1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 4 * 5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 6 * Copyright (C) 2006 David Brownell (convert to new framework) 7 */ 8 9 /* 10 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 11 * That defined the register interface now provided by all PCs, some 12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 13 * integrate an MC146818 clone in their southbridge, and boards use 14 * that instead of discrete clones like the DS12887 or M48T86. There 15 * are also clones that connect using the LPC bus. 16 * 17 * That register API is also used directly by various other drivers 18 * (notably for integrated NVRAM), infrastructure (x86 has code to 19 * bypass the RTC framework, directly reading the RTC during boot 20 * and updating minutes/seconds for systems using NTP synch) and 21 * utilities (like userspace 'hwclock', if no /dev node exists). 22 * 23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 24 * interrupts disabled, holding the global rtc_lock, to exclude those 25 * other drivers and utilities on correctly configured systems. 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/spinlock.h> 35 #include <linux/platform_device.h> 36 #include <linux/log2.h> 37 #include <linux/pm.h> 38 #include <linux/of.h> 39 #include <linux/of_platform.h> 40 #ifdef CONFIG_X86 41 #include <asm/i8259.h> 42 #include <asm/processor.h> 43 #include <linux/dmi.h> 44 #endif 45 46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 47 #include <linux/mc146818rtc.h> 48 49 #ifdef CONFIG_ACPI 50 /* 51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event 52 * 53 * If cleared, ACPI SCI is only used to wake up the system from suspend 54 * 55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup 56 */ 57 58 static bool use_acpi_alarm; 59 module_param(use_acpi_alarm, bool, 0444); 60 61 static inline int cmos_use_acpi_alarm(void) 62 { 63 return use_acpi_alarm; 64 } 65 #else /* !CONFIG_ACPI */ 66 67 static inline int cmos_use_acpi_alarm(void) 68 { 69 return 0; 70 } 71 #endif 72 73 struct cmos_rtc { 74 struct rtc_device *rtc; 75 struct device *dev; 76 int irq; 77 struct resource *iomem; 78 time64_t alarm_expires; 79 80 void (*wake_on)(struct device *); 81 void (*wake_off)(struct device *); 82 83 u8 enabled_wake; 84 u8 suspend_ctrl; 85 86 /* newer hardware extends the original register set */ 87 u8 day_alrm; 88 u8 mon_alrm; 89 u8 century; 90 91 struct rtc_wkalrm saved_wkalrm; 92 }; 93 94 /* both platform and pnp busses use negative numbers for invalid irqs */ 95 #define is_valid_irq(n) ((n) > 0) 96 97 static const char driver_name[] = "rtc_cmos"; 98 99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 102 */ 103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 104 105 static inline int is_intr(u8 rtc_intr) 106 { 107 if (!(rtc_intr & RTC_IRQF)) 108 return 0; 109 return rtc_intr & RTC_IRQMASK; 110 } 111 112 /*----------------------------------------------------------------*/ 113 114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 116 * used in a broken "legacy replacement" mode. The breakage includes 117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 118 * other (better) use. 119 * 120 * When that broken mode is in use, platform glue provides a partial 121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 122 * want to use HPET for anything except those IRQs though... 123 */ 124 #ifdef CONFIG_HPET_EMULATE_RTC 125 #include <asm/hpet.h> 126 #else 127 128 static inline int is_hpet_enabled(void) 129 { 130 return 0; 131 } 132 133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 134 { 135 return 0; 136 } 137 138 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 139 { 140 return 0; 141 } 142 143 static inline int 144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 145 { 146 return 0; 147 } 148 149 static inline int hpet_set_periodic_freq(unsigned long freq) 150 { 151 return 0; 152 } 153 154 static inline int hpet_rtc_dropped_irq(void) 155 { 156 return 0; 157 } 158 159 static inline int hpet_rtc_timer_init(void) 160 { 161 return 0; 162 } 163 164 extern irq_handler_t hpet_rtc_interrupt; 165 166 static inline int hpet_register_irq_handler(irq_handler_t handler) 167 { 168 return 0; 169 } 170 171 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 172 { 173 return 0; 174 } 175 176 #endif 177 178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ 179 static inline int use_hpet_alarm(void) 180 { 181 return is_hpet_enabled() && !cmos_use_acpi_alarm(); 182 } 183 184 /*----------------------------------------------------------------*/ 185 186 #ifdef RTC_PORT 187 188 /* Most newer x86 systems have two register banks, the first used 189 * for RTC and NVRAM and the second only for NVRAM. Caller must 190 * own rtc_lock ... and we won't worry about access during NMI. 191 */ 192 #define can_bank2 true 193 194 static inline unsigned char cmos_read_bank2(unsigned char addr) 195 { 196 outb(addr, RTC_PORT(2)); 197 return inb(RTC_PORT(3)); 198 } 199 200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 201 { 202 outb(addr, RTC_PORT(2)); 203 outb(val, RTC_PORT(3)); 204 } 205 206 #else 207 208 #define can_bank2 false 209 210 static inline unsigned char cmos_read_bank2(unsigned char addr) 211 { 212 return 0; 213 } 214 215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 216 { 217 } 218 219 #endif 220 221 /*----------------------------------------------------------------*/ 222 223 static int cmos_read_time(struct device *dev, struct rtc_time *t) 224 { 225 int ret; 226 227 /* 228 * If pm_trace abused the RTC for storage, set the timespec to 0, 229 * which tells the caller that this RTC value is unusable. 