1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/log2.h> 39 40 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 41 #include <asm-generic/rtc.h> 42 43 struct cmos_rtc { 44 struct rtc_device *rtc; 45 struct device *dev; 46 int irq; 47 struct resource *iomem; 48 49 void (*wake_on)(struct device *); 50 void (*wake_off)(struct device *); 51 52 u8 enabled_wake; 53 u8 suspend_ctrl; 54 55 /* newer hardware extends the original register set */ 56 u8 day_alrm; 57 u8 mon_alrm; 58 u8 century; 59 }; 60 61 /* both platform and pnp busses use negative numbers for invalid irqs */ 62 #define is_valid_irq(n) ((n) > 0) 63 64 static const char driver_name[] = "rtc_cmos"; 65 66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 67 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 68 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 69 */ 70 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 71 72 static inline int is_intr(u8 rtc_intr) 73 { 74 if (!(rtc_intr & RTC_IRQF)) 75 return 0; 76 return rtc_intr & RTC_IRQMASK; 77 } 78 79 /*----------------------------------------------------------------*/ 80 81 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 82 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 83 * used in a broken "legacy replacement" mode. The breakage includes 84 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 85 * other (better) use. 86 * 87 * When that broken mode is in use, platform glue provides a partial 88 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 89 * want to use HPET for anything except those IRQs though... 90 */ 91 #ifdef CONFIG_HPET_EMULATE_RTC 92 #include <asm/hpet.h> 93 #else 94 95 static inline int is_hpet_enabled(void) 96 { 97 return 0; 98 } 99 100 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 101 { 102 return 0; 103 } 104 105 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 106 { 107 return 0; 108 } 109 110 static inline int 111 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 112 { 113 return 0; 114 } 115 116 static inline int hpet_set_periodic_freq(unsigned long freq) 117 { 118 return 0; 119 } 120 121 static inline int hpet_rtc_dropped_irq(void) 122 { 123 return 0; 124 } 125 126 static inline int hpet_rtc_timer_init(void) 127 { 128 return 0; 129 } 130 131 extern irq_handler_t hpet_rtc_interrupt; 132 133 static inline int hpet_register_irq_handler(irq_handler_t handler) 134 { 135 return 0; 136 } 137 138 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 139 { 140 return 0; 141 } 142 143 #endif 144 145 /*----------------------------------------------------------------*/ 146 147 #ifdef RTC_PORT 148 149 /* Most newer x86 systems have two register banks, the first used 150 * for RTC and NVRAM and the second only for NVRAM. Caller must 151 * own rtc_lock ... and we won't worry about access during NMI. 152 */ 153 #define can_bank2 true 154 155 static inline unsigned char cmos_read_bank2(unsigned char addr) 156 { 157 outb(addr, RTC_PORT(2)); 158 return inb(RTC_PORT(3)); 159 } 160 161 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 162 { 163 outb(addr, RTC_PORT(2)); 164 outb(val, RTC_PORT(2)); 165 } 166 167 #else 168 169 #define can_bank2 false 170 171 static inline unsigned char cmos_read_bank2(unsigned char addr) 172 { 173 return 0; 174 } 175 176 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 177 { 178 } 179 180 #endif 181 182 /*----------------------------------------------------------------*/ 183 184 static int cmos_read_time(struct device *dev, struct rtc_time *t) 185 { 186 /* REVISIT: if the clock has a "century" register, use 187 * that instead of the heuristic in get_rtc_time(). 188 * That'll make Y3K compatility (year > 2070) easy! 189 */ 190 get_rtc_time(t); 191 return 0; 192 } 193 194 static int cmos_set_time(struct device *dev, struct rtc_time *t) 195 { 196 /* REVISIT: set the "century" register if available 197 * 198 * NOTE: this ignores the issue whereby updating the seconds 199 * takes effect exactly 500ms after we write the register. 