xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision b60a5b8d)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
49 
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
52 
53 #ifdef CONFIG_ACPI
54 /*
55  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
56  *
57  * If cleared, ACPI SCI is only used to wake up the system from suspend
58  *
59  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
60  */
61 
62 static bool use_acpi_alarm;
63 module_param(use_acpi_alarm, bool, 0444);
64 
65 static inline int cmos_use_acpi_alarm(void)
66 {
67 	return use_acpi_alarm;
68 }
69 #else /* !CONFIG_ACPI */
70 
71 static inline int cmos_use_acpi_alarm(void)
72 {
73 	return 0;
74 }
75 #endif
76 
77 struct cmos_rtc {
78 	struct rtc_device	*rtc;
79 	struct device		*dev;
80 	int			irq;
81 	struct resource		*iomem;
82 	time64_t		alarm_expires;
83 
84 	void			(*wake_on)(struct device *);
85 	void			(*wake_off)(struct device *);
86 
87 	u8			enabled_wake;
88 	u8			suspend_ctrl;
89 
90 	/* newer hardware extends the original register set */
91 	u8			day_alrm;
92 	u8			mon_alrm;
93 	u8			century;
94 
95 	struct rtc_wkalrm	saved_wkalrm;
96 };
97 
98 /* both platform and pnp busses use negative numbers for invalid irqs */
99 #define is_valid_irq(n)		((n) > 0)
100 
101 static const char driver_name[] = "rtc_cmos";
102 
103 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
104  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
105  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
106  */
107 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
108 
109 static inline int is_intr(u8 rtc_intr)
110 {
111 	if (!(rtc_intr & RTC_IRQF))
112 		return 0;
113 	return rtc_intr & RTC_IRQMASK;
114 }
115 
116 /*----------------------------------------------------------------*/
117 
118 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
119  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
120  * used in a broken "legacy replacement" mode.  The breakage includes
121  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
122  * other (better) use.
123  *
124  * When that broken mode is in use, platform glue provides a partial
125  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
126  * want to use HPET for anything except those IRQs though...
127  */
128 #ifdef CONFIG_HPET_EMULATE_RTC
129 #include <asm/hpet.h>
130 #else
131 
132 static inline int is_hpet_enabled(void)
133 {
134 	return 0;
135 }
136 
137 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 {
139 	return 0;
140 }
141 
142 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
143 {
144 	return 0;
145 }
146 
147 static inline int
148 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 {
150 	return 0;
151 }
152 
153 static inline int hpet_set_periodic_freq(unsigned long freq)
154 {
155 	return 0;
156 }
157 
158 static inline int hpet_rtc_dropped_irq(void)
159 {
160 	return 0;
161 }
162 
163 static inline int hpet_rtc_timer_init(void)
164 {
165 	return 0;
166 }
167 
168 extern irq_handler_t hpet_rtc_interrupt;
169 
170 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 {
172 	return 0;
173 }
174 
175 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
176 {
177 	return 0;
178 }
179 
180 #endif
181 
182 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
183 static inline int use_hpet_alarm(void)
184 {
185 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 #ifdef RTC_PORT
191 
192 /* Most newer x86 systems have two register banks, the first used
193  * for RTC and NVRAM and the second only for NVRAM.  Caller must
194  * own rtc_lock ... and we won't worry about access during NMI.
195  */
196 #define can_bank2	true
197 
198 static inline unsigned char cmos_read_bank2(unsigned char addr)
199 {
200 	outb(addr, RTC_PORT(2));
201 	return inb(RTC_PORT(3));
202 }
203 
204 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
205 {
206 	outb(addr, RTC_PORT(2));
207 	outb(val, RTC_PORT(3));
208 }
209 
210 #else
211 
212 #define can_bank2	false
213 
214 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 {
216 	return 0;
217 }
218 
219 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
220 {
221 }
222 
223 #endif
224 
225 /*----------------------------------------------------------------*/
226 
227 static int cmos_read_time(struct device *dev, struct rtc_time *t)
228 {
229 	/*
230 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
231 	 * which tells the caller that this RTC value is unusable.
232 	 */
233 	if (!pm_trace_rtc_valid())
234 		return -EIO;
235 
236 	/* REVISIT:  if the clock has a "century" register, use
237 	 * that instead of the heuristic in mc146818_get_time().
238 	 * That'll make Y3K compatility (year > 2070) easy!
239 	 */
240 	mc146818_get_time(t);
241 	return 0;
242 }
243 
244 static int cmos_set_time(struct device *dev, struct rtc_time *t)
245 {
246 	/* REVISIT:  set the "century" register if available
247 	 *
248 	 * NOTE: this ignores the issue whereby updating the seconds
249 	 * takes effect exactly 500ms after we write the register.
250 	 * (Also queueing and other delays before we get this far.)
251 	 */
252 	return mc146818_set_time(t);
253 }
254 
255 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
256 {
257 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
258 	unsigned char	rtc_control;
259 
260 	/* This not only a rtc_op, but also called directly */
261 	if (!is_valid_irq(cmos->irq))
262 		return -EIO;
263 
264 	/* Basic alarms only support hour, minute, and seconds fields.
265 	 * Some also support day and month, for alarms up to a year in
266 	 * the future.