230 */ 231 if (!pm_trace_rtc_valid()) 232 return -EIO; 233 234 ret = mc146818_get_time(t); 235 if (ret < 0) { 236 dev_err_ratelimited(dev, "unable to read current time\n"); 237 return ret; 238 } 239 240 return 0; 241 } 242 243 static int cmos_set_time(struct device *dev, struct rtc_time *t) 244 { 245 /* NOTE: this ignores the issue whereby updating the seconds 246 * takes effect exactly 500ms after we write the register. 247 * (Also queueing and other delays before we get this far.) 248 */ 249 return mc146818_set_time(t); 250 } 251 252 struct cmos_read_alarm_callback_param { 253 struct cmos_rtc *cmos; 254 struct rtc_time *time; 255 unsigned char rtc_control; 256 }; 257 258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds, 259 void *param_in) 260 { 261 struct cmos_read_alarm_callback_param *p = 262 (struct cmos_read_alarm_callback_param *)param_in; 263 struct rtc_time *time = p->time; 264 265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM); 267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM); 268 269 if (p->cmos->day_alrm) { 270 /* ignore upper bits on readback per ACPI spec */ 271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f; 272 if (!time->tm_mday) 273 time->tm_mday = -1; 274 275 if (p->cmos->mon_alrm) { 276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm); 277 if (!time->tm_mon) 278 time->tm_mon = -1; 279 } 280 } 281 282 p->rtc_control = CMOS_READ(RTC_CONTROL); 283 } 284 285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 286 { 287 struct cmos_rtc *cmos = dev_get_drvdata(dev); 288 struct cmos_read_alarm_callback_param p = { 289 .cmos = cmos, 290 .time = &t->time, 291 }; 292 293 /* This not only a rtc_op, but also called directly */ 294 if (!is_valid_irq(cmos->irq)) 295 return -EIO; 296 297 /* Basic alarms only support hour, minute, and seconds fields. 298 * Some also support day and month, for alarms up to a year in 299 * the future. 300 */ 301 302 /* Some Intel chipsets disconnect the alarm registers when the clock 303 * update is in progress - during this time reads return bogus values 304 * and writes may fail silently. See for example "7th Generation Intel® 305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section 306 * 27.7.1 307 * 308 * Use the mc146818_avoid_UIP() function to avoid this. 309 */ 310 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p)) 311 return -EIO; 312 313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 314 if (((unsigned)t->time.tm_sec) < 0x60) 315 t->time.tm_sec = bcd2bin(t->time.tm_sec); 316 else 317 t->time.tm_sec = -1; 318 if (((unsigned)t->time.tm_min) < 0x60) 319 t->time.tm_min = bcd2bin(t->time.tm_min); 320 else 321 t->time.tm_min = -1; 322 if (((unsigned)t->time.tm_hour) < 0x24) 323 t->time.tm_hour = bcd2bin(t->time.tm_hour); 324 else 325 t->time.tm_hour = -1; 326 327 if (cmos->day_alrm) { 328 if (((unsigned)t->time.tm_mday) <= 0x31) 329 t->time.tm_mday = bcd2bin(t->time.tm_mday); 330 else 331 t->time.tm_mday = -1; 332 333 if (cmos->mon_alrm) { 334 if (((unsigned)t->time.tm_mon) <= 0x12) 335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 336 else 337 t->time.tm_mon = -1; 338 } 339 } 340 } 341 342 t->enabled = !!(p.rtc_control & RTC_AIE); 343 t->pending = 0; 344 345 return 0; 346 } 347 348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 349 { 350 unsigned char rtc_intr; 351 352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 353 * allegedly some older rtcs need that to handle irqs properly 354 */ 355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 356 357 if (use_hpet_alarm()) 358 return; 359 360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 361 if (is_intr(rtc_intr)) 362 rtc_update_irq(cmos->rtc, 1, rtc_intr); 363 } 364 365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 366 { 367 unsigned char rtc_control; 368 369 /* flush any pending IRQ status, notably for update irqs, 370 * before we enable new IRQs 371 */ 372 rtc_control = CMOS_READ(RTC_CONTROL); 373 cmos_checkintr(cmos, rtc_control); 374 375 rtc_control |= mask; 376 CMOS_WRITE(rtc_control, RTC_CONTROL); 377 if (use_hpet_alarm()) 378 hpet_set_rtc_irq_bit(mask); 379 380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 381 if (cmos->wake_on) 382 cmos->wake_on(cmos->dev); 383 } 384 385 cmos_checkintr(cmos, rtc_control); 386 } 387 388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 389 { 390 unsigned char rtc_control; 391 392 rtc_control = CMOS_READ(RTC_CONTROL); 393 rtc_control &= ~mask; 394 CMOS_WRITE(rtc_control, RTC_CONTROL); 395 if (use_hpet_alarm()) 396 hpet_mask_rtc_irq_bit(mask); 397 398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 399 if (cmos->wake_off) 400 cmos->wake_off(cmos->dev); 401 } 402 403 cmos_checkintr(cmos, rtc_control); 404 } 405 406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) 407 { 408 struct cmos_rtc *cmos = dev_get_drvdata(dev); 409 struct rtc_time now; 410 411 cmos_read_time(dev, &now); 412 413 if (!cmos->day_alrm) { 414 time64_t t_max_date; 415 time64_t t_alrm; 416 417 t_max_date = rtc_tm_to_time64(&now); 418 t_max_date += 24 * 60 * 60 - 1; 419 t_alrm = rtc_tm_to_time64(&t->time); 420 if (t_alrm > t_max_date) { 421 dev_err(dev, 422 "Alarms can be up to one day in the future\n"); 423 return -EINVAL; 424 } 425 } else if (!cmos->mon_alrm) { 426 struct rtc_time max_date = now; 427 time64_t t_max_date; 428 time64_t t_alrm; 429 int max_mday; 430 431 if (max_date.tm_mon == 11) { 432 max_date.tm_mon = 0; 433 max_date.tm_year += 1; 434 } else { 435 max_date.tm_mon += 1; 436 } 437 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 438 if (max_date.tm_mday > max_mday) 439 max_date.tm_mday = max_mday; 440 441 t_max_date = rtc_tm_to_time64(&max_date); 442 t_max_date -= 1; 443 t_alrm = rtc_tm_to_time64(&t->time); 444 if (t_alrm > t_max_date) { 445 dev_err(dev, 446 "Alarms can be up to one month in the future\n"); 447 return -EINVAL; 448 } 449 } else { 450 struct rtc_time max_date = now; 451 time64_t t_max_date; 452 time64_t t_alrm; 453 int max_mday; 454 455 max_date.tm_year += 1; 456 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 457 if (max_date.tm_mday > max_mday) 458 max_date.tm_mday = max_mday; 459 460 t_max_date = rtc_tm_to_time64(&max_date); 461 t_max_date -= 1; 462 t_alrm = rtc_tm_to_time64(&t->time); 463 if (t_alrm > t_max_date) { 464 dev_err(dev, 465 "Alarms can be up to one year in the future\n"); 466 return -EINVAL; 467 } 468 } 469 470 return 0; 471 } 472 473 struct cmos_set_alarm_callback_param { 474 struct cmos_rtc *cmos; 475 unsigned char mon, mday, hrs, min, sec; 476 struct rtc_wkalrm *t; 477 }; 478 479 /* Note: this function may be executed by mc146818_avoid_UIP() more then 480 * once 481 */ 482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds, 483 void *param_in) 484 { 485 struct cmos_set_alarm_callback_param *p = 486 (struct cmos_set_alarm_callback_param *)param_in; 487 488 /* next rtc irq must not be from previous alarm setting */ 489 cmos_irq_disable(p->cmos, RTC_AIE); 490 491 /* update alarm */ 492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM); 493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM); 494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM); 495 496 /* the system may support an "enhanced" alarm */ 497 if (p->cmos->day_alrm) { 498 CMOS_WRITE(p->mday, p->cmos->day_alrm); 499 if (p->cmos->mon_alrm) 500 CMOS_WRITE(p->mon, p->cmos->mon_alrm); 501 } 502 503 if (use_hpet_alarm()) { 504 /* 505 * FIXME the HPET alarm glue currently ignores day_alrm 506 * and mon_alrm ... 507 */ 508 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min, 509 p->t->time.tm_sec); 510 } 511 512 if (p->t->enabled) 513 cmos_irq_enable(p->cmos, RTC_AIE); 514 } 515 516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 517 { 518 struct cmos_rtc *cmos = dev_get_drvdata(dev); 519 struct cmos_set_alarm_callback_param p = { 520 .cmos = cmos, 521 .t = t 522 }; 523 unsigned char rtc_control; 524 int ret; 525 526 /* This not only a rtc_op, but also called directly */ 527 if (!is_valid_irq(cmos->irq)) 528 return -EIO; 529 530 ret = cmos_validate_alarm(dev, t); 531 if (ret < 0) 532 return ret; 533 534 p.mon = t->time.tm_mon + 1; 535 p.mday = t->time.tm_mday; 536 p.hrs = t->time.tm_hour; 537 p.min = t->time.tm_min; 538 p.sec = t->time.tm_sec; 539 540 spin_lock_irq(&rtc_lock); 541 rtc_control = CMOS_READ(RTC_CONTROL); 542 spin_unlock_irq(&rtc_lock); 543 544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 545 /* Writing 0xff means "don't care" or "match all". */ 546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff; 547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff; 548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff; 549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff; 550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff; 551 } 552 553 /* 554 * Some Intel chipsets disconnect the alarm registers when the clock 555 * update is in progress - during this time writes fail silently. 556 * 557 * Use mc146818_avoid_UIP() to avoid this. 558 */ 559 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p)) 560 return -EIO; 561 562 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 563 564 return 0; 565 } 566 567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 568 { 569 struct cmos_rtc *cmos = dev_get_drvdata(dev); 570 unsigned long flags; 571 572 spin_lock_irqsave(&rtc_lock, flags); 573 574 if (enabled) 575 cmos_irq_enable(cmos, RTC_AIE); 576 else 577 cmos_irq_disable(cmos, RTC_AIE); 578 579 spin_unlock_irqrestore(&rtc_lock, flags); 580 return 0; 581 } 582 583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 584 585 static int cmos_procfs(struct device *dev, struct seq_file *seq) 586 { 587 struct cmos_rtc *cmos = dev_get_drvdata(dev); 588 unsigned char rtc_control, valid; 589 590 spin_lock_irq(&rtc_lock); 591 rtc_control = CMOS_READ(RTC_CONTROL); 592 valid = CMOS_READ(RTC_VALID); 593 spin_unlock_irq(&rtc_lock); 594 595 /* NOTE: at least ICH6 reports battery status using a different 596 * (non-RTC) bit; and SQWE is ignored on many current systems. 