200 * (Also queueing and other delays before we get this far.) 201 */ 202 return set_rtc_time(t); 203 } 204 205 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 206 { 207 struct cmos_rtc *cmos = dev_get_drvdata(dev); 208 unsigned char rtc_control; 209 210 if (!is_valid_irq(cmos->irq)) 211 return -EIO; 212 213 /* Basic alarms only support hour, minute, and seconds fields. 214 * Some also support day and month, for alarms up to a year in 215 * the future. 216 */ 217 t->time.tm_mday = -1; 218 t->time.tm_mon = -1; 219 220 spin_lock_irq(&rtc_lock); 221 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 222 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 223 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 224 225 if (cmos->day_alrm) { 226 /* ignore upper bits on readback per ACPI spec */ 227 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 228 if (!t->time.tm_mday) 229 t->time.tm_mday = -1; 230 231 if (cmos->mon_alrm) { 232 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 233 if (!t->time.tm_mon) 234 t->time.tm_mon = -1; 235 } 236 } 237 238 rtc_control = CMOS_READ(RTC_CONTROL); 239 spin_unlock_irq(&rtc_lock); 240 241 /* REVISIT this assumes PC style usage: always BCD */ 242 243 if (((unsigned)t->time.tm_sec) < 0x60) 244 t->time.tm_sec = bcd2bin(t->time.tm_sec); 245 else 246 t->time.tm_sec = -1; 247 if (((unsigned)t->time.tm_min) < 0x60) 248 t->time.tm_min = bcd2bin(t->time.tm_min); 249 else 250 t->time.tm_min = -1; 251 if (((unsigned)t->time.tm_hour) < 0x24) 252 t->time.tm_hour = bcd2bin(t->time.tm_hour); 253 else 254 t->time.tm_hour = -1; 255 256 if (cmos->day_alrm) { 257 if (((unsigned)t->time.tm_mday) <= 0x31) 258 t->time.tm_mday = bcd2bin(t->time.tm_mday); 259 else 260 t->time.tm_mday = -1; 261 if (cmos->mon_alrm) { 262 if (((unsigned)t->time.tm_mon) <= 0x12) 263 t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1; 264 else 265 t->time.tm_mon = -1; 266 } 267 } 268 t->time.tm_year = -1; 269 270 t->enabled = !!(rtc_control & RTC_AIE); 271 t->pending = 0; 272 273 return 0; 274 } 275 276 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 277 { 278 unsigned char rtc_intr; 279 280 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 281 * allegedly some older rtcs need that to handle irqs properly 282 */ 283 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 284 285 if (is_hpet_enabled()) 286 return; 287 288 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 289 if (is_intr(rtc_intr)) 290 rtc_update_irq(cmos->rtc, 1, rtc_intr); 291 } 292 293 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 294 { 295 unsigned char rtc_control; 296 297 /* flush any pending IRQ status, notably for update irqs, 298 * before we enable new IRQs 299 */ 300 rtc_control = CMOS_READ(RTC_CONTROL); 301 cmos_checkintr(cmos, rtc_control); 302 303 rtc_control |= mask; 304 CMOS_WRITE(rtc_control, RTC_CONTROL); 305 hpet_set_rtc_irq_bit(mask); 306 307 cmos_checkintr(cmos, rtc_control); 308 } 309 310 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 311 { 312 unsigned char rtc_control; 313 314 rtc_control = CMOS_READ(RTC_CONTROL); 315 rtc_control &= ~mask; 316 CMOS_WRITE(rtc_control, RTC_CONTROL); 317 hpet_mask_rtc_irq_bit(mask); 318 319 cmos_checkintr(cmos, rtc_control); 320 } 321 322 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 323 { 324 struct cmos_rtc *cmos = dev_get_drvdata(dev); 325 unsigned char mon, mday, hrs, min, sec; 326 327 if (!is_valid_irq(cmos->irq)) 328 return -EIO; 329 330 /* REVISIT this assumes PC style usage: always BCD */ 331 332 /* Writing 0xff means "don't care" or "match all". */ 333 334 mon = t->time.tm_mon + 1; 335 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 336 337 mday = t->time.tm_mday; 338 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 339 340 hrs = t->time.tm_hour; 341 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 342 