1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/log2.h> 39 #include <linux/pm.h> 40 #include <linux/of.h> 41 #include <linux/of_platform.h> 42 43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 44 #include <asm-generic/rtc.h> 45 46 struct cmos_rtc { 47 struct rtc_device *rtc; 48 struct device *dev; 49 int irq; 50 struct resource *iomem; 51 52 void (*wake_on)(struct device *); 53 void (*wake_off)(struct device *); 54 55 u8 enabled_wake; 56 u8 suspend_ctrl; 57 58 /* newer hardware extends the original register set */ 59 u8 day_alrm; 60 u8 mon_alrm; 61 u8 century; 62 }; 63 64 /* both platform and pnp busses use negative numbers for invalid irqs */ 65 #define is_valid_irq(n) ((n) > 0) 66 67 static const char driver_name[] = "rtc_cmos"; 68 69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 72 */ 73 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 74 75 static inline int is_intr(u8 rtc_intr) 76 { 77 if (!(rtc_intr & RTC_IRQF)) 78 return 0; 79 return rtc_intr & RTC_IRQMASK; 80 } 81 82 /*----------------------------------------------------------------*/ 83 84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 86 * used in a broken "legacy replacement" mode. The breakage includes 87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 88 * other (better) use. 89 * 90 * When that broken mode is in use, platform glue provides a partial 91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 92 * want to use HPET for anything except those IRQs though... 93 */ 94 #ifdef CONFIG_HPET_EMULATE_RTC 95 #include <asm/hpet.h> 96 #else 97 98 static inline int is_hpet_enabled(void) 99 { 100 return 0; 101 } 102 103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 104 { 105 return 0; 106 } 107 108 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 109 { 110 return 0; 111 } 112 113 static inline int 114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 115 { 116 return 0; 117 } 118 119 static inline int hpet_set_periodic_freq(unsigned long freq) 120 { 121 return 0; 122 } 123 124 static inline int hpet_rtc_dropped_irq(void) 125 { 126 return 0; 127 } 128 129 static inline int hpet_rtc_timer_init(void) 130 { 131 return 0; 132 } 133 134 extern irq_handler_t hpet_rtc_interrupt; 135 136 static inline int hpet_register_irq_handler(irq_handler_t handler) 137 { 138 return 0; 139 } 140 141 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 142 { 143 return 0; 144 } 145 146 #endif 147 148 /*----------------------------------------------------------------*/ 149 150 #ifdef RTC_PORT 151 152 /* Most newer x86 systems have two register banks, the first used 153 * for RTC and NVRAM and the second only for NVRAM. Caller must 154 * own rtc_lock ... and we won't worry about access during NMI. 155 */ 156 #define can_bank2 true 157 158 static inline unsigned char cmos_read_bank2(unsigned char addr) 159 { 160 outb(addr, RTC_PORT(2)); 161 return inb(RTC_PORT(3)); 162 } 163 164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 165 { 166 outb(addr, RTC_PORT(2)); 167 outb(val, RTC_PORT(3)); 168 } 169 170 #else 171 172 #define can_bank2 false 173 174 static inline unsigned char cmos_read_bank2(unsigned char addr) 175 { 176 return 0; 177 } 178 179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 180 { 181 } 182 183 #endif 184 185 /*----------------------------------------------------------------*/ 186 187 static int cmos_read_time(struct device *dev, struct rtc_time *t) 188 { 189 /* REVISIT: if the clock has a "century" register, use 190 * that instead of the heuristic in get_rtc_time(). 191 * That'll make Y3K compatility (year > 2070) easy! 192 */ 193 get_rtc_time(t); 194 return 0; 195 } 196 197 static int cmos_set_time(struct device *dev, struct rtc_time *t) 198 { 199 /* REVISIT: set the "century" register if available 200 * 201 * NOTE: this ignores the issue whereby updating the seconds 202 * takes effect exactly 500ms after we write the register. 203 * (Also queueing and other delays before we get this far.) 204 */ 205 return set_rtc_time(t); 206 } 207 208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 209 { 210 struct cmos_rtc *cmos = dev_get_drvdata(dev); 211 unsigned char rtc_control; 212 213 if (!is_valid_irq(cmos->irq)) 214 return -EIO; 215 216 /* Basic alarms only support hour, minute, and seconds fields. 