267 	 */
268 
269 	spin_lock_irq(&rtc_lock);
270 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
271 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
272 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
273 
274 	if (cmos->day_alrm) {
275 		/* ignore upper bits on readback per ACPI spec */
276 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
277 		if (!t->time.tm_mday)
278 			t->time.tm_mday = -1;
279 
280 		if (cmos->mon_alrm) {
281 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
282 			if (!t->time.tm_mon)
283 				t->time.tm_mon = -1;
284 		}
285 	}
286 
287 	rtc_control = CMOS_READ(RTC_CONTROL);
288 	spin_unlock_irq(&rtc_lock);
289 
290 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
291 		if (((unsigned)t->time.tm_sec) < 0x60)
292 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
293 		else
294 			t->time.tm_sec = -1;
295 		if (((unsigned)t->time.tm_min) < 0x60)
296 			t->time.tm_min = bcd2bin(t->time.tm_min);
297 		else
298 			t->time.tm_min = -1;
299 		if (((unsigned)t->time.tm_hour) < 0x24)
300 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
301 		else
302 			t->time.tm_hour = -1;
303 
304 		if (cmos->day_alrm) {
305 			if (((unsigned)t->time.tm_mday) <= 0x31)
306 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
307 			else
308 				t->time.tm_mday = -1;
309 
310 			if (cmos->mon_alrm) {
311 				if (((unsigned)t->time.tm_mon) <= 0x12)
312 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
313 				else
314 					t->time.tm_mon = -1;
315 			}
316 		}
317 	}
318 
319 	t->enabled = !!(rtc_control & RTC_AIE);
320 	t->pending = 0;
321 
322 	return 0;
323 }
324 
325 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
326 {
327 	unsigned char	rtc_intr;
328 
329 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
330 	 * allegedly some older rtcs need that to handle irqs properly
331 	 */
332 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
333 
334 	if (use_hpet_alarm())
335 		return;
336 
337 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
338 	if (is_intr(rtc_intr))
339 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
340 }
341 
342 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
343 {
344 	unsigned char	rtc_control;
345 
346 	/* flush any pending IRQ status, notably for update irqs,
347 	 * before we enable new IRQs
348 	 */
349 	rtc_control = CMOS_READ(RTC_CONTROL);
350 	cmos_checkintr(cmos, rtc_control);
351 
352 	rtc_control |= mask;
353 	CMOS_WRITE(rtc_control, RTC_CONTROL);
354 	if (use_hpet_alarm())
355 		hpet_set_rtc_irq_bit(mask);
356 
357 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
358 		if (cmos->wake_on)
359 			cmos->wake_on(cmos->dev);
360 	}
361 
362 	cmos_checkintr(cmos, rtc_control);
363 }
364 
365 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367 	unsigned char	rtc_control;
368 
369 	rtc_control = CMOS_READ(RTC_CONTROL);
370 	rtc_control &= ~mask;
371 	CMOS_WRITE(rtc_control, RTC_CONTROL);
372 	if (use_hpet_alarm())
373 		hpet_mask_rtc_irq_bit(mask);
374 
375 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
376 		if (cmos->wake_off)
377 			cmos->wake_off(cmos->dev);
378 	}
379 
380 	cmos_checkintr(cmos, rtc_control);
381 }
382 
383 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
384 {
385 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
386 	struct rtc_time now;
387 
388 	cmos_read_time(dev, &now);
389 
390 	if (!cmos->day_alrm) {
391 		time64_t t_max_date;
392 		time64_t t_alrm;
393 
394 		t_max_date = rtc_tm_to_time64(&now);
395 		t_max_date += 24 * 60 * 60 - 1;
396 		t_alrm = rtc_tm_to_time64(&t->time);
397 		if (t_alrm > t_max_date) {
398 			dev_err(dev,
399 				"Alarms can be up to one day in the future\n");
400 			return -EINVAL;
401 		}
402 	} else if (!cmos->mon_alrm) {
403 		struct rtc_time max_date = now;
404 		time64_t t_max_date;
405 		time64_t t_alrm;
406 		int max_mday;
407 
408 		if (max_date.tm_mon == 11) {
409 			max_date.tm_mon = 0;
410 			max_date.tm_year += 1;
411 		} else {
412 			max_date.tm_mon += 1;
413 		}
414 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
415 		if (max_date.tm_mday > max_mday)
416 			max_date.tm_mday = max_mday;
417 
418 		t_max_date = rtc_tm_to_time64(&max_date);
419 		t_max_date -= 1;
420 		t_alrm = rtc_tm_to_time64(&t->time);
421 		if (t_alrm > t_max_date) {
422 			dev_err(dev,
423 				"Alarms can be up to one month in the future\n");
424 			return -EINVAL;
425 		}
426 	} else {
427 		struct rtc_time max_date = now;
428 		time64_t t_max_date;
429 		time64_t t_alrm;
430 		int max_mday;
431 
432 		max_date.tm_year += 1;
433 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
434 		if (max_date.tm_mday > max_mday)
435 			max_date.tm_mday = max_mday;
436 
437 		t_max_date = rtc_tm_to_time64(&max_date);
438 		t_max_date -= 1;
439 		t_alrm = rtc_tm_to_time64(&t->time);
440 		if (t_alrm > t_max_date) {
441 			dev_err(dev,
442 				"Alarms can be up to one year in the future\n");
443 			return -EINVAL;
444 		}
445 	}
446 
447 	return 0;
448 }
449 
450 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
451 {
452 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
453 	unsigned char mon, mday, hrs, min, sec, rtc_control;
454 	int ret;
455 
456 	/* This not only a rtc_op, but also called directly */
457 	if (!is_valid_irq(cmos->irq))
458 		return -EIO;
459 
460 	ret = cmos_validate_alarm(dev, t);
461 	if (ret < 0)
462 		return ret;
463 
464 	mon = t->time.tm_mon + 1;
465 	mday = t->time.tm_mday;
466 	hrs = t->time.tm_hour;
467 	min = t->time.tm_min;
468 	sec = t->time.tm_sec;
469 
470 	rtc_control = CMOS_READ(RTC_CONTROL);
471 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
472 		/* Writing 0xff means "don't care" or "match all".  */
473 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
474 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
475 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
476 		min = (min < 60) ? bin2bcd(min) : 0xff;
477 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
478 	}
479 
480 	spin_lock_irq(&rtc_lock);
481 
482 	/* next rtc irq must not be from previous alarm setting */
483 	cmos_irq_disable(cmos, RTC_AIE);
484 
485 	/* update alarm */
486 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
487 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
488 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
489 
490 	/* the system may support an "enhanced" alarm */
491 	if (cmos->day_alrm) {
492 		CMOS_WRITE(mday, cmos->day_alrm);
493 		if (cmos->mon_alrm)
494 			CMOS_WRITE(mon, cmos->mon_alrm);
495 	}
496 
497 	if (use_hpet_alarm()) {
498 		/*
499 		 * FIXME the HPET alarm glue currently ignores day_alrm
500 		 * and mon_alrm ...