343 min = t->time.tm_min; 344 min = (min < 60) ? bin2bcd(min) : 0xff; 345 346 sec = t->time.tm_sec; 347 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 348 349 spin_lock_irq(&rtc_lock); 350 351 /* next rtc irq must not be from previous alarm setting */ 352 cmos_irq_disable(cmos, RTC_AIE); 353 354 /* update alarm */ 355 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 356 CMOS_WRITE(min, RTC_MINUTES_ALARM); 357 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 358 359 /* the system may support an "enhanced" alarm */ 360 if (cmos->day_alrm) { 361 CMOS_WRITE(mday, cmos->day_alrm); 362 if (cmos->mon_alrm) 363 CMOS_WRITE(mon, cmos->mon_alrm); 364 } 365 366 /* FIXME the HPET alarm glue currently ignores day_alrm 367 * and mon_alrm ... 368 */ 369 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 370 371 if (t->enabled) 372 cmos_irq_enable(cmos, RTC_AIE); 373 374 spin_unlock_irq(&rtc_lock); 375 376 return 0; 377 } 378 379 static int cmos_irq_set_freq(struct device *dev, int freq) 380 { 381 struct cmos_rtc *cmos = dev_get_drvdata(dev); 382 int f; 383 unsigned long flags; 384 385 if (!is_valid_irq(cmos->irq)) 386 return -ENXIO; 387 388 if (!is_power_of_2(freq)) 389 return -EINVAL; 390 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */ 391 f = ffs(freq); 392 if (f-- > 16) 393 return -EINVAL; 394 f = 16 - f; 395 396 spin_lock_irqsave(&rtc_lock, flags); 397 hpet_set_periodic_freq(freq); 398 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT); 399 spin_unlock_irqrestore(&rtc_lock, flags); 400 401 return 0; 402 } 403 404 static int cmos_irq_set_state(struct device *dev, int enabled) 405 { 406 struct cmos_rtc *cmos = dev_get_drvdata(dev); 407 unsigned long flags; 408 409 if (!is_valid_irq(cmos->irq)) 410 return -ENXIO; 411 412 spin_lock_irqsave(&rtc_lock, flags); 413 414 if (enabled) 415 cmos_irq_enable(cmos, RTC_PIE); 416 else 417 cmos_irq_disable(cmos, RTC_PIE); 418 419 spin_unlock_irqrestore(&rtc_lock, flags); 420 return 0; 421 } 422 423 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE) 424 425 static int 426 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 427 { 428 struct cmos_rtc *cmos = dev_get_drvdata(dev); 429 unsigned long flags; 430 431 switch (cmd) { 432 case RTC_AIE_OFF: 433 case RTC_AIE_ON: 434 case RTC_UIE_OFF: 435 case RTC_UIE_ON: 436 if (!is_valid_irq(cmos->irq)) 437 return -EINVAL; 438 break; 439 /* PIE ON/OFF is handled by cmos_irq_set_state() */ 440 default: 441 return -ENOIOCTLCMD; 442 } 443 444 spin_lock_irqsave(&rtc_lock, flags); 445 switch (cmd) { 446 case RTC_AIE_OFF: /* alarm off */ 447 cmos_irq_disable(cmos, RTC_AIE); 448 break; 449 case RTC_AIE_ON: /* alarm on */ 450 cmos_irq_enable(cmos, RTC_AIE); 451 break; 452 case RTC_UIE_OFF: /* update off */ 453 cmos_irq_disable(cmos, RTC_UIE); 454 break; 455 case RTC_UIE_ON: /* update on */ 456 cmos_irq_enable(cmos, RTC_UIE); 457 break; 458 } 459 spin_unlock_irqrestore(&rtc_lock, flags); 460 return 0; 461 } 462 463 #else 464 #define cmos_rtc_ioctl NULL 465 #endif 466 467 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 468 469 static int cmos_procfs(struct device *dev, struct seq_file *seq) 470 { 471 struct cmos_rtc *cmos = dev_get_drvdata(dev); 472 unsigned char rtc_control, valid; 473 474 spin_lock_irq(&rtc_lock); 475 rtc_control = CMOS_READ(RTC_CONTROL); 476 valid = CMOS_READ(RTC_VALID); 477 spin_unlock_irq(&rtc_lock); 478 479 /* NOTE: at least ICH6 reports battery status using a different 480 * (non-RTC) bit; and SQWE is ignored on many current systems. 