217 * Some also support day and month, for alarms up to a year in 218 * the future. 219 */ 220 t->time.tm_mday = -1; 221 t->time.tm_mon = -1; 222 223 spin_lock_irq(&rtc_lock); 224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 227 228 if (cmos->day_alrm) { 229 /* ignore upper bits on readback per ACPI spec */ 230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 231 if (!t->time.tm_mday) 232 t->time.tm_mday = -1; 233 234 if (cmos->mon_alrm) { 235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 236 if (!t->time.tm_mon) 237 t->time.tm_mon = -1; 238 } 239 } 240 241 rtc_control = CMOS_READ(RTC_CONTROL); 242 spin_unlock_irq(&rtc_lock); 243 244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 245 if (((unsigned)t->time.tm_sec) < 0x60) 246 t->time.tm_sec = bcd2bin(t->time.tm_sec); 247 else 248 t->time.tm_sec = -1; 249 if (((unsigned)t->time.tm_min) < 0x60) 250 t->time.tm_min = bcd2bin(t->time.tm_min); 251 else 252 t->time.tm_min = -1; 253 if (((unsigned)t->time.tm_hour) < 0x24) 254 t->time.tm_hour = bcd2bin(t->time.tm_hour); 255 else 256 t->time.tm_hour = -1; 257 258 if (cmos->day_alrm) { 259 if (((unsigned)t->time.tm_mday) <= 0x31) 260 t->time.tm_mday = bcd2bin(t->time.tm_mday); 261 else 262 t->time.tm_mday = -1; 263 264 if (cmos->mon_alrm) { 265 if (((unsigned)t->time.tm_mon) <= 0x12) 266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 267 else 268 t->time.tm_mon = -1; 269 } 270 } 271 } 272 t->time.tm_year = -1; 273 274 t->enabled = !!(rtc_control & RTC_AIE); 275 t->pending = 0; 276 277 return 0; 278 } 279 280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 281 { 282 unsigned char rtc_intr; 283 284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 285 * allegedly some older rtcs need that to handle irqs properly 286 */ 287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 288 289 if (is_hpet_enabled()) 290 return; 291 292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 293 if (is_intr(rtc_intr)) 294 rtc_update_irq(cmos->rtc, 1, rtc_intr); 295 } 296 297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 298 { 299 unsigned char rtc_control; 300 301 /* flush any pending IRQ status, notably for update irqs, 302 * before we enable new IRQs 303 */ 304 rtc_control = CMOS_READ(RTC_CONTROL); 305 cmos_checkintr(cmos, rtc_control); 306 307 rtc_control |= mask; 308 CMOS_WRITE(rtc_control, RTC_CONTROL); 309 hpet_set_rtc_irq_bit(mask); 310 311 cmos_checkintr(cmos, rtc_control); 312 } 313 314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 315 { 316 unsigned char rtc_control; 317 318 rtc_control = CMOS_READ(RTC_CONTROL); 319 rtc_control &= ~mask; 320 CMOS_WRITE(rtc_control, RTC_CONTROL); 321 hpet_mask_rtc_irq_bit(mask); 322 323 cmos_checkintr(cmos, rtc_control); 324 } 325 326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 327 { 328 struct cmos_rtc *cmos = dev_get_drvdata(dev); 329 unsigned char mon, mday, hrs, min, sec, rtc_control; 330 331 if (!is_valid_irq(cmos->irq)) 332 return -EIO; 333 334 mon = t->time.tm_mon + 1; 335 mday = t->time.tm_mday; 336 hrs = t->time.tm_hour; 337 min = t->time.tm_min; 338 sec = t->time.tm_sec; 339 340 rtc_control = CMOS_READ(RTC_CONTROL); 341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 342 /* Writing 0xff means "don't care" or "match all". */ 343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 346 min = (min < 60) ? bin2bcd(min) : 0xff; 347 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 348 } 349 350 spin_lock_irq(&rtc_lock); 351 352 /* next rtc irq must not be from previous alarm setting */ 353 cmos_irq_disable(cmos, RTC_AIE); 354 355 /* update alarm */ 356 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 357 CMOS_WRITE(min, RTC_MINUTES_ALARM); 358 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 359 360 /* the system may support an "enhanced" alarm */ 361 if (cmos->day_alrm) { 362 CMOS_WRITE(mday, cmos->day_alrm); 363 if (cmos->mon_alrm) 364 CMOS_WRITE(mon, cmos->mon_alrm); 365 } 366 367 /* FIXME the HPET alarm glue currently ignores day_alrm 368 * and mon_alrm ... 