501 		 */
502 		hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
503 				    t->time.tm_sec);
504 	}
505 
506 	if (t->enabled)
507 		cmos_irq_enable(cmos, RTC_AIE);
508 
509 	spin_unlock_irq(&rtc_lock);
510 
511 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
512 
513 	return 0;
514 }
515 
516 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
517 {
518 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
519 	unsigned long	flags;
520 
521 	spin_lock_irqsave(&rtc_lock, flags);
522 
523 	if (enabled)
524 		cmos_irq_enable(cmos, RTC_AIE);
525 	else
526 		cmos_irq_disable(cmos, RTC_AIE);
527 
528 	spin_unlock_irqrestore(&rtc_lock, flags);
529 	return 0;
530 }
531 
532 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
533 
534 static int cmos_procfs(struct device *dev, struct seq_file *seq)
535 {
536 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
537 	unsigned char	rtc_control, valid;
538 
539 	spin_lock_irq(&rtc_lock);
540 	rtc_control = CMOS_READ(RTC_CONTROL);
541 	valid = CMOS_READ(RTC_VALID);
542 	spin_unlock_irq(&rtc_lock);
543 
544 	/* NOTE:  at least ICH6 reports battery status using a different
545 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
546 	 */
547 	seq_printf(seq,
548 		   "periodic_IRQ\t: %s\n"
549 		   "update_IRQ\t: %s\n"
550 		   "HPET_emulated\t: %s\n"
551 		   // "square_wave\t: %s\n"
552 		   "BCD\t\t: %s\n"
553 		   "DST_enable\t: %s\n"
554 		   "periodic_freq\t: %d\n"
555 		   "batt_status\t: %s\n",
556 		   (rtc_control & RTC_PIE) ? "yes" : "no",
557 		   (rtc_control & RTC_UIE) ? "yes" : "no",
558 		   use_hpet_alarm() ? "yes" : "no",
559 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
560 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
561 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
562 		   cmos->rtc->irq_freq,
563 		   (valid & RTC_VRT) ? "okay" : "dead");
564 
565 	return 0;
566 }
567 
568 #else
569 #define	cmos_procfs	NULL
570 #endif
571 
572 static const struct rtc_class_ops cmos_rtc_ops = {
573 	.read_time		= cmos_read_time,
574 	.set_time		= cmos_set_time,
575 	.read_alarm		= cmos_read_alarm,
576 	.set_alarm		= cmos_set_alarm,
577 	.proc			= cmos_procfs,
578 	.alarm_irq_enable	= cmos_alarm_irq_enable,
579 };
580 
581 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
582 	.read_time		= cmos_read_time,
583 	.set_time		= cmos_set_time,
584 	.proc			= cmos_procfs,
585 };
586 
587 /*----------------------------------------------------------------*/
588 
589 /*
590  * All these chips have at least 64 bytes of address space, shared by
591  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
592  * by boot firmware.  Modern chips have 128 or 256 bytes.
593  */
594 
595 #define NVRAM_OFFSET	(RTC_REG_D + 1)
596 
597 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
598 			   size_t count)
599 {
600 	unsigned char *buf = val;
601 	int	retval;
602 
603 	off += NVRAM_OFFSET;
604 	spin_lock_irq(&rtc_lock);
605 	for (retval = 0; count; count--, off++, retval++) {
606 		if (off < 128)
607 			*buf++ = CMOS_READ(off);
608 		else if (can_bank2)
609 			*buf++ = cmos_read_bank2(off);
610 		else
611 			break;
612 	}
613 	spin_unlock_irq(&rtc_lock);
614 
615 	return retval;
616 }
617 
618 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
619 			    size_t count)
620 {
621 	struct cmos_rtc	*cmos = priv;
622 	unsigned char	*buf = val;
623 	int		retval;
624 
625 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
626 	 * checksum on part of the NVRAM data.  That's currently ignored
627 	 * here.  If userspace is smart enough to know what fields of
628 	 * NVRAM to update, updating checksums is also part of its job.
