xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision a1e58bbd)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 
39 #ifdef CONFIG_HPET_EMULATE_RTC
40 #include <asm/hpet.h>
41 #endif
42 
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45 
46 #ifndef CONFIG_HPET_EMULATE_RTC
47 #define is_hpet_enabled()			0
48 #define hpet_set_alarm_time(hrs, min, sec) 	do { } while (0)
49 #define hpet_set_periodic_freq(arg) 		0
50 #define hpet_mask_rtc_irq_bit(arg) 		do { } while (0)
51 #define hpet_set_rtc_irq_bit(arg) 		do { } while (0)
52 #define hpet_rtc_timer_init() 			do { } while (0)
53 #define hpet_register_irq_handler(h) 		0
54 #define hpet_unregister_irq_handler(h)		do { } while (0)
55 extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
56 #endif
57 
58 struct cmos_rtc {
59 	struct rtc_device	*rtc;
60 	struct device		*dev;
61 	int			irq;
62 	struct resource		*iomem;
63 
64 	void			(*wake_on)(struct device *);
65 	void			(*wake_off)(struct device *);
66 
67 	u8			enabled_wake;
68 	u8			suspend_ctrl;
69 
70 	/* newer hardware extends the original register set */
71 	u8			day_alrm;
72 	u8			mon_alrm;
73 	u8			century;
74 };
75 
76 /* both platform and pnp busses use negative numbers for invalid irqs */
77 #define is_valid_irq(n)		((n) >= 0)
78 
79 static const char driver_name[] = "rtc_cmos";
80 
81 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
82  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
83  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
84  */
85 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
86 
87 static inline int is_intr(u8 rtc_intr)
88 {
89 	if (!(rtc_intr & RTC_IRQF))
90 		return 0;
91 	return rtc_intr & RTC_IRQMASK;
92 }
93 
94 /*----------------------------------------------------------------*/
95 
96 static int cmos_read_time(struct device *dev, struct rtc_time *t)
97 {
98 	/* REVISIT:  if the clock has a "century" register, use
99 	 * that instead of the heuristic in get_rtc_time().
100 	 * That'll make Y3K compatility (year > 2070) easy!
101 	 */
102 	get_rtc_time(t);
103 	return 0;
104 }
105 
106 static int cmos_set_time(struct device *dev, struct rtc_time *t)
107 {
108 	/* REVISIT:  set the "century" register if available
109 	 *
110 	 * NOTE: this ignores the issue whereby updating the seconds
111 	 * takes effect exactly 500ms after we write the register.
112 	 * (Also queueing and other delays before we get this far.)
113 	 */
114 	return set_rtc_time(t);
115 }
116 
117 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
118 {
119 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
120 	unsigned char	rtc_control;
121 
122 	if (!is_valid_irq(cmos->irq))
123 		return -EIO;
124 
125 	/* Basic alarms only support hour, minute, and seconds fields.
126 	 * Some also support day and month, for alarms up to a year in
127 	 * the future.
128 	 */
129 	t->time.tm_mday = -1;
130 	t->time.tm_mon = -1;
131 
132 	spin_lock_irq(&rtc_lock);
133 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
134 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
135 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
136 
137 	if (cmos->day_alrm) {
138 		/* ignore upper bits on readback per ACPI spec */
139 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
140 		if (!t->time.tm_mday)
141 			t->time.tm_mday = -1;
142 
143 		if (cmos->mon_alrm) {
144 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
145 			if (!t->time.tm_mon)
146 				t->time.tm_mon = -1;
147 		}
148 	}
149 
150 	rtc_control = CMOS_READ(RTC_CONTROL);
151 	spin_unlock_irq(&rtc_lock);
152 
153 	/* REVISIT this assumes PC style usage:  always BCD */
154 
155 	if (((unsigned)t->time.tm_sec) < 0x60)
156 		t->time.tm_sec = BCD2BIN(t->time.tm_sec);
157 	else
158 		t->time.tm_sec = -1;
159 	if (((unsigned)t->time.tm_min) < 0x60)
160 		t->time.tm_min = BCD2BIN(t->time.tm_min);
161 	else
162 		t->time.tm_min = -1;