597 */ 598 seq_printf(seq, 599 "periodic_IRQ\t: %s\n" 600 "update_IRQ\t: %s\n" 601 "HPET_emulated\t: %s\n" 602 // "square_wave\t: %s\n" 603 "BCD\t\t: %s\n" 604 "DST_enable\t: %s\n" 605 "periodic_freq\t: %d\n" 606 "batt_status\t: %s\n", 607 (rtc_control & RTC_PIE) ? "yes" : "no", 608 (rtc_control & RTC_UIE) ? "yes" : "no", 609 use_hpet_alarm() ? "yes" : "no", 610 // (rtc_control & RTC_SQWE) ? "yes" : "no", 611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 612 (rtc_control & RTC_DST_EN) ? "yes" : "no", 613 cmos->rtc->irq_freq, 614 (valid & RTC_VRT) ? "okay" : "dead"); 615 616 return 0; 617 } 618 619 #else 620 #define cmos_procfs NULL 621 #endif 622 623 static const struct rtc_class_ops cmos_rtc_ops = { 624 .read_time = cmos_read_time, 625 .set_time = cmos_set_time, 626 .read_alarm = cmos_read_alarm, 627 .set_alarm = cmos_set_alarm, 628 .proc = cmos_procfs, 629 .alarm_irq_enable = cmos_alarm_irq_enable, 630 }; 631 632 /*----------------------------------------------------------------*/ 633 634 /* 635 * All these chips have at least 64 bytes of address space, shared by 636 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 637 * by boot firmware. Modern chips have 128 or 256 bytes. 638 */ 639 640 #define NVRAM_OFFSET (RTC_REG_D + 1) 641 642 static int cmos_nvram_read(void *priv, unsigned int off, void *val, 643 size_t count) 644 { 645 unsigned char *buf = val; 646 int retval; 647 648 off += NVRAM_OFFSET; 649 spin_lock_irq(&rtc_lock); 650 for (retval = 0; count; count--, off++, retval++) { 651 if (off < 128) 652 *buf++ = CMOS_READ(off); 653 else if (can_bank2) 654 *buf++ = cmos_read_bank2(off); 655 else 656 break; 657 } 658 spin_unlock_irq(&rtc_lock); 659 660 return retval; 661 } 662 663 static int cmos_nvram_write(void *priv, unsigned int off, void *val, 664 size_t count) 665 { 666 struct cmos_rtc *cmos = priv; 667 unsigned char *buf = val; 668 int retval; 669 670 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 671 * checksum on part of the NVRAM data. That's currently ignored 672 * here. If userspace is smart enough to know what fields of 673 * NVRAM to update, updating checksums is also part of its job. 674 */ 675 off += NVRAM_OFFSET; 676 spin_lock_irq(&rtc_lock); 677 for (retval = 0; count; count--, off++, retval++) { 678 /* don't trash RTC registers */ 679 if (off == cmos->day_alrm 680 || off == cmos->mon_alrm 681 || off == cmos->century) 682 buf++; 683 else if (off < 128) 684 CMOS_WRITE(*buf++, off); 685 else if (can_bank2) 686 cmos_write_bank2(*buf++, off); 687 else 688 break; 689 } 690 spin_unlock_irq(&rtc_lock); 691 692 return retval; 693 } 694 695 /*----------------------------------------------------------------*/ 696 697 static struct cmos_rtc cmos_rtc; 698 699 static irqreturn_t cmos_interrupt(int irq, void *p) 700 { 701 u8 irqstat; 702 u8 rtc_control; 703 704 spin_lock(&rtc_lock); 705 706 /* When the HPET interrupt handler calls us, the interrupt 707 * status is passed as arg1 instead of the irq number. But 708 * always clear irq status, even when HPET is in the way. 709 * 710 * Note that HPET and RTC are almost certainly out of phase, 711 * giving different IRQ status ... 712 */ 713 irqstat = CMOS_READ(RTC_INTR_FLAGS); 714 rtc_control = CMOS_READ(RTC_CONTROL); 715 if (use_hpet_alarm()) 716 irqstat = (unsigned long)irq & 0xF0; 717 718 /* If we were suspended, RTC_CONTROL may not be accurate since the 719 * bios may have cleared it. 720 */ 721 if (!cmos_rtc.suspend_ctrl) 722 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 723 else 724 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 725 726 /* All Linux RTC alarms should be treated as if they were oneshot. 727 * Similar code may be needed in system wakeup paths, in case the 728 * alarm woke the system. 729 */ 730 if (irqstat & RTC_AIE) { 731 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 732 rtc_control &= ~RTC_AIE; 733 CMOS_WRITE(rtc_control, RTC_CONTROL); 734 if (use_hpet_alarm()) 735 hpet_mask_rtc_irq_bit(RTC_AIE); 736 CMOS_READ(RTC_INTR_FLAGS); 737 } 738 spin_unlock(&rtc_lock); 739 740 if (is_intr(irqstat)) { 741 rtc_update_irq(p, 1, irqstat); 742 return IRQ_HANDLED; 743 } else 744 return IRQ_NONE; 745 } 746 747 #ifdef CONFIG_PNP 748 #define INITSECTION 749 750 #else 751 #define INITSECTION __init 752 #endif 753 754 static int INITSECTION 755 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 756 { 757 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 758 int retval = 0; 759 unsigned char rtc_control; 760 unsigned address_space; 761 u32 flags = 0; 762 struct nvmem_config nvmem_cfg = { 763 .name = "cmos_nvram", 764 .word_size = 1, 765 .stride = 1, 766 .reg_read = cmos_nvram_read, 767 .reg_write = cmos_nvram_write, 768 .priv = &cmos_rtc, 769 }; 770 771 /* there can be only one ... */ 772 if (cmos_rtc.dev) 773 return -EBUSY; 774 775 if (!ports) 776 return -ENODEV; 777 778 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 779 * 780 * REVISIT non-x86 systems may instead use memory space resources 781 * (needing ioremap etc), not i/o space resources like this ... 782 */ 783 if (RTC_IOMAPPED) 784 ports = request_region(ports->start, resource_size(ports), 785 driver_name); 786 else 787 ports = request_mem_region(ports->start, resource_size(ports), 788 driver_name); 789 if (!ports) { 790 dev_dbg(dev, "i/o registers already in use\n"); 791 return -EBUSY; 792 } 793 794 cmos_rtc.irq = rtc_irq; 795 cmos_rtc.iomem = ports; 796 797 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 798 * driver did, but don't reject unknown configs. Old hardware 799 * won't address 128 bytes. Newer chips have multiple banks, 800 * though they may not be listed in one I/O resource. 