629 	 */
630 	off += NVRAM_OFFSET;
631 	spin_lock_irq(&rtc_lock);
632 	for (retval = 0; count; count--, off++, retval++) {
633 		/* don't trash RTC registers */
634 		if (off == cmos->day_alrm
635 				|| off == cmos->mon_alrm
636 				|| off == cmos->century)
637 			buf++;
638 		else if (off < 128)
639 			CMOS_WRITE(*buf++, off);
640 		else if (can_bank2)
641 			cmos_write_bank2(*buf++, off);
642 		else
643 			break;
644 	}
645 	spin_unlock_irq(&rtc_lock);
646 
647 	return retval;
648 }
649 
650 /*----------------------------------------------------------------*/
651 
652 static struct cmos_rtc	cmos_rtc;
653 
654 static irqreturn_t cmos_interrupt(int irq, void *p)
655 {
656 	u8		irqstat;
657 	u8		rtc_control;
658 
659 	spin_lock(&rtc_lock);
660 
661 	/* When the HPET interrupt handler calls us, the interrupt
662 	 * status is passed as arg1 instead of the irq number.  But
663 	 * always clear irq status, even when HPET is in the way.
664 	 *
665 	 * Note that HPET and RTC are almost certainly out of phase,
666 	 * giving different IRQ status ...
667 	 */
668 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
669 	rtc_control = CMOS_READ(RTC_CONTROL);
670 	if (use_hpet_alarm())
671 		irqstat = (unsigned long)irq & 0xF0;
672 
673 	/* If we were suspended, RTC_CONTROL may not be accurate since the
674 	 * bios may have cleared it.
675 	 */
676 	if (!cmos_rtc.suspend_ctrl)
677 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
678 	else
679 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
680 
681 	/* All Linux RTC alarms should be treated as if they were oneshot.
682 	 * Similar code may be needed in system wakeup paths, in case the
683 	 * alarm woke the system.
684 	 */
685 	if (irqstat & RTC_AIE) {
686 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
687 		rtc_control &= ~RTC_AIE;
688 		CMOS_WRITE(rtc_control, RTC_CONTROL);
689 		if (use_hpet_alarm())
690 			hpet_mask_rtc_irq_bit(RTC_AIE);
691 		CMOS_READ(RTC_INTR_FLAGS);
692 	}
693 	spin_unlock(&rtc_lock);
694 
695 	if (is_intr(irqstat)) {
696 		rtc_update_irq(p, 1, irqstat);
697 		return IRQ_HANDLED;
698 	} else
699 		return IRQ_NONE;
700 }
701 
702 #ifdef	CONFIG_PNP
703 #define	INITSECTION
704 
705 #else
706 #define	INITSECTION	__init
707 #endif
708 
709 static int INITSECTION
710 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
711 {
712 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
713 	int				retval = 0;
714 	unsigned char			rtc_control;
715 	unsigned			address_space;
716 	u32				flags = 0;
717 	struct nvmem_config nvmem_cfg = {
718 		.name = "cmos_nvram",
719 		.word_size = 1,
720 		.stride = 1,
721 		.reg_read = cmos_nvram_read,
722 		.reg_write = cmos_nvram_write,
723 		.priv = &cmos_rtc,
724 	};
725 
726 	/* there can be only one ... */
727 	if (cmos_rtc.dev)
728 		return -EBUSY;
729 
730 	if (!ports)
731 		return -ENODEV;
732 
733 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
734 	 *
735 	 * REVISIT non-x86 systems may instead use memory space resources
736 	 * (needing ioremap etc), not i/o space resources like this ...
737 	 */
738 	if (RTC_IOMAPPED)
739 		ports = request_region(ports->start, resource_size(ports),
740 				       driver_name);
741 	else
742 		ports = request_mem_region(ports->start, resource_size(ports),
743 					   driver_name);
744 	if (!ports) {
745 		dev_dbg(dev, "i/o registers already in use\n");
746 		return -EBUSY;
747 	}
748 
749 	cmos_rtc.irq = rtc_irq;
750 	cmos_rtc.iomem = ports;
751 
752 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
753 	 * driver did, but don't reject unknown configs.   Old hardware
754 	 * won't address 128 bytes.  Newer chips have multiple banks,
755 	 * though they may not be listed in one I/O resource.
756 	 */
757 #if	defined(CONFIG_ATARI)
758 	address_space = 64;
759 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
760 			|| defined(__sparc__) || defined(__mips__) \
761 			|| defined(__powerpc__)
762 	address_space = 128;
763 #else
764 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
765 	address_space = 128;
766 #endif
767 	if (can_bank2 && ports->end > (ports->start + 1))
768 		address_space = 256;
769 
770 	/* For ACPI systems extension info comes from the FADT.  On others,
771 	 * board specific setup provides it as appropriate.  Systems where
772 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
773 	 * some almost-clones) can provide hooks to make that behave.
774 	 *
775 	 * Note that ACPI doesn't preclude putting these registers into
776 	 * "extended" areas of the chip, including some that we won't yet
777 	 * expect CMOS_READ and friends to handle.
778 	 */
779 	if (info) {
780 		if (info->flags)
781 			flags = info->flags;
782 		if (info->address_space)
783 			address_space = info->address_space;
784 
785 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
786 			cmos_rtc.day_alrm = info->rtc_day_alarm;
787 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
788 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
789 		if (info->rtc_century && info->rtc_century < 128)
790 			cmos_rtc.century = info->rtc_century;
791 
792 		if (info->wake_on && info->wake_off) {
793 			cmos_rtc.wake_on = info->wake_on;
794 			cmos_rtc.wake_off = info->wake_off;
795 		}
796 	}
797 
798 	cmos_rtc.dev = dev;
799 	dev_set_drvdata(dev, &cmos_rtc);
800 
801 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
802 	if (IS_ERR(cmos_rtc.rtc)) {
803 		retval = PTR_ERR(cmos_rtc.rtc);
804 		goto cleanup0;
805 	}
806 
807 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
808 
809 	spin_lock_irq(&rtc_lock);
810 
811 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
812 		/* force periodic irq to CMOS reset default of 1024Hz;
813 		 *
814 		 * REVISIT it's been reported that at least one x86_64 ALI
815 		 * mobo doesn't use 32KHz here ... for portability we might
816 		 * need to do something about other clock frequencies.