163 	if (((unsigned)t->time.tm_hour) < 0x24)
164 		t->time.tm_hour = BCD2BIN(t->time.tm_hour);
165 	else
166 		t->time.tm_hour = -1;
167 
168 	if (cmos->day_alrm) {
169 		if (((unsigned)t->time.tm_mday) <= 0x31)
170 			t->time.tm_mday = BCD2BIN(t->time.tm_mday);
171 		else
172 			t->time.tm_mday = -1;
173 		if (cmos->mon_alrm) {
174 			if (((unsigned)t->time.tm_mon) <= 0x12)
175 				t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
176 			else
177 				t->time.tm_mon = -1;
178 		}
179 	}
180 	t->time.tm_year = -1;
181 
182 	t->enabled = !!(rtc_control & RTC_AIE);
183 	t->pending = 0;
184 
185 	return 0;
186 }
187 
188 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
189 {
190 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
191 	unsigned char	mon, mday, hrs, min, sec;
192 	unsigned char	rtc_control, rtc_intr;
193 
194 	if (!is_valid_irq(cmos->irq))
195 		return -EIO;
196 
197 	/* REVISIT this assumes PC style usage:  always BCD */
198 
199 	/* Writing 0xff means "don't care" or "match all".  */
200 
201 	mon = t->time.tm_mon;
202 	mon = (mon < 12) ? BIN2BCD(mon) : 0xff;
203 	mon++;
204 
205 	mday = t->time.tm_mday;
206 	mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
207 
208 	hrs = t->time.tm_hour;
209 	hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
210 
211 	min = t->time.tm_min;
212 	min = (min < 60) ? BIN2BCD(min) : 0xff;
213 
214 	sec = t->time.tm_sec;
215 	sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
216 
217 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
218 	spin_lock_irq(&rtc_lock);
219 
220 	/* next rtc irq must not be from previous alarm setting */
221 	rtc_control = CMOS_READ(RTC_CONTROL);
222 	rtc_control &= ~RTC_AIE;
223 	CMOS_WRITE(rtc_control, RTC_CONTROL);
224 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
225 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
226 	if (is_intr(rtc_intr))
227 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
228 
229 	/* update alarm */
230 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
231 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
232 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
233 
234 	/* the system may support an "enhanced" alarm */
235 	if (cmos->day_alrm) {
236 		CMOS_WRITE(mday, cmos->day_alrm);
237 		if (cmos->mon_alrm)
238 			CMOS_WRITE(mon, cmos->mon_alrm);
239 	}
240 
241 	if (t->enabled) {
242 		rtc_control |= RTC_AIE;
243 		CMOS_WRITE(rtc_control, RTC_CONTROL);
244 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
245 		rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
246 		if (is_intr(rtc_intr))
247 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
248 	}
249 
250 	spin_unlock_irq(&rtc_lock);
251 
252 	return 0;
253 }
254 
255 static int cmos_irq_set_freq(struct device *dev, int freq)
256 {
257 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
258 	int		f;
259 	unsigned long	flags;
260 
261 	if (!is_valid_irq(cmos->irq))
262 		return -ENXIO;
263 
264 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
265 	f = ffs(freq);
266 	if (f-- > 16)
267 		return -EINVAL;
268 	f = 16 - f;
269 
270 	spin_lock_irqsave(&rtc_lock, flags);
271 	if (!hpet_set_periodic_freq(freq))
272 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
273 	spin_unlock_irqrestore(&rtc_lock, flags);
274 
275 	return 0;
276 }
277 
278 static int cmos_irq_set_state(struct device *dev, int enabled)
279 {
280 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
281 	unsigned char	rtc_control, rtc_intr;
282 	unsigned long	flags;
283 
284 	if (!is_valid_irq(cmos->irq))
285 		return -ENXIO;
286 
287 	spin_lock_irqsave(&rtc_lock, flags);
288 	rtc_control = CMOS_READ(RTC_CONTROL);
289 
290 	if (enabled)
291 		rtc_control |= RTC_PIE;
292 	else
293 		rtc_control &= ~RTC_PIE;
294 
295 	CMOS_WRITE(rtc_control, RTC_CONTROL);
296 
297 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