801 */ 802 #if defined(CONFIG_ATARI) 803 address_space = 64; 804 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 805 || defined(__sparc__) || defined(__mips__) \ 806 || defined(__powerpc__) 807 address_space = 128; 808 #else 809 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 810 address_space = 128; 811 #endif 812 if (can_bank2 && ports->end > (ports->start + 1)) 813 address_space = 256; 814 815 /* For ACPI systems extension info comes from the FADT. On others, 816 * board specific setup provides it as appropriate. Systems where 817 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 818 * some almost-clones) can provide hooks to make that behave. 819 * 820 * Note that ACPI doesn't preclude putting these registers into 821 * "extended" areas of the chip, including some that we won't yet 822 * expect CMOS_READ and friends to handle. 823 */ 824 if (info) { 825 if (info->flags) 826 flags = info->flags; 827 if (info->address_space) 828 address_space = info->address_space; 829 830 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 831 cmos_rtc.day_alrm = info->rtc_day_alarm; 832 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 833 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 834 if (info->rtc_century && info->rtc_century < 128) 835 cmos_rtc.century = info->rtc_century; 836 837 if (info->wake_on && info->wake_off) { 838 cmos_rtc.wake_on = info->wake_on; 839 cmos_rtc.wake_off = info->wake_off; 840 } 841 } 842 843 cmos_rtc.dev = dev; 844 dev_set_drvdata(dev, &cmos_rtc); 845 846 cmos_rtc.rtc = devm_rtc_allocate_device(dev); 847 if (IS_ERR(cmos_rtc.rtc)) { 848 retval = PTR_ERR(cmos_rtc.rtc); 849 goto cleanup0; 850 } 851 852 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 853 854 if (!mc146818_does_rtc_work()) { 855 dev_warn(dev, "broken or not accessible\n"); 856 retval = -ENXIO; 857 goto cleanup1; 858 } 859 860 spin_lock_irq(&rtc_lock); 861 862 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 863 /* force periodic irq to CMOS reset default of 1024Hz; 864 * 865 * REVISIT it's been reported that at least one x86_64 ALI 866 * mobo doesn't use 32KHz here ... for portability we might 867 * need to do something about other clock frequencies. 868 */ 869 cmos_rtc.rtc->irq_freq = 1024; 870 if (use_hpet_alarm()) 871 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 872 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 873 } 874 875 /* disable irqs */ 876 if (is_valid_irq(rtc_irq)) 877 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 878 879 rtc_control = CMOS_READ(RTC_CONTROL); 880 881 spin_unlock_irq(&rtc_lock); 882 883 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 884 dev_warn(dev, "only 24-hr supported\n"); 885 retval = -ENXIO; 886 goto cleanup1; 887 } 888 889 if (use_hpet_alarm()) 890 hpet_rtc_timer_init(); 891 892 if (is_valid_irq(rtc_irq)) { 893 irq_handler_t rtc_cmos_int_handler; 894 895 if (use_hpet_alarm()) { 896 rtc_cmos_int_handler = hpet_rtc_interrupt; 897 retval = hpet_register_irq_handler(cmos_interrupt); 898 if (retval) { 899 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 900 dev_warn(dev, "hpet_register_irq_handler " 901 " failed in rtc_init()."); 902 goto cleanup1; 903 } 904 } else 905 rtc_cmos_int_handler = cmos_interrupt; 906 907 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 908 0, dev_name(&cmos_rtc.rtc->dev), 909 cmos_rtc.rtc); 910 if (retval < 0) { 911 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 912 goto cleanup1; 913 } 914 } else { 915 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features); 916 } 917 918 cmos_rtc.rtc->ops = &cmos_rtc_ops; 919 920 retval = devm_rtc_register_device(cmos_rtc.rtc); 921 if (retval) 922 goto cleanup2; 923 924 /* Set the sync offset for the periodic 11min update correct */ 925 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2; 926 927 /* export at least the first block of NVRAM */ 928 nvmem_cfg.size = address_space - NVRAM_OFFSET; 929 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg); 930 931 dev_info(dev, "%s%s, %d bytes nvram%s\n", 932 !is_valid_irq(rtc_irq) ? "no alarms" : 933 cmos_rtc.mon_alrm ? "alarms up to one year" : 934 cmos_rtc.day_alrm ? "alarms up to one month" : 935 "alarms up to one day", 936 cmos_rtc.century ? ", y3k" : "", 937 nvmem_cfg.size, 938 use_hpet_alarm() ? ", hpet irqs" : ""); 939 940 return 0; 941 942 cleanup2: 943 if (is_valid_irq(rtc_irq)) 944 free_irq(rtc_irq, cmos_rtc.rtc); 945 cleanup1: 946 cmos_rtc.dev = NULL; 947 cleanup0: 948 if (RTC_IOMAPPED) 949 release_region(ports->start, resource_size(ports)); 950 else 951 release_mem_region(ports->start, resource_size(ports)); 952 return retval; 953 } 954 955 static void cmos_do_shutdown(int rtc_irq) 956 { 957 spin_lock_irq(&rtc_lock); 958 if (is_valid_irq(rtc_irq)) 959 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 960 spin_unlock_irq(&rtc_lock); 961 } 962 963 static void cmos_do_remove(struct device *dev) 964 { 965 struct cmos_rtc *cmos = dev_get_drvdata(dev); 966 struct resource *ports; 967 968 cmos_do_shutdown(cmos->irq); 969 970 if (is_valid_irq(cmos->irq)) { 971 free_irq(cmos->irq, cmos->rtc); 972 if (use_hpet_alarm()) 973 hpet_unregister_irq_handler(cmos_interrupt); 974 } 975 976 cmos->rtc = NULL; 977 978 ports = cmos->iomem; 979 if (RTC_IOMAPPED) 980 release_region(ports->start, resource_size(ports)); 981 else 982 release_mem_region(ports->start, resource_size(ports)); 983 cmos->iomem = NULL; 984 985 cmos->dev = NULL; 986 } 987 988 static int cmos_aie_poweroff(struct device *dev) 989 { 990 struct cmos_rtc *cmos = dev_get_drvdata(dev); 991 struct rtc_time now; 992 time64_t t_now; 993 int retval = 0; 994 unsigned char rtc_control; 995 996 if (!cmos->alarm_expires) 997 return -EINVAL; 998 999 spin_lock_irq(&rtc_lock); 1000 rtc_control = CMOS_READ(RTC_CONTROL); 1001 spin_unlock_irq(&rtc_lock); 1002 1003 /* We only care about the situation where AIE is disabled. */ 1004 if (rtc_control & RTC_AIE) 1005 return -EBUSY; 1006 1007 cmos_read_time(dev, &now); 1008 t_now = rtc_tm_to_time64(&now); 1009 1010 /* 1011 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 1012 * automatically right after shutdown on some buggy boxes. 