817 		 */
818 		cmos_rtc.rtc->irq_freq = 1024;
819 		if (use_hpet_alarm())
820 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
821 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
822 	}
823 
824 	/* disable irqs */
825 	if (is_valid_irq(rtc_irq))
826 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
827 
828 	rtc_control = CMOS_READ(RTC_CONTROL);
829 
830 	spin_unlock_irq(&rtc_lock);
831 
832 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
833 		dev_warn(dev, "only 24-hr supported\n");
834 		retval = -ENXIO;
835 		goto cleanup1;
836 	}
837 
838 	if (use_hpet_alarm())
839 		hpet_rtc_timer_init();
840 
841 	if (is_valid_irq(rtc_irq)) {
842 		irq_handler_t rtc_cmos_int_handler;
843 
844 		if (use_hpet_alarm()) {
845 			rtc_cmos_int_handler = hpet_rtc_interrupt;
846 			retval = hpet_register_irq_handler(cmos_interrupt);
847 			if (retval) {
848 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
849 				dev_warn(dev, "hpet_register_irq_handler "
850 						" failed in rtc_init().");
851 				goto cleanup1;
852 			}
853 		} else
854 			rtc_cmos_int_handler = cmos_interrupt;
855 
856 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
857 				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
858 				cmos_rtc.rtc);
859 		if (retval < 0) {
860 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
861 			goto cleanup1;
862 		}
863 
864 		cmos_rtc.rtc->ops = &cmos_rtc_ops;
865 	} else {
866 		cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
867 	}
868 
869 	cmos_rtc.rtc->nvram_old_abi = true;
870 	retval = rtc_register_device(cmos_rtc.rtc);
871 	if (retval)
872 		goto cleanup2;
873 
874 	/* export at least the first block of NVRAM */
875 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
876 	if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
877 		dev_err(dev, "nvmem registration failed\n");
878 
879 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
880 		 !is_valid_irq(rtc_irq) ? "no alarms" :
881 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
882 		 cmos_rtc.day_alrm ? "alarms up to one month" :
883 		 "alarms up to one day",
884 		 cmos_rtc.century ? ", y3k" : "",
885 		 nvmem_cfg.size,
886 		 use_hpet_alarm() ? ", hpet irqs" : "");
887 
888 	return 0;
889 
890 cleanup2:
891 	if (is_valid_irq(rtc_irq))
892 		free_irq(rtc_irq, cmos_rtc.rtc);
893 cleanup1:
894 	cmos_rtc.dev = NULL;
895 cleanup0:
896 	if (RTC_IOMAPPED)
897 		release_region(ports->start, resource_size(ports));
898 	else
899 		release_mem_region(ports->start, resource_size(ports));
900 	return retval;
901 }
902 
903 static void cmos_do_shutdown(int rtc_irq)
904 {
905 	spin_lock_irq(&rtc_lock);
906 	if (is_valid_irq(rtc_irq))
907 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
908 	spin_unlock_irq(&rtc_lock);
909 }
910 
911 static void cmos_do_remove(struct device *dev)
912 {
913 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
914 	struct resource *ports;
915 
916 	cmos_do_shutdown(cmos->irq);
917 
918 	if (is_valid_irq(cmos->irq)) {
919 		free_irq(cmos->irq, cmos->rtc);
920 		if (use_hpet_alarm())
921 			hpet_unregister_irq_handler(cmos_interrupt);
922 	}
923 
924 	cmos->rtc = NULL;
925 
926 	ports = cmos->iomem;
927 	if (RTC_IOMAPPED)
928 		release_region(ports->start, resource_size(ports));
929 	else
930 		release_mem_region(ports->start, resource_size(ports));
931 	cmos->iomem = NULL;
932 
933 	cmos->dev = NULL;
934 }
935 
936 static int cmos_aie_poweroff(struct device *dev)
937 {
938 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
939 	struct rtc_time now;
940 	time64_t t_now;
941 	int retval = 0;
942 	unsigned char rtc_control;
943 
944 	if (!cmos->alarm_expires)
945 		return -EINVAL;
946 
947 	spin_lock_irq(&rtc_lock);
948 	rtc_control = CMOS_READ(RTC_CONTROL);
949 	spin_unlock_irq(&rtc_lock);
950 
951 	/* We only care about the situation where AIE is disabled. */
952 	if (rtc_control & RTC_AIE)
953 		return -EBUSY;
954 
955 	cmos_read_time(dev, &now);
956 	t_now = rtc_tm_to_time64(&now);
957 
958 	/*
959 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
960 	 * automatically right after shutdown on some buggy boxes.
961 	 * This automatic rebooting issue won't happen when the alarm
962 	 * time is larger than now+1 seconds.
963 	 *
964 	 * If the alarm time is equal to now+1 seconds, the issue can be
965 	 * prevented by cancelling the alarm.