298 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
299 	if (is_intr(rtc_intr))
300 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
301 
302 	spin_unlock_irqrestore(&rtc_lock, flags);
303 	return 0;
304 }
305 
306 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
307 
308 static int
309 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
310 {
311 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
312 	unsigned char	rtc_control, rtc_intr;
313 	unsigned long	flags;
314 
315 	switch (cmd) {
316 	case RTC_AIE_OFF:
317 	case RTC_AIE_ON:
318 	case RTC_UIE_OFF:
319 	case RTC_UIE_ON:
320 	case RTC_PIE_OFF:
321 	case RTC_PIE_ON:
322 		if (!is_valid_irq(cmos->irq))
323 			return -EINVAL;
324 		break;
325 	default:
326 		return -ENOIOCTLCMD;
327 	}
328 
329 	spin_lock_irqsave(&rtc_lock, flags);
330 	rtc_control = CMOS_READ(RTC_CONTROL);
331 	switch (cmd) {
332 	case RTC_AIE_OFF:	/* alarm off */
333 		rtc_control &= ~RTC_AIE;
334 		hpet_mask_rtc_irq_bit(RTC_AIE);
335 		break;
336 	case RTC_AIE_ON:	/* alarm on */
337 		rtc_control |= RTC_AIE;
338 		hpet_set_rtc_irq_bit(RTC_AIE);
339 		break;
340 	case RTC_UIE_OFF:	/* update off */
341 		rtc_control &= ~RTC_UIE;
342 		hpet_mask_rtc_irq_bit(RTC_UIE);
343 		break;
344 	case RTC_UIE_ON:	/* update on */
345 		rtc_control |= RTC_UIE;
346 		hpet_set_rtc_irq_bit(RTC_UIE);
347 		break;
348 	case RTC_PIE_OFF:	/* periodic off */
349 		rtc_control &= ~RTC_PIE;
350 		hpet_mask_rtc_irq_bit(RTC_PIE);
351 		break;
352 	case RTC_PIE_ON:	/* periodic on */
353 		rtc_control |= RTC_PIE;
354 		hpet_set_rtc_irq_bit(RTC_PIE);
355 		break;
356 	}
357 	if (!is_hpet_enabled())
358 		CMOS_WRITE(rtc_control, RTC_CONTROL);
359 
360 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
361 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
362 	if (is_intr(rtc_intr))
363 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
364 
365 	spin_unlock_irqrestore(&rtc_lock, flags);
366 	return 0;
367 }
368 
369 #else
370 #define	cmos_rtc_ioctl	NULL
371 #endif
372 
373 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
374 
375 static int cmos_procfs(struct device *dev, struct seq_file *seq)
376 {
377 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
378 	unsigned char	rtc_control, valid;
379 
380 	spin_lock_irq(&rtc_lock);
381 	rtc_control = CMOS_READ(RTC_CONTROL);
382 	valid = CMOS_READ(RTC_VALID);
383 	spin_unlock_irq(&rtc_lock);
384 
385 	/* NOTE:  at least ICH6 reports battery status using a different
386 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
387 	 */
388 	return seq_printf(seq,
389 			"periodic_IRQ\t: %s\n"
390 			"update_IRQ\t: %s\n"
391 			"HPET_emulated\t: %s\n"
392 			// "square_wave\t: %s\n"
393 			// "BCD\t\t: %s\n"
394 			"DST_enable\t: %s\n"
395 			"periodic_freq\t: %d\n"
396 			"batt_status\t: %s\n",
397 			(rtc_control & RTC_PIE) ? "yes" : "no",
398 			(rtc_control & RTC_UIE) ? "yes" : "no",
399 			is_hpet_enabled() ? "yes" : "no",
400 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
401 			// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
402 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
403 			cmos->rtc->irq_freq,
404 			(valid & RTC_VRT) ? "okay" : "dead");
405 }
406 
407 #else
408 #define	cmos_procfs	NULL
409 #endif
410 
411 static const struct rtc_class_ops cmos_rtc_ops = {
412 	.ioctl		= cmos_rtc_ioctl,
413 	.read_time	= cmos_read_time,
414 	.set_time	= cmos_set_time,
415 	.read_alarm	= cmos_read_alarm,
416 	.set_alarm	= cmos_set_alarm,
417 	.proc		= cmos_procfs,
418 	.irq_set_freq	= cmos_irq_set_freq,
419 	.irq_set_state	= cmos_irq_set_state,
420 };
421 
422 /*----------------------------------------------------------------*/
423 
424 /*
425  * All these chips have at least 64 bytes of address space, shared by
426  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
427  * by boot firmware.  Modern chips have 128 or 256 bytes.