1013 * This automatic rebooting issue won't happen when the alarm 1014 * time is larger than now+1 seconds. 1015 * 1016 * If the alarm time is equal to now+1 seconds, the issue can be 1017 * prevented by cancelling the alarm. 1018 */ 1019 if (cmos->alarm_expires == t_now + 1) { 1020 struct rtc_wkalrm alarm; 1021 1022 /* Cancel the AIE timer by configuring the past time. */ 1023 rtc_time64_to_tm(t_now - 1, &alarm.time); 1024 alarm.enabled = 0; 1025 retval = cmos_set_alarm(dev, &alarm); 1026 } else if (cmos->alarm_expires > t_now + 1) { 1027 retval = -EBUSY; 1028 } 1029 1030 return retval; 1031 } 1032 1033 static int cmos_suspend(struct device *dev) 1034 { 1035 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1036 unsigned char tmp; 1037 1038 /* only the alarm might be a wakeup event source */ 1039 spin_lock_irq(&rtc_lock); 1040 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 1041 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 1042 unsigned char mask; 1043 1044 if (device_may_wakeup(dev)) 1045 mask = RTC_IRQMASK & ~RTC_AIE; 1046 else 1047 mask = RTC_IRQMASK; 1048 tmp &= ~mask; 1049 CMOS_WRITE(tmp, RTC_CONTROL); 1050 if (use_hpet_alarm()) 1051 hpet_mask_rtc_irq_bit(mask); 1052 cmos_checkintr(cmos, tmp); 1053 } 1054 spin_unlock_irq(&rtc_lock); 1055 1056 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) { 1057 cmos->enabled_wake = 1; 1058 if (cmos->wake_on) 1059 cmos->wake_on(dev); 1060 else 1061 enable_irq_wake(cmos->irq); 1062 } 1063 1064 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm)); 1065 cmos_read_alarm(dev, &cmos->saved_wkalrm); 1066 1067 dev_dbg(dev, "suspend%s, ctrl %02x\n", 1068 (tmp & RTC_AIE) ? ", alarm may wake" : "", 1069 tmp); 1070 1071 return 0; 1072 } 1073 1074 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 1075 * after a detour through G3 "mechanical off", although the ACPI spec 1076 * says wakeup should only work from G1/S4 "hibernate". To most users, 1077 * distinctions between S4 and S5 are pointless. So when the hardware 1078 * allows, don't draw that distinction. 1079 */ 1080 static inline int cmos_poweroff(struct device *dev) 1081 { 1082 if (!IS_ENABLED(CONFIG_PM)) 1083 return -ENOSYS; 1084 1085 return cmos_suspend(dev); 1086 } 1087 1088 static void cmos_check_wkalrm(struct device *dev) 1089 { 1090 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1091 struct rtc_wkalrm current_alarm; 1092 time64_t t_now; 1093 time64_t t_current_expires; 1094 time64_t t_saved_expires; 1095 struct rtc_time now; 1096 1097 /* Check if we have RTC Alarm armed */ 1098 if (!(cmos->suspend_ctrl & RTC_AIE)) 1099 return; 1100 1101 cmos_read_time(dev, &now); 1102 t_now = rtc_tm_to_time64(&now); 1103 1104 /* 1105 * ACPI RTC wake event is cleared after resume from STR, 1106 * ACK the rtc irq here 1107 */ 1108 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) { 1109 local_irq_disable(); 1110 cmos_interrupt(0, (void *)cmos->rtc); 1111 local_irq_enable(); 1112 return; 1113 } 1114 1115 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm)); 1116 cmos_read_alarm(dev, ¤t_alarm); 1117 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 1118 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 1119 if (t_current_expires != t_saved_expires || 1120 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 1121 cmos_set_alarm(dev, &cmos->saved_wkalrm); 1122 } 1123 } 1124 1125 static void cmos_check_acpi_rtc_status(struct device *dev, 1126 unsigned char *rtc_control); 1127 1128 static int __maybe_unused cmos_resume(struct device *dev) 1129 { 1130 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1131 unsigned char tmp; 1132 1133 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) { 1134 if (cmos->wake_off) 1135 cmos->wake_off(dev); 1136 else 1137 disable_irq_wake(cmos->irq); 1138 cmos->enabled_wake = 0; 1139 } 1140 1141 /* The BIOS might have changed the alarm, restore it */ 1142 cmos_check_wkalrm(dev); 1143 1144 spin_lock_irq(&rtc_lock); 1145 tmp = cmos->suspend_ctrl; 1146 cmos->suspend_ctrl = 0; 1147 /* re-enable any irqs previously active */ 1148 if (tmp & RTC_IRQMASK) { 1149 unsigned char mask; 1150 1151 if (device_may_wakeup(dev) && use_hpet_alarm()) 1152 hpet_rtc_timer_init(); 1153 1154 do { 1155 CMOS_WRITE(tmp, RTC_CONTROL); 1156 if (use_hpet_alarm()) 1157 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 1158 1159 mask = CMOS_READ(RTC_INTR_FLAGS); 1160 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 1161 if (!use_hpet_alarm() || !is_intr(mask)) 1162 break; 1163 1164 /* force one-shot behavior if HPET blocked 1165 * the wake alarm's irq 1166 */ 1167 rtc_update_irq(cmos->rtc, 1, mask); 1168 tmp &= ~RTC_AIE; 1169 hpet_mask_rtc_irq_bit(RTC_AIE); 1170 } while (mask & RTC_AIE); 1171 1172 if (tmp & RTC_AIE) 1173 cmos_check_acpi_rtc_status(dev, &tmp); 1174 } 1175 spin_unlock_irq(&rtc_lock); 1176 1177 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 1178 1179 return 0; 1180 } 1181 1182 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 1183 1184 /*----------------------------------------------------------------*/ 1185 1186 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 1187 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 1188 * probably list them in similar PNPBIOS tables; so PNP is more common. 