481 */ 482 return seq_printf(seq, 483 "periodic_IRQ\t: %s\n" 484 "update_IRQ\t: %s\n" 485 "HPET_emulated\t: %s\n" 486 // "square_wave\t: %s\n" 487 // "BCD\t\t: %s\n" 488 "DST_enable\t: %s\n" 489 "periodic_freq\t: %d\n" 490 "batt_status\t: %s\n", 491 (rtc_control & RTC_PIE) ? "yes" : "no", 492 (rtc_control & RTC_UIE) ? "yes" : "no", 493 is_hpet_enabled() ? "yes" : "no", 494 // (rtc_control & RTC_SQWE) ? "yes" : "no", 495 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 496 (rtc_control & RTC_DST_EN) ? "yes" : "no", 497 cmos->rtc->irq_freq, 498 (valid & RTC_VRT) ? "okay" : "dead"); 499 } 500 501 #else 502 #define cmos_procfs NULL 503 #endif 504 505 static const struct rtc_class_ops cmos_rtc_ops = { 506 .ioctl = cmos_rtc_ioctl, 507 .read_time = cmos_read_time, 508 .set_time = cmos_set_time, 509 .read_alarm = cmos_read_alarm, 510 .set_alarm = cmos_set_alarm, 511 .proc = cmos_procfs, 512 .irq_set_freq = cmos_irq_set_freq, 513 .irq_set_state = cmos_irq_set_state, 514 }; 515 516 /*----------------------------------------------------------------*/ 517 518 /* 519 * All these chips have at least 64 bytes of address space, shared by 520 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 521 * by boot firmware. Modern chips have 128 or 256 bytes. 522 */ 523 524 #define NVRAM_OFFSET (RTC_REG_D + 1) 525 526 static ssize_t 527 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr, 528 char *buf, loff_t off, size_t count) 529 { 530 int retval; 531 532 if (unlikely(off >= attr->size)) 533 return 0; 534 if (unlikely(off < 0)) 535 return -EINVAL; 536 if ((off + count) > attr->size) 537 count = attr->size - off; 538 539 off += NVRAM_OFFSET; 540 spin_lock_irq(&rtc_lock); 541 for (retval = 0; count; count--, off++, retval++) { 542 if (off < 128) 543 *buf++ = CMOS_READ(off); 544 else if (can_bank2) 545 *buf++ = cmos_read_bank2(off); 546 else 547 break; 548 } 549 spin_unlock_irq(&rtc_lock); 550 551 return retval; 552 } 553 554 static ssize_t 555 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr, 556 char *buf, loff_t off, size_t count) 557 { 558 struct cmos_rtc *cmos; 559 int retval; 560 561 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 562 if (unlikely(off >= attr->size)) 563 return -EFBIG; 564 if (unlikely(off < 0)) 565 return -EINVAL; 566 if ((off + count) > attr->size) 567 count = attr->size - off; 568 569 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 570 * checksum on part of the NVRAM data. That's currently ignored 571 * here. If userspace is smart enough to know what fields of 572 * NVRAM to update, updating checksums is also part of its job. 573 */ 574 off += NVRAM_OFFSET; 575 spin_lock_irq(&rtc_lock); 576 for (retval = 0; count; count--, off++, retval++) { 577 /* don't trash RTC registers */ 578 if (off == cmos->day_alrm 579 || off == cmos->mon_alrm 580 || off == cmos->century) 581 buf++; 582 else if (off < 128) 583 CMOS_WRITE(*buf++, off); 584 else if (can_bank2) 585 cmos_write_bank2(*buf++, off); 586 else 587 break; 588 } 589 spin_unlock_irq(&rtc_lock); 590 591 return retval; 592 } 593 594 static struct bin_attribute nvram = { 595 .attr = { 596 .name = "nvram", 597 .mode = S_IRUGO | S_IWUSR, 598 }, 599 600 .read = cmos_nvram_read, 601 .write = cmos_nvram_write, 602 /* size gets set up later */ 603 }; 604 605 /*----------------------------------------------------------------*/ 606 607 static struct cmos_rtc cmos_rtc; 608 609 static irqreturn_t cmos_interrupt(int irq, void *p) 610 { 611 u8 irqstat; 612 u8 rtc_control; 613 614 spin_lock(&rtc_lock); 615 616 /* When the HPET interrupt handler calls us, the interrupt 617 * status is passed as arg1 instead of the irq number. But 618 * always clear irq status, even when HPET is in the way. 619 * 620 * Note that HPET and RTC are almost certainly out of phase, 621 * giving different IRQ status ... 622 */ 623 irqstat = CMOS_READ(RTC_INTR_FLAGS); 624 rtc_control = CMOS_READ(RTC_CONTROL); 625 if (is_hpet_enabled()) 626 irqstat = (unsigned long)irq & 0xF0; 627 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 628 629 /* All Linux RTC alarms should be treated as if they were oneshot. 630 * Similar code may be needed in system wakeup paths, in case the 631 * alarm woke the system. 