428  */
429 
430 #define NVRAM_OFFSET	(RTC_REG_D + 1)
431 
432 static ssize_t
433 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
434 		char *buf, loff_t off, size_t count)
435 {
436 	int	retval;
437 
438 	if (unlikely(off >= attr->size))
439 		return 0;
440 	if ((off + count) > attr->size)
441 		count = attr->size - off;
442 
443 	spin_lock_irq(&rtc_lock);
444 	for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++)
445 		*buf++ = CMOS_READ(off);
446 	spin_unlock_irq(&rtc_lock);
447 
448 	return retval;
449 }
450 
451 static ssize_t
452 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
453 		char *buf, loff_t off, size_t count)
454 {
455 	struct cmos_rtc	*cmos;
456 	int		retval;
457 
458 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
459 	if (unlikely(off >= attr->size))
460 		return -EFBIG;
461 	if ((off + count) > attr->size)
462 		count = attr->size - off;
463 
464 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
465 	 * checksum on part of the NVRAM data.  That's currently ignored
466 	 * here.  If userspace is smart enough to know what fields of
467 	 * NVRAM to update, updating checksums is also part of its job.
468 	 */
469 	spin_lock_irq(&rtc_lock);
470 	for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++) {
471 		/* don't trash RTC registers */
472 		if (off == cmos->day_alrm
473 				|| off == cmos->mon_alrm
474 				|| off == cmos->century)
475 			buf++;
476 		else
477 			CMOS_WRITE(*buf++, off);
478 	}
479 	spin_unlock_irq(&rtc_lock);
480 
481 	return retval;
482 }
483 
484 static struct bin_attribute nvram = {
485 	.attr = {
486 		.name	= "nvram",
487 		.mode	= S_IRUGO | S_IWUSR,
488 		.owner	= THIS_MODULE,
489 	},
490 
491 	.read	= cmos_nvram_read,
492 	.write	= cmos_nvram_write,
493 	/* size gets set up later */
494 };
495 
496 /*----------------------------------------------------------------*/
497 
498 static struct cmos_rtc	cmos_rtc;
499 
500 static irqreturn_t cmos_interrupt(int irq, void *p)
501 {
502 	u8		irqstat;
503 	u8		rtc_control;
504 
505 	spin_lock(&rtc_lock);
506 	/*
507 	 * In this case it is HPET RTC interrupt handler
508 	 * calling us, with the interrupt information
509 	 * passed as arg1, instead of irq.
510 	 */
511 	if (is_hpet_enabled())
512 		irqstat = (unsigned long)irq & 0xF0;
513 	else {
514 		irqstat = CMOS_READ(RTC_INTR_FLAGS);
515 		rtc_control = CMOS_READ(RTC_CONTROL);
516 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
517 	}
518 
519 	/* All Linux RTC alarms should be treated as if they were oneshot.
520 	 * Similar code may be needed in system wakeup paths, in case the
521 	 * alarm woke the system.
522 	 */
523 	if (irqstat & RTC_AIE) {
524 		rtc_control = CMOS_READ(RTC_CONTROL);
525 		rtc_control &= ~RTC_AIE;
526 		CMOS_WRITE(rtc_control, RTC_CONTROL);
527 		CMOS_READ(RTC_INTR_FLAGS);
528 	}
529 	spin_unlock(&rtc_lock);
530 
531 	if (is_intr(irqstat)) {
532 		rtc_update_irq(p, 1, irqstat);
533 		return IRQ_HANDLED;
534 	} else
535 		return IRQ_NONE;
536 }
537 
538 #ifdef	CONFIG_PNP
539 #define	INITSECTION
540 
541 #else
542 #define	INITSECTION	__init
543 #endif
544 
545 static int INITSECTION
546 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
547 {
548 	struct cmos_rtc_board_info	*info = dev->platform_data;
549 	int				retval = 0;
550 	unsigned char			rtc_control;
551 	unsigned			address_space;
552 
553 	/* there can be only one ... */
554 	if (cmos_rtc.dev)
555 		return -EBUSY;
556 
557 	if (!ports)
558 		return -ENODEV;
559 
560 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
561 	 *
562 	 * REVISIT non-x86 systems may instead use memory space resources
563 	 * (needing ioremap etc), not i/o space resources like this ...