966 	 */
967 	if (cmos->alarm_expires == t_now + 1) {
968 		struct rtc_wkalrm alarm;
969 
970 		/* Cancel the AIE timer by configuring the past time. */
971 		rtc_time64_to_tm(t_now - 1, &alarm.time);
972 		alarm.enabled = 0;
973 		retval = cmos_set_alarm(dev, &alarm);
974 	} else if (cmos->alarm_expires > t_now + 1) {
975 		retval = -EBUSY;
976 	}
977 
978 	return retval;
979 }
980 
981 static int cmos_suspend(struct device *dev)
982 {
983 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
984 	unsigned char	tmp;
985 
986 	/* only the alarm might be a wakeup event source */
987 	spin_lock_irq(&rtc_lock);
988 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
989 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
990 		unsigned char	mask;
991 
992 		if (device_may_wakeup(dev))
993 			mask = RTC_IRQMASK & ~RTC_AIE;
994 		else
995 			mask = RTC_IRQMASK;
996 		tmp &= ~mask;
997 		CMOS_WRITE(tmp, RTC_CONTROL);
998 		if (use_hpet_alarm())
999 			hpet_mask_rtc_irq_bit(mask);
1000 		cmos_checkintr(cmos, tmp);
1001 	}
1002 	spin_unlock_irq(&rtc_lock);
1003 
1004 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1005 		cmos->enabled_wake = 1;
1006 		if (cmos->wake_on)
1007 			cmos->wake_on(dev);
1008 		else
1009 			enable_irq_wake(cmos->irq);
1010 	}
1011 
1012 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1013 
1014 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1015 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1016 			tmp);
1017 
1018 	return 0;
1019 }
1020 
1021 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1022  * after a detour through G3 "mechanical off", although the ACPI spec
1023  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1024  * distinctions between S4 and S5 are pointless.  So when the hardware
1025  * allows, don't draw that distinction.
1026  */
1027 static inline int cmos_poweroff(struct device *dev)
1028 {
1029 	if (!IS_ENABLED(CONFIG_PM))
1030 		return -ENOSYS;
1031 
1032 	return cmos_suspend(dev);
1033 }
1034 
1035 static void cmos_check_wkalrm(struct device *dev)
1036 {
1037 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1038 	struct rtc_wkalrm current_alarm;
1039 	time64_t t_now;
1040 	time64_t t_current_expires;
1041 	time64_t t_saved_expires;
1042 	struct rtc_time now;
1043 
1044 	/* Check if we have RTC Alarm armed */
1045 	if (!(cmos->suspend_ctrl & RTC_AIE))
1046 		return;
1047 
1048 	cmos_read_time(dev, &now);
1049 	t_now = rtc_tm_to_time64(&now);
1050 
1051 	/*
1052 	 * ACPI RTC wake event is cleared after resume from STR,
1053 	 * ACK the rtc irq here
1054 	 */
1055 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1056 		cmos_interrupt(0, (void *)cmos->rtc);
1057 		return;
1058 	}
1059 
1060 	cmos_read_alarm(dev, &current_alarm);
1061 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1062 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1063 	if (t_current_expires != t_saved_expires ||
1064 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1065 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1066 	}
1067 }
1068 
1069 static void cmos_check_acpi_rtc_status(struct device *dev,
1070 				       unsigned char *rtc_control);
1071 
1072 static int __maybe_unused cmos_resume(struct device *dev)
1073 {
1074 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1075 	unsigned char tmp;
1076 
1077 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1078 		if (cmos->wake_off)
1079 			cmos->wake_off(dev);
1080 		else
1081 			disable_irq_wake(cmos->irq);
1082 		cmos->enabled_wake = 0;
1083 	}
1084 
1085 	/* The BIOS might have changed the alarm, restore it */
1086 	cmos_check_wkalrm(dev);
1087 
1088 	spin_lock_irq(&rtc_lock);
1089 	tmp = cmos->suspend_ctrl;
1090 	cmos->suspend_ctrl = 0;
1091 	/* re-enable any irqs previously active */
1092 	if (tmp & RTC_IRQMASK) {
1093 		unsigned char	mask;
1094 
1095 		if (device_may_wakeup(dev) && use_hpet_alarm())
1096 			hpet_rtc_timer_init();
1097 
1098 		do {
1099 			CMOS_WRITE(tmp, RTC_CONTROL);
1100 			if (use_hpet_alarm())
1101 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1102 
1103 			mask = CMOS_READ(RTC_INTR_FLAGS);
1104 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1105 			if (!use_hpet_alarm() || !is_intr(mask))
1106 				break;
1107 
1108 			/* force one-shot behavior if HPET blocked
1109 			 * the wake alarm's irq
1110 			 */
1111 			rtc_update_irq(cmos->rtc, 1, mask);
1112 			tmp &= ~RTC_AIE;
1113 			hpet_mask_rtc_irq_bit(RTC_AIE);
1114 		} while (mask & RTC_AIE);
1115 
1116 		if (tmp & RTC_AIE)
1117 			cmos_check_acpi_rtc_status(dev, &tmp);
1118 	}
1119 	spin_unlock_irq(&rtc_lock);
1120 
1121 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1122 
1123 	return 0;
1124 }
1125 
1126 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1127 
1128 /*----------------------------------------------------------------*/
1129 
1130 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1131  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1132  * probably list them in similar PNPBIOS tables; so PNP is more common.
1133  *
1134  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1135  * predate even PNPBIOS should set up platform_bus devices.