632 */ 633 if (irqstat & RTC_AIE) { 634 rtc_control &= ~RTC_AIE; 635 CMOS_WRITE(rtc_control, RTC_CONTROL); 636 hpet_mask_rtc_irq_bit(RTC_AIE); 637 638 CMOS_READ(RTC_INTR_FLAGS); 639 } 640 spin_unlock(&rtc_lock); 641 642 if (is_intr(irqstat)) { 643 rtc_update_irq(p, 1, irqstat); 644 return IRQ_HANDLED; 645 } else 646 return IRQ_NONE; 647 } 648 649 #ifdef CONFIG_PNP 650 #define INITSECTION 651 652 #else 653 #define INITSECTION __init 654 #endif 655 656 static int INITSECTION 657 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 658 { 659 struct cmos_rtc_board_info *info = dev->platform_data; 660 int retval = 0; 661 unsigned char rtc_control; 662 unsigned address_space; 663 664 /* there can be only one ... */ 665 if (cmos_rtc.dev) 666 return -EBUSY; 667 668 if (!ports) 669 return -ENODEV; 670 671 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 672 * 673 * REVISIT non-x86 systems may instead use memory space resources 674 * (needing ioremap etc), not i/o space resources like this ... 675 */ 676 ports = request_region(ports->start, 677 ports->end + 1 - ports->start, 678 driver_name); 679 if (!ports) { 680 dev_dbg(dev, "i/o registers already in use\n"); 681 return -EBUSY; 682 } 683 684 cmos_rtc.irq = rtc_irq; 685 cmos_rtc.iomem = ports; 686 687 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 688 * driver did, but don't reject unknown configs. Old hardware 689 * won't address 128 bytes. Newer chips have multiple banks, 690 * though they may not be listed in one I/O resource. 691 */ 692 #if defined(CONFIG_ATARI) 693 address_space = 64; 694 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__sparc__) 695 address_space = 128; 696 #else 697 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 698 address_space = 128; 699 #endif 700 if (can_bank2 && ports->end > (ports->start + 1)) 701 address_space = 256; 702 703 /* For ACPI systems extension info comes from the FADT. On others, 704 * board specific setup provides it as appropriate. Systems where 705 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 706 * some almost-clones) can provide hooks to make that behave. 707 * 708 * Note that ACPI doesn't preclude putting these registers into 709 * "extended" areas of the chip, including some that we won't yet 710 * expect CMOS_READ and friends to handle. 711 */ 712 if (info) { 713 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 714 cmos_rtc.day_alrm = info->rtc_day_alarm; 715 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 716 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 717 if (info->rtc_century && info->rtc_century < 128) 718 cmos_rtc.century = info->rtc_century; 719 720 if (info->wake_on && info->wake_off) { 721 cmos_rtc.wake_on = info->wake_on; 722 cmos_rtc.wake_off = info->wake_off; 723 } 724 } 725 726 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 727 &cmos_rtc_ops, THIS_MODULE); 728 if (IS_ERR(cmos_rtc.rtc)) { 729 retval = PTR_ERR(cmos_rtc.rtc); 730 goto cleanup0; 731 } 732 733 cmos_rtc.dev = dev; 734 dev_set_drvdata(dev, &cmos_rtc); 735 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 736 737 spin_lock_irq(&rtc_lock); 738 739 /* force periodic irq to CMOS reset default of 1024Hz; 740 * 741 * REVISIT it's been reported that at least one x86_64 ALI mobo 742 * doesn't use 32KHz here ... for portability we might need to 743 * do something about other clock frequencies. 744 */ 745 cmos_rtc.rtc->irq_freq = 1024; 746 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 747 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 748 749 /* disable irqs */ 750 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 751 752 rtc_control = CMOS_READ(RTC_CONTROL); 753 754 spin_unlock_irq(&rtc_lock); 755 756 /* FIXME teach the alarm code how to handle binary mode; 757 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 758 */ 759 if (is_valid_irq(rtc_irq) && 760 (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) { 761 dev_dbg(dev, "only 24-hr BCD mode supported\n"); 762 retval = -ENXIO; 763 goto cleanup1; 764 } 765 766 if (is_valid_irq(rtc_irq)) { 767 irq_handler_t