564 	 */
565 	ports = request_region(ports->start,
566 			ports->end + 1 - ports->start,
567 			driver_name);
568 	if (!ports) {
569 		dev_dbg(dev, "i/o registers already in use\n");
570 		return -EBUSY;
571 	}
572 
573 	cmos_rtc.irq = rtc_irq;
574 	cmos_rtc.iomem = ports;
575 
576 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
577 	 * driver did, but don't reject unknown configs.   Old hardware
578 	 * won't address 128 bytes, and for now we ignore the way newer
579 	 * chips can address 256 bytes (using two more i/o ports).
580 	 */
581 #if	defined(CONFIG_ATARI)
582 	address_space = 64;
583 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__)
584 	address_space = 128;
585 #else
586 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
587 	address_space = 128;
588 #endif
589 
590 	/* For ACPI systems extension info comes from the FADT.  On others,
591 	 * board specific setup provides it as appropriate.  Systems where
592 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
593 	 * some almost-clones) can provide hooks to make that behave.
594 	 *
595 	 * Note that ACPI doesn't preclude putting these registers into
596 	 * "extended" areas of the chip, including some that we won't yet
597 	 * expect CMOS_READ and friends to handle.
598 	 */
599 	if (info) {
600 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
601 			cmos_rtc.day_alrm = info->rtc_day_alarm;
602 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
603 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
604 		if (info->rtc_century && info->rtc_century < 128)
605 			cmos_rtc.century = info->rtc_century;
606 
607 		if (info->wake_on && info->wake_off) {
608 			cmos_rtc.wake_on = info->wake_on;
609 			cmos_rtc.wake_off = info->wake_off;
610 		}
611 	}
612 
613 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
614 				&cmos_rtc_ops, THIS_MODULE);
615 	if (IS_ERR(cmos_rtc.rtc)) {
616 		retval = PTR_ERR(cmos_rtc.rtc);
617 		goto cleanup0;
618 	}
619 
620 	cmos_rtc.dev = dev;
621 	dev_set_drvdata(dev, &cmos_rtc);
622 	rename_region(ports, cmos_rtc.rtc->dev.bus_id);
623 
624 	spin_lock_irq(&rtc_lock);
625 
626 	/* force periodic irq to CMOS reset default of 1024Hz;
627 	 *
628 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
629 	 * doesn't use 32KHz here ... for portability we might need to
630 	 * do something about other clock frequencies.
631 	 */
632 	cmos_rtc.rtc->irq_freq = 1024;
633 	if (!hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq))
634 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
635 
636 	/* disable irqs.
637 	 *
638 	 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
639 	 * allegedly some older rtcs need that to handle irqs properly
640 	 */
641 	rtc_control = CMOS_READ(RTC_CONTROL);
642 	rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
643 	CMOS_WRITE(rtc_control, RTC_CONTROL);
644 	CMOS_READ(RTC_INTR_FLAGS);
645 
646 	spin_unlock_irq(&rtc_lock);
647 
648 	/* FIXME teach the alarm code how to handle binary mode;
649 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
650 	 */
651 	if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
652 		dev_dbg(dev, "only 24-hr BCD mode supported\n");
653 		retval = -ENXIO;
654 		goto cleanup1;
655 	}
656 
657 	if (is_valid_irq(rtc_irq)) {
658 		irq_handler_t rtc_cmos_int_handler;
659 
660 		if (is_hpet_enabled()) {
661 			int err;
662 
663 			rtc_cmos_int_handler = hpet_rtc_interrupt;
664 			err = hpet_register_irq_handler(cmos_interrupt);
665 			if (err != 0) {
666 				printk(KERN_WARNING "hpet_register_irq_handler "
667 						" failed in rtc_init().");
668 				goto cleanup1;
669 			}
670 		} else
671 			rtc_cmos_int_handler = cmos_interrupt;
672 
673 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
674 				IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
675 				cmos_rtc.rtc);
676 		if (retval < 0) {
677 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
678 			goto cleanup1;
679 		}
680 	}
681 	hpet_rtc_timer_init();
682 
683 	/* export at least the first block of NVRAM */
684 	nvram.size = address_space - NVRAM_OFFSET;
685 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