1189 * 1190 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 1191 * predate even PNPBIOS should set up platform_bus devices. 1192 */ 1193 1194 #ifdef CONFIG_ACPI 1195 1196 #include <linux/acpi.h> 1197 1198 static u32 rtc_handler(void *context) 1199 { 1200 struct device *dev = context; 1201 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1202 unsigned char rtc_control = 0; 1203 unsigned char rtc_intr; 1204 unsigned long flags; 1205 1206 1207 /* 1208 * Always update rtc irq when ACPI is used as RTC Alarm. 1209 * Or else, ACPI SCI is enabled during suspend/resume only, 1210 * update rtc irq in that case. 1211 */ 1212 if (cmos_use_acpi_alarm()) 1213 cmos_interrupt(0, (void *)cmos->rtc); 1214 else { 1215 /* Fix me: can we use cmos_interrupt() here as well? */ 1216 spin_lock_irqsave(&rtc_lock, flags); 1217 if (cmos_rtc.suspend_ctrl) 1218 rtc_control = CMOS_READ(RTC_CONTROL); 1219 if (rtc_control & RTC_AIE) { 1220 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 1221 CMOS_WRITE(rtc_control, RTC_CONTROL); 1222 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 1223 rtc_update_irq(cmos->rtc, 1, rtc_intr); 1224 } 1225 spin_unlock_irqrestore(&rtc_lock, flags); 1226 } 1227 1228 pm_wakeup_hard_event(dev); 1229 acpi_clear_event(ACPI_EVENT_RTC); 1230 acpi_disable_event(ACPI_EVENT_RTC, 0); 1231 return ACPI_INTERRUPT_HANDLED; 1232 } 1233 1234 static inline void rtc_wake_setup(struct device *dev) 1235 { 1236 if (acpi_disabled) 1237 return; 1238 1239 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 1240 /* 1241 * After the RTC handler is installed, the Fixed_RTC event should 1242 * be disabled. Only when the RTC alarm is set will it be enabled. 1243 */ 1244 acpi_clear_event(ACPI_EVENT_RTC); 1245 acpi_disable_event(ACPI_EVENT_RTC, 0); 1246 } 1247 1248 static void rtc_wake_on(struct device *dev) 1249 { 1250 acpi_clear_event(ACPI_EVENT_RTC); 1251 acpi_enable_event(ACPI_EVENT_RTC, 0); 1252 } 1253 1254 static void rtc_wake_off(struct device *dev) 1255 { 1256 acpi_disable_event(ACPI_EVENT_RTC, 0); 1257 } 1258 1259 #ifdef CONFIG_X86 1260 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */ 1261 static void use_acpi_alarm_quirks(void) 1262 { 1263 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 1264 return; 1265 1266 if (!is_hpet_enabled()) 1267 return; 1268 1269 if (dmi_get_bios_year() < 2015) 1270 return; 1271 1272 use_acpi_alarm = true; 1273 } 1274 #else 1275 static inline void use_acpi_alarm_quirks(void) { } 1276 #endif 1277 1278 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1279 * its device node and pass extra config data. This helps its driver use 1280 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1281 * that this board's RTC is wakeup-capable (per ACPI spec). 1282 */ 1283 static struct cmos_rtc_board_info acpi_rtc_info; 1284 1285 static void cmos_wake_setup(struct device *dev) 1286 { 1287 if (acpi_disabled) 1288 return; 1289 1290 use_acpi_alarm_quirks(); 1291 1292 acpi_rtc_info.wake_on = rtc_wake_on; 1293 acpi_rtc_info.wake_off = rtc_wake_off; 1294 1295 /* workaround bug in some ACPI tables */ 1296 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1297 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1298 acpi_gbl_FADT.month_alarm); 1299 acpi_gbl_FADT.month_alarm = 0; 1300 } 1301 1302 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1303 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1304 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1305 1306 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1307 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1308 dev_info(dev, "RTC can wake from S4\n"); 1309 1310 dev->platform_data = &acpi_rtc_info; 1311 1312 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1313 device_init_wakeup(dev, 1); 1314 } 1315 1316 static void cmos_check_acpi_rtc_status(struct device *dev, 1317 unsigned char *rtc_control) 1318 { 1319 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1320 acpi_event_status rtc_status; 1321 acpi_status status; 1322 1323 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 1324 return; 1325 1326 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 1327 if (ACPI_FAILURE(status)) { 1328 dev_err(dev, "Could not get RTC status\n"); 1329 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 1330 unsigned char mask; 1331 *rtc_control &= ~RTC_AIE; 1332 CMOS_WRITE(*rtc_control, RTC_CONTROL); 1333 mask = CMOS_READ(RTC_INTR_FLAGS); 1334 rtc_update_irq(cmos->rtc, 1, mask); 1335 } 1336 } 1337 1338 #else 1339 1340 static void cmos_wake_setup(struct device *dev) 1341 { 1342 } 1343 1344 static void cmos_check_acpi_rtc_status(struct device *dev, 1345 unsigned char *rtc_control) 1346 { 1347 } 1348 1349 static void rtc_wake_setup(struct device *dev) 1350 { 1351 } 1352 #endif 1353 1354 #ifdef CONFIG_PNP 1355 1356 #include <linux/pnp.h> 1357 1358 