rtc_cmos_int_handler; 768 769 if (is_hpet_enabled()) { 770 int err; 771 772 rtc_cmos_int_handler = hpet_rtc_interrupt; 773 err = hpet_register_irq_handler(cmos_interrupt); 774 if (err != 0) { 775 printk(KERN_WARNING "hpet_register_irq_handler " 776 " failed in rtc_init()."); 777 goto cleanup1; 778 } 779 } else 780 rtc_cmos_int_handler = cmos_interrupt; 781 782 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 783 IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev), 784 cmos_rtc.rtc); 785 if (retval < 0) { 786 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 787 goto cleanup1; 788 } 789 } 790 hpet_rtc_timer_init(); 791 792 /* export at least the first block of NVRAM */ 793 nvram.size = address_space - NVRAM_OFFSET; 794 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 795 if (retval < 0) { 796 dev_dbg(dev, "can't create nvram file? %d\n", retval); 797 goto cleanup2; 798 } 799 800 pr_info("%s: alarms up to one %s%s, %zd bytes nvram%s\n", 801 dev_name(&cmos_rtc.rtc->dev), 802 is_valid_irq(rtc_irq) 803 ? (cmos_rtc.mon_alrm 804 ? "year" 805 : (cmos_rtc.day_alrm 806 ? "month" : "day")) 807 : "no", 808 cmos_rtc.century ? ", y3k" : "", 809 nvram.size, 810 is_hpet_enabled() ? ", hpet irqs" : ""); 811 812 return 0; 813 814 cleanup2: 815 if (is_valid_irq(rtc_irq)) 816 free_irq(rtc_irq, cmos_rtc.rtc); 817 cleanup1: 818 cmos_rtc.dev = NULL; 819 rtc_device_unregister(cmos_rtc.rtc); 820 cleanup0: 821 release_region(ports->start, ports->end + 1 - ports->start); 822 return retval; 823 } 824 825 static void cmos_do_shutdown(void) 826 { 827 spin_lock_irq(&rtc_lock); 828 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 829 spin_unlock_irq(&rtc_lock); 830 } 831 832 static void __exit cmos_do_remove(struct device *dev) 833 { 834 struct cmos_rtc *cmos = dev_get_drvdata(dev); 835 struct resource *ports; 836 837 cmos_do_shutdown(); 838 839 sysfs_remove_bin_file(&dev->kobj, &nvram); 840 841 if (is_valid_irq(cmos->irq)) { 842 free_irq(cmos->irq, cmos->rtc); 843 hpet_unregister_irq_handler(cmos_interrupt); 844 } 845 846 rtc_device_unregister(cmos->rtc); 847 cmos->rtc = NULL; 848 849 ports = cmos->iomem; 850 release_region(ports->start, ports->end + 1 - ports->start); 851 cmos->iomem = NULL; 852 853 cmos->dev = NULL; 854 dev_set_drvdata(dev, NULL); 855 } 856 857 #ifdef CONFIG_PM 858 859 static int cmos_suspend(struct device *dev, pm_message_t mesg) 860 { 861 struct cmos_rtc *cmos = dev_get_drvdata(dev); 862 unsigned char tmp; 863 864 /* only the alarm might be a wakeup event source */ 865 spin_lock_irq(&rtc_lock); 866 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 867 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 868 unsigned char mask; 869 870 if (device_may_wakeup(dev)) 871 mask = RTC_IRQMASK & ~RTC_AIE; 872 else 873 mask = RTC_IRQMASK; 874 tmp &= ~mask; 875 CMOS_WRITE(tmp, RTC_CONTROL); 876 hpet_mask_rtc_irq_bit(mask); 877 878 cmos_checkintr(cmos, tmp); 879 } 880 spin_unlock_irq(&rtc_lock); 881 882 if (tmp & RTC_AIE) { 883 cmos->enabled_wake = 1; 884 if (cmos->wake_on) 885 cmos->wake_on(dev); 886 else 887 enable_irq_wake(cmos->irq); 888 } 889 890 pr_debug("%s: suspend%s, ctrl %02x\n", 891 dev_name(&cmos_rtc.rtc->dev), 892 (tmp & RTC_AIE) ? ", alarm may wake" : "", 893 tmp); 894 895 return 0; 896 } 897 898 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 899 * after a detour through G3 "mechanical off", although the ACPI spec 900 * says wakeup should only work from G1/S4 "hibernate". To most users, 901 * distinctions between S4 and S5 are pointless. So when the hardware 902 * allows, don't draw that distinction. 