686 	if (retval < 0) {
687 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
688 		goto cleanup2;
689 	}
690 
691 	pr_info("%s: alarms up to one %s%s\n",
692 			cmos_rtc.rtc->dev.bus_id,
693 			is_valid_irq(rtc_irq)
694 				?  (cmos_rtc.mon_alrm
695 					? "year"
696 					: (cmos_rtc.day_alrm
697 						? "month" : "day"))
698 				: "no",
699 			cmos_rtc.century ? ", y3k" : ""
700 			);
701 
702 	return 0;
703 
704 cleanup2:
705 	if (is_valid_irq(rtc_irq))
706 		free_irq(rtc_irq, cmos_rtc.rtc);
707 cleanup1:
708 	cmos_rtc.dev = NULL;
709 	rtc_device_unregister(cmos_rtc.rtc);
710 cleanup0:
711 	release_region(ports->start, ports->end + 1 - ports->start);
712 	return retval;
713 }
714 
715 static void cmos_do_shutdown(void)
716 {
717 	unsigned char	rtc_control;
718 
719 	spin_lock_irq(&rtc_lock);
720 	rtc_control = CMOS_READ(RTC_CONTROL);
721 	rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
722 	CMOS_WRITE(rtc_control, RTC_CONTROL);
723 	CMOS_READ(RTC_INTR_FLAGS);
724 	spin_unlock_irq(&rtc_lock);
725 }
726 
727 static void __exit cmos_do_remove(struct device *dev)
728 {
729 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
730 	struct resource *ports;
731 
732 	cmos_do_shutdown();
733 
734 	sysfs_remove_bin_file(&dev->kobj, &nvram);
735 
736 	if (is_valid_irq(cmos->irq)) {
737 		free_irq(cmos->irq, cmos->rtc);
738 		hpet_unregister_irq_handler(cmos_interrupt);
739 	}
740 
741 	rtc_device_unregister(cmos->rtc);
742 	cmos->rtc = NULL;
743 
744 	ports = cmos->iomem;
745 	release_region(ports->start, ports->end + 1 - ports->start);
746 	cmos->iomem = NULL;
747 
748 	cmos->dev = NULL;
749 	dev_set_drvdata(dev, NULL);
750 }
751 
752 #ifdef	CONFIG_PM
753 
754 static int cmos_suspend(struct device *dev, pm_message_t mesg)
755 {
756 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
757 	int		do_wake = device_may_wakeup(dev);
758 	unsigned char	tmp;
759 
760 	/* only the alarm might be a wakeup event source */
761 	spin_lock_irq(&rtc_lock);
762 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
763 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
764 		unsigned char	irqstat;
765 
766 		if (do_wake)
767 			tmp &= ~(RTC_PIE|RTC_UIE);
768 		else
769 			tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
770 		CMOS_WRITE(tmp, RTC_CONTROL);
771 		irqstat = CMOS_READ(RTC_INTR_FLAGS);
772 		irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF;
773 		if (is_intr(irqstat))
774 			rtc_update_irq(cmos->rtc, 1, irqstat);
775 	}
776 	spin_unlock_irq(&rtc_lock);
777 
778 	if (tmp & RTC_AIE) {
779 		cmos->enabled_wake = 1;
780 		if (cmos->wake_on)
781 			cmos->wake_on(dev);
782 		else
783 			enable_irq_wake(cmos->irq);
784 	}
785 
786 	pr_debug("%s: suspend%s, ctrl %02x\n",
787 			cmos_rtc.rtc->dev.bus_id,
788 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
789 			tmp);
790 
791 	return 0;
792 }
793 
794 static int cmos_resume(struct device *dev)
795 {
796 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
797 	unsigned char	tmp = cmos->suspend_ctrl;
798 
799 	/* re-enable any irqs previously active */
800 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
801 
802 		if (cmos->enabled_wake) {
803 			if (cmos->wake_off)
804 				cmos->wake_off(dev);
805 			else
806 				disable_irq_wake(cmos->irq);
807 			cmos->enabled_wake = 0;
808 		}
809 
810 		spin_lock_irq(&rtc_lock);
811 		CMOS_WRITE(tmp, RTC_CONTROL);
812 		tmp = CMOS_READ(RTC_INTR_FLAGS);
813 		tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
814 		if (is_intr(tmp))
815 			rtc_update_irq(cmos->rtc, 1, tmp);
816 		spin_unlock_irq(&rtc_lock);
817 	}
818 
819 	pr_debug("%s: resume, ctrl %02x\n",
820 			cmos_rtc.rtc->dev.bus_id,
821 			cmos->suspend_ctrl);
822 
823 
824 	return 0;
825 }
826 
827 #else
828 #define	cmos_suspend	NULL
829 #define	cmos_resume	NULL
830 #endif
831 
832 /*----------------------------------------------------------------*/
833 
834 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
835  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
836  * probably list them in similar PNPBIOS tables; so PNP is more common.
