, 0));
1080 }
1081 
1082 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1083 {
1084 	cmos_do_remove(&pnp->dev);
1085 }
1086 
1087 #ifdef	CONFIG_PM
1088 
1089 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1090 {
1091 	return cmos_suspend(&pnp->dev, mesg);
1092 }
1093 
1094 static int cmos_pnp_resume(struct pnp_dev *pnp)
1095 {
1096 	return cmos_resume(&pnp->dev);
1097 }
1098 
1099 #else
1100 #define	cmos_pnp_suspend	NULL
1101 #define	cmos_pnp_resume		NULL
1102 #endif
1103 
1104 static void cmos_pnp_shutdown(struct device *pdev)
1105 {
1106 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev))
1107 		return;
1108 
1109 	cmos_do_shutdown();
1110 }
1111 
1112 static const struct pnp_device_id rtc_ids[] = {
1113 	{ .id = "PNP0b00", },
1114 	{ .id = "PNP0b01", },
1115 	{ .id = "PNP0b02", },
1116 	{ },
1117 };
1118 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1119 
1120 static struct pnp_driver cmos_pnp_driver = {
1121 	.name		= (char *) driver_name,
1122 	.id_table	= rtc_ids,
1123 	.probe		= cmos_pnp_probe,
1124 	.remove		= __exit_p(cmos_pnp_remove),
1125 
1126 	/* flag ensures resume() gets called, and stops syslog spam */
1127 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1128 	.suspend	= cmos_pnp_suspend,
1129 	.resume		= cmos_pnp_resume,
1130 	.driver		= {
1131 		.name	  = (char *)driver_name,
1132 		.shutdown = cmos_pnp_shutdown,
1133 	}
1134 };
1135 
1136 #endif	/* CONFIG_PNP */
1137 
1138 /*----------------------------------------------------------------*/
1139 
1140 /* Platform setup should have set up an RTC device, when PNP is
1141  * unavailable ... this could happen even on (older) PCs.
1142  */
1143 
1144 static int __init cmos_platform_probe(struct platform_device *pdev)
1145 {
1146 	cmos_wake_setup(&pdev->dev);
1147 	return cmos_do_probe(&pdev->dev,
1148 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1149 			platform_get_irq(pdev, 0));
1150 }
1151 
1152 static int __exit cmos_platform_remove(struct platform_device *pdev)
1153 {
1154 	cmos_do_remove(&pdev->dev);
1155 	return 0;
1156 }
1157 
1158 static void cmos_platform_shutdown(struct platform_device *pdev)
1159 {
1160 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1161 		return;
1162 
1163 	cmos_do_shutdown();
1164 }
1165 
1166 /* work with hotplug and coldplug */
1167 MODULE_ALIAS("platform:rtc_cmos");
1168 
1169 static struct platform_driver cmos_platform_driver = {
1170 	.remove		= __exit_p(cmos_platform_remove),
1171 	.shutdown	= cmos_platform_shutdown,
1172 	.driver = {
1173 		.name		= (char *) driver_name,
1174 		.suspend	= cmos_suspend,
1175 		.resume		= cmos_resume,
1176 	}
1177 };
1178 
1179 static int __init cmos_init(void)
1180 {
1181 	int retval = 0;
1182 
1183 #ifdef	CONFIG_PNP
1184 	pnp_register_driver(&cmos_pnp_driver);
1185 #endif
1186 
1187 	if (!cmos_rtc.dev)
1188 		retval = platform_driver_probe(&cmos_platform_driver,
1189 					       cmos_platform_probe);
1190 
1191 	if (retval == 0)
1192 		return 0;
1193 
1194 #ifdef	CONFIG_PNP
1195 	pnp_unregister_driver(&cmos_pnp_driver);
1196 #endif
1197 	return retval;
1198 }
1199 module_init(cmos_init);
1200 
1201 static void __exit cmos_exit(void)
1202 {
1203 #ifdef	CONFIG_PNP
1204 	pnp_unregister_driver(&cmos_pnp_driver);
1205 #endif
1206 	platform_driver_unregister(&cmos_platform_driver);
1207 }
1208 module_exit(cmos_exit);
1209 
1210 
1211 MODULE_AUTHOR("David Brownell");
1212 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1213 MODULE_LICENSE("GPL");
1214