903 */ 904 static inline int cmos_poweroff(struct device *dev) 905 { 906 return cmos_suspend(dev, PMSG_HIBERNATE); 907 } 908 909 static int cmos_resume(struct device *dev) 910 { 911 struct cmos_rtc *cmos = dev_get_drvdata(dev); 912 unsigned char tmp = cmos->suspend_ctrl; 913 914 /* re-enable any irqs previously active */ 915 if (tmp & RTC_IRQMASK) { 916 unsigned char mask; 917 918 if (cmos->enabled_wake) { 919 if (cmos->wake_off) 920 cmos->wake_off(dev); 921 else 922 disable_irq_wake(cmos->irq); 923 cmos->enabled_wake = 0; 924 } 925 926 spin_lock_irq(&rtc_lock); 927 do { 928 CMOS_WRITE(tmp, RTC_CONTROL); 929 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 930 931 mask = CMOS_READ(RTC_INTR_FLAGS); 932 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 933 if (!is_hpet_enabled() || !is_intr(mask)) 934 break; 935 936 /* force one-shot behavior if HPET blocked 937 * the wake alarm's irq 938 */ 939 rtc_update_irq(cmos->rtc, 1, mask); 940 tmp &= ~RTC_AIE; 941 hpet_mask_rtc_irq_bit(RTC_AIE); 942 } while (mask & RTC_AIE); 943 spin_unlock_irq(&rtc_lock); 944 } 945 946 pr_debug("%s: resume, ctrl %02x\n", 947 dev_name(&cmos_rtc.rtc->dev), 948 tmp); 949 950 return 0; 951 } 952 953 #else 954 #define cmos_suspend NULL 955 #define cmos_resume NULL 956 957 static inline int cmos_poweroff(struct device *dev) 958 { 959 return -ENOSYS; 960 } 961 962 #endif 963 964 /*----------------------------------------------------------------*/ 965 966 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 967 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 968 * probably list them in similar PNPBIOS tables; so PNP is more common. 969 * 970 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 971 * predate even PNPBIOS should set up platform_bus devices. 972 */ 973 974 #ifdef CONFIG_ACPI 975 976 #include <linux/acpi.h> 977 978 #ifdef CONFIG_PM 979 static u32 rtc_handler(void *context) 980 { 981 acpi_clear_event(ACPI_EVENT_RTC); 982 acpi_disable_event(ACPI_EVENT_RTC, 0); 983 return ACPI_INTERRUPT_HANDLED; 984 } 985 986 static inline void rtc_wake_setup(void) 987 { 988 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL); 989 /* 990 * After the RTC handler is installed, the Fixed_RTC event should 991 * be disabled. Only when the RTC alarm is set will it be enabled. 992 */ 993 acpi_clear_event(ACPI_EVENT_RTC); 994 acpi_disable_event(ACPI_EVENT_RTC, 0); 995 } 996 997 static void rtc_wake_on(struct device *dev) 998 { 999 acpi_clear_event(ACPI_EVENT_RTC); 1000 acpi_enable_event(ACPI_EVENT_RTC, 0); 1001 } 1002 1003 static void rtc_wake_off(struct device *dev) 1004 { 1005 acpi_disable_event(ACPI_EVENT_RTC, 0); 1006 } 1007 #else 1008 #define rtc_wake_setup() do{}while(0) 1009 #define rtc_wake_on NULL 1010 #define rtc_wake_off NULL 1011 #endif 1012 1013 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1014 * its device node and pass extra config data. This helps its driver use 1015 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1016 * that this board's RTC is wakeup-capable (per ACPI spec). 1017 */ 1018 static struct cmos_rtc_board_info acpi_rtc_info; 1019 1020 static void __devinit 1021 cmos_wake_setup(struct device *dev) 1022 { 1023 if (acpi_disabled) 1024 return; 1025 1026 rtc_wake_setup(); 1027 acpi_rtc_info.wake_on = rtc_wake_on; 1028 acpi_rtc_info.wake_off = rtc_wake_off; 1029 1030 /* workaround bug in some ACPI tables */ 1031 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1032 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1033 acpi_gbl_FADT.month_alarm); 1034 acpi_gbl_FADT.month_alarm = 0; 1035 } 1036 1037 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1038 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1039 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1040 1041 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1042 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1043 dev_info(dev, "RTC can wake from S4\n"); 1044 1045 dev->platform_data = &acpi_rtc_info; 1046 1047 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1048 device_init_wakeup(dev, 1); 1049 } 1050 1051 #else 1052 1053 static void __devinit 1054 cmos_wake_setup(struct device *dev) 1055 { 1056 } 1057 1058 #endif 1059 1060 #ifdef CONFIG_PNP 1061 1062 #include <linux/pnp.h> 1063 1064 static int __devinit 1065 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1066 { 1067 cmos_wake_setup(&pnp->dev); 1068 1069 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0)) 1070 /* Some machines contain a PNP entry for the RTC, but 1071 * don't define the IRQ. It should always be safe to 1072 * hardcode it in these cases 1073 */ 1074 return cmos_do_probe(&pnp->dev, 1075 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1076 else 1077 return cmos_do_probe(&pnp->dev, 1078 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1079 pnp_irq(pnp, 0)); 1080 } 1081 1082 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1083 { 1084 cmos_do_remove(&pnp->dev); 1085 } 1086 1087 #ifdef CONFIG_PM 1088 1089 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg) 1090 { 1091 return cmos_suspend(&pnp->dev, mesg); 1092 } 1093 1094 static int cmos_pnp_resume(struct pnp_dev *pnp) 1095 { 1096 return cmos_resume(&pnp->dev); 1097 } 1098 1099 #else 1100 #define cmos_pnp_suspend NULL 1101 #define cmos_pnp_resume NULL 1102 #endif 1103 1104 static void cmos_pnp_shutdown(struct device *pdev) 1105 { 1106 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev)) 1107 return; 1108 1109 cmos_do_shutdown(); 1110 } 1111 1112 static const struct pnp_device_id rtc_ids[] = { 1113 { .id = "PNP0b00", }, 1114 { .id = "PNP0b01", }, 1115 { .id = "PNP0b02", }, 1116 { }, 1117 }; 1118 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1119 1120 static struct pnp_driver cmos_pnp_driver = { 1121 .name = (char *) driver_name, 1122 .id_table = rtc_ids, 1123 .probe = cmos_pnp_probe, 1124 .remove = __exit_p(cmos_pnp_remove), 1125 1126 /* flag ensures resume() gets called, and stops syslog spam */ 1127 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1128 .suspend = cmos_pnp_suspend, 1129 .resume = cmos_pnp_resume, 1130 .driver = { 1131 .name = (char *)driver_name, 1132 .shutdown = cmos_pnp_shutdown, 1133 } 1134 }; 1135 1136 #endif /* CONFIG_PNP */ 1137 1138 /*----------------------------------------------------------------*/ 1139 1140 /* Platform setup should have set up an RTC device, when PNP is 1141 * unavailable ... this could happen even on (older) PCs. 1142 */ 1143 1144 static int __init cmos_platform_probe(struct platform_device *pdev) 1145 { 1146 cmos_wake_setup(&pdev->dev); 1147 return cmos_do_probe(&pdev->dev, 1148 platform_get_resource(pdev, IORESOURCE_IO, 0), 1149 platform_get_irq(pdev, 0)); 1150 } 1151 1152 static int __exit cmos_platform_remove(struct platform_device *pdev) 1153 { 1154 cmos_do_remove(&pdev->dev); 1155 return 0; 1156 } 1157 1158 static void cmos_platform_shutdown(struct platform_device *pdev) 1159 { 1160 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev)) 1161 return; 1162 1163 cmos_do_shutdown(); 1164 } 1165 1166 /* work with hotplug and coldplug */ 1167 MODULE_ALIAS("platform:rtc_cmos"); 1168 1169 static struct platform_driver cmos_platform_driver = { 1170 .remove = __exit_p(cmos_platform_remove), 1171 .shutdown = cmos_platform_shutdown, 1172 .driver = { 1173 .name = (char *) driver_name, 1174 .suspend = cmos_suspend, 1175 .resume = cmos_resume, 1176 } 1177 }; 1178 1179 static int __init cmos_init(void) 1180 { 1181 int retval = 0; 1182 1183 #ifdef CONFIG_PNP 1184 pnp_register_driver(&cmos_pnp_driver); 1185 #endif 1186 1187 if (!cmos_rtc.dev) 1188 retval = platform_driver_probe(&cmos_platform_driver, 1189 cmos_platform_probe); 1190 1191 if (retval == 0) 1192 return 0; 1193 1194 #ifdef CONFIG_PNP 1195 pnp_unregister_driver(&cmos_pnp_driver); 1196 #endif 1197 return retval; 1198 } 1199 module_init(cmos_init); 1200 1201 static void __exit cmos_exit(void) 1202 { 1203 #ifdef CONFIG_PNP 1204 pnp_unregister_driver(&cmos_pnp_driver); 1205 #endif 1206 platform_driver_unregister(&cmos_platform_driver); 1207 } 1208 module_exit(cmos_exit); 1209 1210 1211 MODULE_AUTHOR("David Brownell"); 1212 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1213 MODULE_LICENSE("GPL"); 1214