1136  */
1137 
1138 #ifdef	CONFIG_ACPI
1139 
1140 #include <linux/acpi.h>
1141 
1142 static u32 rtc_handler(void *context)
1143 {
1144 	struct device *dev = context;
1145 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1146 	unsigned char rtc_control = 0;
1147 	unsigned char rtc_intr;
1148 	unsigned long flags;
1149 
1150 
1151 	/*
1152 	 * Always update rtc irq when ACPI is used as RTC Alarm.
1153 	 * Or else, ACPI SCI is enabled during suspend/resume only,
1154 	 * update rtc irq in that case.
1155 	 */
1156 	if (cmos_use_acpi_alarm())
1157 		cmos_interrupt(0, (void *)cmos->rtc);
1158 	else {
1159 		/* Fix me: can we use cmos_interrupt() here as well? */
1160 		spin_lock_irqsave(&rtc_lock, flags);
1161 		if (cmos_rtc.suspend_ctrl)
1162 			rtc_control = CMOS_READ(RTC_CONTROL);
1163 		if (rtc_control & RTC_AIE) {
1164 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1165 			CMOS_WRITE(rtc_control, RTC_CONTROL);
1166 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1167 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
1168 		}
1169 		spin_unlock_irqrestore(&rtc_lock, flags);
1170 	}
1171 
1172 	pm_wakeup_hard_event(dev);
1173 	acpi_clear_event(ACPI_EVENT_RTC);
1174 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1175 	return ACPI_INTERRUPT_HANDLED;
1176 }
1177 
1178 static inline void rtc_wake_setup(struct device *dev)
1179 {
1180 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1181 	/*
1182 	 * After the RTC handler is installed, the Fixed_RTC event should
1183 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1184 	 */
1185 	acpi_clear_event(ACPI_EVENT_RTC);
1186 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1187 }
1188 
1189 static void rtc_wake_on(struct device *dev)
1190 {
1191 	acpi_clear_event(ACPI_EVENT_RTC);
1192 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1193 }
1194 
1195 static void rtc_wake_off(struct device *dev)
1196 {
1197 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1198 }
1199 
1200 #ifdef CONFIG_X86
1201 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1202 static void use_acpi_alarm_quirks(void)
1203 {
1204 	int year;
1205 
1206 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1207 		return;
1208 
1209 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1210 		return;
1211 
1212 	if (!is_hpet_enabled())
1213 		return;
1214 
1215 	if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1216 		use_acpi_alarm = true;
1217 }
1218 #else
1219 static inline void use_acpi_alarm_quirks(void) { }
1220 #endif
1221 
1222 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1223  * its device node and pass extra config data.  This helps its driver use
1224  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1225  * that this board's RTC is wakeup-capable (per ACPI spec).
1226  */
1227 static struct cmos_rtc_board_info acpi_rtc_info;
1228 
1229 static void cmos_wake_setup(struct device *dev)
1230 {
1231 	if (acpi_disabled)
1232 		return;
1233 
1234 	use_acpi_alarm_quirks();
1235 
1236 	rtc_wake_setup(dev);
1237 	acpi_rtc_info.wake_on = rtc_wake_on;
1238 	acpi_rtc_info.wake_off = rtc_wake_off;
1239 
1240 	/* workaround bug in some ACPI tables */
1241 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1242 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1243 			acpi_gbl_FADT.month_alarm);
1244 		acpi_gbl_FADT.month_alarm = 0;
1245 	}
1246 
1247 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1248 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1249 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1250 
1251 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1252 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1253 		dev_info(dev, "RTC can wake from S4\n");
1254 
1255 	dev->platform_data = &acpi_rtc_info;
1256 
1257 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1258 	device_init_wakeup(dev, 1);
1259 }
1260 
1261 static void cmos_check_acpi_rtc_status(struct device *dev,
1262 				       unsigned char *rtc_control)
1263 {
1264 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1265 	acpi_event_status rtc_status;
1266 	acpi_status status;
1267 
1268 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1269 		return;
1270 
1271 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1272 	if (ACPI_FAILURE(status)) {
1273 		dev_err(dev, "Could not get RTC status\n");
1274 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1275 		unsigned char mask;
1276 		*rtc_control &= ~RTC_AIE;
1277 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1278 		mask = CMOS_READ(RTC_INTR_FLAGS);
1279 		rtc_update_irq(cmos->rtc, 1, mask);
1280 	}
1281 }
1282 
1283 #else
1284 
1285 static void cmos_wake_setup(struct device *dev)
1286 {
1287 }
1288 
1289 static void cmos_check_acpi_rtc_status(struct device *dev,
1290 				       unsigned char *rtc_control)
1291 {
1292 }
1293 
1294 #endif
1295 
1296 #ifdef	CONFIG_PNP
1297 
1298 #include <linux/pnp.h>
1299 
1300 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1301 {
1302 	cmos_wake_setup(&pnp->dev);
1303 
1304 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1305 		unsigned int irq = 0;
1306 #ifdef CONFIG_X86
1307 		/* Some machines contain a PNP entry for the RTC, but
1308 		 * don't define the IRQ. It should always be safe to
1309 		 * hardcode it on systems with a legacy PIC.