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1359 { 1360 int irq, ret; 1361 1362 cmos_wake_setup(&pnp->dev); 1363 1364 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { 1365 irq = 0; 1366 #ifdef CONFIG_X86 1367 /* Some machines contain a PNP entry for the RTC, but 1368 * don't define the IRQ. It should always be safe to 1369 * hardcode it on systems with a legacy PIC. 1370 */ 1371 if (nr_legacy_irqs()) 1372 irq = RTC_IRQ; 1373 #endif 1374 } else { 1375 irq = pnp_irq(pnp, 0); 1376 } 1377 1378 ret = cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); 1379 if (ret) 1380 return ret; 1381 1382 rtc_wake_setup(&pnp->dev); 1383 1384 return 0; 1385 } 1386 1387 static void cmos_pnp_remove(struct pnp_dev *pnp) 1388 { 1389 cmos_do_remove(&pnp->dev); 1390 } 1391 1392 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1393 { 1394 struct device *dev = &pnp->dev; 1395 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1396 1397 if (system_state == SYSTEM_POWER_OFF) { 1398 int retval = cmos_poweroff(dev); 1399 1400 if (cmos_aie_poweroff(dev) < 0 && !retval) 1401 return; 1402 } 1403 1404 cmos_do_shutdown(cmos->irq); 1405 } 1406 1407 static const struct pnp_device_id rtc_ids[] = { 1408 { .id = "PNP0b00", }, 1409 { .id = "PNP0b01", }, 1410 { .id = "PNP0b02", }, 1411 { }, 1412 }; 1413 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1414 1415 static struct pnp_driver cmos_pnp_driver = { 1416 .name = driver_name, 1417 .id_table = rtc_ids, 1418 .probe = cmos_pnp_probe, 1419 .remove = cmos_pnp_remove, 1420 .shutdown = cmos_pnp_shutdown, 1421 1422 /* flag ensures resume() gets called, and stops syslog spam */ 1423 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1424 .driver = { 1425 .pm = &cmos_pm_ops, 1426 }, 1427 }; 1428 1429 #endif /* CONFIG_PNP */ 1430 1431 #ifdef CONFIG_OF 1432 static const struct of_device_id of_cmos_match[] = { 1433 { 1434 .compatible = "motorola,mc146818", 1435 }, 1436 { }, 1437 }; 1438 MODULE_DEVICE_TABLE(of, of_cmos_match); 1439 1440 static __init void cmos_of_init(struct platform_device *pdev) 1441 { 1442 struct device_node *node = pdev->dev.of_node; 1443 const __be32 *val; 1444 1445 if (!node) 1446 return; 1447 1448 val = of_get_property(node, "ctrl-reg", NULL); 1449 if (val) 1450 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1451 1452 val = of_get_property(node, "freq-reg", NULL); 1453 if (val) 1454 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1455 } 1456 #else 1457 static inline void cmos_of_init(struct platform_device *pdev) {} 1458 #endif 1459 /*----------------------------------------------------------------*/ 1460 1461 /* Platform setup should have set up an RTC device, when PNP is 1462 * unavailable ... this could happen even on (older) PCs. 1463 */ 1464 1465 static int __init cmos_platform_probe(struct platform_device *pdev) 1466 { 1467 struct resource *resource; 1468 int irq, ret; 1469 1470 cmos_of_init(pdev); 1471 cmos_wake_setup(&pdev->dev); 1472 1473 if (RTC_IOMAPPED) 1474 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1475 else 1476 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1477 irq = platform_get_irq(pdev, 0); 1478 if (irq < 0) 1479 irq = -1; 1480 1481 ret = cmos_do_probe(&pdev->dev, resource, irq); 1482 if (ret) 1483 return ret; 1484 1485 rtc_wake_setup(&pdev->dev); 1486 1487 return 0; 1488 } 1489 1490 static int cmos_platform_remove(struct platform_device *pdev) 1491 { 1492 cmos_do_remove(&pdev->dev); 1493 return 0; 1494 } 1495 1496 static void cmos_platform_shutdown(struct platform_device *pdev) 1497 { 1498 struct device *dev = &pdev->dev; 1499 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1500 1501 if (system_state == SYSTEM_POWER_OFF) { 1502 int retval = cmos_poweroff(dev); 1503 1504 if (cmos_aie_poweroff(dev) < 0 && !retval) 1505 return; 1506 } 1507 1508 cmos_do_shutdown(cmos->irq); 1509 } 1510 1511 /* work with hotplug and coldplug */ 1512 MODULE_ALIAS("platform:rtc_cmos"); 1513 1514 static struct platform_driver cmos_platform_driver = { 1515 .remove = cmos_platform_remove, 1516 .shutdown = cmos_platform_shutdown, 1517 .driver = { 1518 .name = driver_name, 1519 .pm = &cmos_pm_ops, 1520 .of_match_table = of_match_ptr(of_cmos_match), 1521 } 1522 }; 1523 1524 #ifdef CONFIG_PNP 1525 static bool pnp_driver_registered; 1526 #endif 1527 static bool platform_driver_registered; 1528 1529 static int __init cmos_init(void) 1530 { 1531 int retval = 0; 1532 1533 #ifdef CONFIG_PNP 1534 retval = pnp_register_driver(&cmos_pnp_driver); 1535 if (retval == 0) 1536 pnp_driver_registered = true; 1537 #endif 1538 1539 if (!cmos_rtc.dev) { 1540 retval = platform_driver_probe(&cmos_platform_driver, 1541 cmos_platform_probe); 1542 if (retval == 0) 1543 platform_driver_registered = true; 1544 } 1545 1546 if (retval == 0) 1547 return 0; 1548 1549 #ifdef CONFIG_PNP 1550 if (pnp_driver_registered) 1551 pnp_unregister_driver(&cmos_pnp_driver); 1552 #endif 1553 return retval; 1554 } 1555 module_init(cmos_init); 1556 1557 static void __exit cmos_exit(void) 1558 { 1559 #ifdef CONFIG_PNP 1560 if (pnp_driver_registered) 1561 pnp_unregister_driver(&cmos_pnp_driver); 1562 #endif 1563 if (platform_driver_registered) 1564 platform_driver_unregister(&cmos_platform_driver); 1565 } 1566 module_exit(cmos_exit); 1567 1568 1569 MODULE_AUTHOR("David Brownell"); 1570 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1571 MODULE_LICENSE("GPL"); 1572