837  *
838  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
839  * predate even PNPBIOS should set up platform_bus devices.
840  */
841 
842 #ifdef	CONFIG_PNP
843 
844 #include <linux/pnp.h>
845 
846 static int __devinit
847 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
848 {
849 	/* REVISIT paranoia argues for a shutdown notifier, since PNP
850 	 * drivers can't provide shutdown() methods to disable IRQs.
851 	 * Or better yet, fix PNP to allow those methods...
852 	 */
853 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
854 		/* Some machines contain a PNP entry for the RTC, but
855 		 * don't define the IRQ. It should always be safe to
856 		 * hardcode it in these cases
857 		 */
858 		return cmos_do_probe(&pnp->dev, &pnp->res.port_resource[0], 8);
859 	else
860 		return cmos_do_probe(&pnp->dev,
861 				     &pnp->res.port_resource[0],
862 				     pnp->res.irq_resource[0].start);
863 }
864 
865 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
866 {
867 	cmos_do_remove(&pnp->dev);
868 }
869 
870 #ifdef	CONFIG_PM
871 
872 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
873 {
874 	return cmos_suspend(&pnp->dev, mesg);
875 }
876 
877 static int cmos_pnp_resume(struct pnp_dev *pnp)
878 {
879 	return cmos_resume(&pnp->dev);
880 }
881 
882 #else
883 #define	cmos_pnp_suspend	NULL
884 #define	cmos_pnp_resume		NULL
885 #endif
886 
887 
888 static const struct pnp_device_id rtc_ids[] = {
889 	{ .id = "PNP0b00", },
890 	{ .id = "PNP0b01", },
891 	{ .id = "PNP0b02", },
892 	{ },
893 };
894 MODULE_DEVICE_TABLE(pnp, rtc_ids);
895 
896 static struct pnp_driver cmos_pnp_driver = {
897 	.name		= (char *) driver_name,
898 	.id_table	= rtc_ids,
899 	.probe		= cmos_pnp_probe,
900 	.remove		= __exit_p(cmos_pnp_remove),
901 
902 	/* flag ensures resume() gets called, and stops syslog spam */
903 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
904 	.suspend	= cmos_pnp_suspend,
905 	.resume		= cmos_pnp_resume,
906 };
907 
908 static int __init cmos_init(void)
909 {
910 	return pnp_register_driver(&cmos_pnp_driver);
911 }
912 module_init(cmos_init);
913 
914 static void __exit cmos_exit(void)
915 {
916 	pnp_unregister_driver(&cmos_pnp_driver);
917 }
918 module_exit(cmos_exit);
919 
920 #else	/* no PNP */
921 
922 /*----------------------------------------------------------------*/
923 
924 /* Platform setup should have set up an RTC device, when PNP is
925  * unavailable ... this could happen even on (older) PCs.
926  */
927 
928 static int __init cmos_platform_probe(struct platform_device *pdev)
929 {
930 	return cmos_do_probe(&pdev->dev,
931 			platform_get_resource(pdev, IORESOURCE_IO, 0),
932 			platform_get_irq(pdev, 0));
933 }
934 
935 static int __exit cmos_platform_remove(struct platform_device *pdev)
936 {
937 	cmos_do_remove(&pdev->dev);
938 	return 0;
939 }
940 
941 static void cmos_platform_shutdown(struct platform_device *pdev)
942 {
943 	cmos_do_shutdown();
944 }
945 
946 static struct platform_driver cmos_platform_driver = {
947 	.remove		= __exit_p(cmos_platform_remove),
948 	.shutdown	= cmos_platform_shutdown,
949 	.driver = {
950 		.name		= (char *) driver_name,
951 		.suspend	= cmos_suspend,
952 		.resume		= cmos_resume,
953 	}
954 };
955 
956 static int __init cmos_init(void)
957 {
958 	return platform_driver_probe(&cmos_platform_driver,
959 			cmos_platform_probe);
960 }
961 module_init(cmos_init);
962 
963 static void __exit cmos_exit(void)
964 {
965 	platform_driver_unregister(&cmos_platform_driver);
966 }
967 module_exit(cmos_exit);
968 
969 
970 #endif	/* !PNP */
971 
972 MODULE_AUTHOR("David Brownell");
973 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
974 MODULE_LICENSE("GPL");
975