1310 		 */
1311 		if (nr_legacy_irqs())
1312 			irq = 8;
1313 #endif
1314 		return cmos_do_probe(&pnp->dev,
1315 				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1316 	} else {
1317 		return cmos_do_probe(&pnp->dev,
1318 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1319 				pnp_irq(pnp, 0));
1320 	}
1321 }
1322 
1323 static void cmos_pnp_remove(struct pnp_dev *pnp)
1324 {
1325 	cmos_do_remove(&pnp->dev);
1326 }
1327 
1328 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1329 {
1330 	struct device *dev = &pnp->dev;
1331 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1332 
1333 	if (system_state == SYSTEM_POWER_OFF) {
1334 		int retval = cmos_poweroff(dev);
1335 
1336 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1337 			return;
1338 	}
1339 
1340 	cmos_do_shutdown(cmos->irq);
1341 }
1342 
1343 static const struct pnp_device_id rtc_ids[] = {
1344 	{ .id = "PNP0b00", },
1345 	{ .id = "PNP0b01", },
1346 	{ .id = "PNP0b02", },
1347 	{ },
1348 };
1349 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1350 
1351 static struct pnp_driver cmos_pnp_driver = {
1352 	.name		= (char *) driver_name,
1353 	.id_table	= rtc_ids,
1354 	.probe		= cmos_pnp_probe,
1355 	.remove		= cmos_pnp_remove,
1356 	.shutdown	= cmos_pnp_shutdown,
1357 
1358 	/* flag ensures resume() gets called, and stops syslog spam */
1359 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1360 	.driver		= {
1361 			.pm = &cmos_pm_ops,
1362 	},
1363 };
1364 
1365 #endif	/* CONFIG_PNP */
1366 
1367 #ifdef CONFIG_OF
1368 static const struct of_device_id of_cmos_match[] = {
1369 	{
1370 		.compatible = "motorola,mc146818",
1371 	},
1372 	{ },
1373 };
1374 MODULE_DEVICE_TABLE(of, of_cmos_match);
1375 
1376 static __init void cmos_of_init(struct platform_device *pdev)
1377 {
1378 	struct device_node *node = pdev->dev.of_node;
1379 	const __be32 *val;
1380 
1381 	if (!node)
1382 		return;
1383 
1384 	val = of_get_property(node, "ctrl-reg", NULL);
1385 	if (val)
1386 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1387 
1388 	val = of_get_property(node, "freq-reg", NULL);
1389 	if (val)
1390 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1391 }
1392 #else
1393 static inline void cmos_of_init(struct platform_device *pdev) {}
1394 #endif
1395 /*----------------------------------------------------------------*/
1396 
1397 /* Platform setup should have set up an RTC device, when PNP is
1398  * unavailable ... this could happen even on (older) PCs.
1399  */
1400 
1401 static int __init cmos_platform_probe(struct platform_device *pdev)
1402 {
1403 	struct resource *resource;
1404 	int irq;
1405 
1406 	cmos_of_init(pdev);
1407 	cmos_wake_setup(&pdev->dev);
1408 
1409 	if (RTC_IOMAPPED)
1410 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1411 	else
1412 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1413 	irq = platform_get_irq(pdev, 0);
1414 	if (irq < 0)
1415 		irq = -1;
1416 
1417 	return cmos_do_probe(&pdev->dev, resource, irq);
1418 }
1419 
1420 static int cmos_platform_remove(struct platform_device *pdev)
1421 {
1422 	cmos_do_remove(&pdev->dev);
1423 	return 0;
1424 }
1425 
1426 static void cmos_platform_shutdown(struct platform_device *pdev)
1427 {
1428 	struct device *dev = &pdev->dev;
1429 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1430 
1431 	if (system_state == SYSTEM_POWER_OFF) {
1432 		int retval = cmos_poweroff(dev);
1433 
1434 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1435 			return;
1436 	}
1437 
1438 	cmos_do_shutdown(cmos->irq);
1439 }
1440 
1441 /* work with hotplug and coldplug */
1442 MODULE_ALIAS("platform:rtc_cmos");
1443 
1444 static struct platform_driver cmos_platform_driver = {
1445 	.remove		= cmos_platform_remove,
1446 	.shutdown	= cmos_platform_shutdown,
1447 	.driver = {
1448 		.name		= driver_name,
1449 		.pm		= &cmos_pm_ops,
1450 		.of_match_table = of_match_ptr(of_cmos_match),
1451 	}
1452 };
1453 
1454 #ifdef CONFIG_PNP
1455 static bool pnp_driver_registered;
1456 #endif
1457 static bool platform_driver_registered;
1458 
1459 static int __init cmos_init(void)
1460 {
1461 	int retval = 0;
1462 
1463 #ifdef	CONFIG_PNP
1464 	retval = pnp_register_driver(&cmos_pnp_driver);
1465 	if (retval == 0)
1466 		pnp_driver_registered = true;
1467 #endif
1468 
1469 	if (!cmos_rtc.dev) {
1470 		retval = platform_driver_probe(&cmos_platform_driver,
1471 					       cmos_platform_probe);
1472 		if (retval == 0)
1473 			platform_driver_registered = true;
1474 	}
1475 
1476 	if (retval == 0)
1477 		return 0;
1478 
1479 #ifdef	CONFIG_PNP
1480 	if (pnp_driver_registered)
1481 		pnp_unregister_driver(&cmos_pnp_driver);
1482 #endif
1483 	return retval;
1484 }
1485 module_init(cmos_init);
1486 
1487 static void __exit cmos_exit(void)
1488 {
1489 #ifdef	CONFIG_PNP
1490 	if (pnp_driver_registered)
1491 		pnp_unregister_driver(&cmos_pnp_driver);
1492 #endif
1493 	if (platform_driver_registered)
1494 		platform_driver_unregister(&cmos_platform_driver);
1495 }
1496 module_exit(cmos_exit);
1497 
1498 
1499 MODULE_AUTHOR("David Brownell");
1500 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1501 MODULE_LICENSE("GPL");
1502