369 */ 370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 371 372 if (t->enabled) 373 cmos_irq_enable(cmos, RTC_AIE); 374 375 spin_unlock_irq(&rtc_lock); 376 377 return 0; 378 } 379 380 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 381 { 382 struct cmos_rtc *cmos = dev_get_drvdata(dev); 383 unsigned long flags; 384 385 if (!is_valid_irq(cmos->irq)) 386 return -EINVAL; 387 388 spin_lock_irqsave(&rtc_lock, flags); 389 390 if (enabled) 391 cmos_irq_enable(cmos, RTC_AIE); 392 else 393 cmos_irq_disable(cmos, RTC_AIE); 394 395 spin_unlock_irqrestore(&rtc_lock, flags); 396 return 0; 397 } 398 399 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 400 401 static int cmos_procfs(struct device *dev, struct seq_file *seq) 402 { 403 struct cmos_rtc *cmos = dev_get_drvdata(dev); 404 unsigned char rtc_control, valid; 405 406 spin_lock_irq(&rtc_lock); 407 rtc_control = CMOS_READ(RTC_CONTROL); 408 valid = CMOS_READ(RTC_VALID); 409 spin_unlock_irq(&rtc_lock); 410 411 /* NOTE: at least ICH6 reports battery status using a different 412 * (non-RTC) bit; and SQWE is ignored on many current systems. 413 */ 414 return seq_printf(seq, 415 "periodic_IRQ\t: %s\n" 416 "update_IRQ\t: %s\n" 417 "HPET_emulated\t: %s\n" 418 // "square_wave\t: %s\n" 419 "BCD\t\t: %s\n" 420 "DST_enable\t: %s\n" 421 "periodic_freq\t: %d\n" 422 "batt_status\t: %s\n", 423 (rtc_control & RTC_PIE) ? "yes" : "no", 424 (rtc_control & RTC_UIE) ? "yes" : "no", 425 is_hpet_enabled() ? "yes" : "no", 426 // (rtc_control & RTC_SQWE) ? "yes" : "no", 427 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 428 (rtc_control & RTC_DST_EN) ? "yes" : "no", 429 cmos->rtc->irq_freq, 430 (valid & RTC_VRT) ? "okay" : "dead"); 431 } 432 433 #else 434 #define cmos_procfs NULL 435 #endif 436 437 static const struct rtc_class_ops cmos_rtc_ops = { 438 .read_time = cmos_read_time, 439 .set_time = cmos_set_time, 440 .read_alarm = cmos_read_alarm, 441 .set_alarm = cmos_set_alarm, 442 .proc = cmos_procfs, 443 .alarm_irq_enable = cmos_alarm_irq_enable, 444 }; 445 446 /*----------------------------------------------------------------*/ 447 448 /* 449 * All these chips have at least 64 bytes of address space, shared by 450 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 451 * by boot firmware. Modern chips have 128 or 256 bytes. 452 */ 453 454 #define NVRAM_OFFSET (RTC_REG_D + 1) 455 456 static ssize_t 457 cmos_nvram_read(struct file *filp, struct kobject *kobj, 458 struct bin_attribute *attr, 459 char *buf, loff_t off, size_t count) 460 { 461 int retval; 462 463 if (unlikely(off >= attr->size)) 464 return 0; 465 if (unlikely(off < 0)) 466 return -EINVAL; 467 if ((off + count) > attr->size) 468 count = attr->size - off; 469 470 off += NVRAM_OFFSET; 471 spin_lock_irq(&rtc_lock); 472 for (retval = 0; count; count--, off++, retval++) { 473 if (off < 128) 474 *buf++ = CMOS_READ(off); 475 else if (can_bank2) 476 *buf++ = cmos_read_bank2(off); 477 else 478 break; 479 } 480 spin_unlock_irq(&rtc_lock); 481 482 return retval; 483 } 484 485 static ssize_t 486 cmos_nvram_write(struct file *filp, struct kobject *kobj, 487 struct bin_attribute *attr, 488 char *buf, loff_t off, size_t count) 489 { 490 struct cmos_rtc *cmos; 491 int retval; 492 493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 494 if (unlikely(off >= attr->size)) 495 return -EFBIG; 496 if (unlikely(off < 0)) 497 return -EINVAL; 498 if ((off + count) > attr->size) 499 count = attr->size - off; 500 501 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 502 * checksum on part of the NVRAM data. That's currently ignored 503 * here. If userspace is smart enough to know what fields of 504 * NVRAM to update, updating checksums is also part of its job. 505 */ 506 off += NVRAM_OFFSET; 507 spin_lock_irq(&rtc_lock); 508 for (retval = 0; count; count--, off++, retval++) { 509 /* don't trash RTC registers */ 510 if (off == cmos->day_alrm 511 || off == cmos->mon_alrm 512 || off == cmos->century) 513 buf++; 514 else if (off < 128) 515 CMOS_WRITE(*buf++, off); 516 else if (can_bank2) 517 cmos_write_bank2(*buf++, off); 518 else 519 break; 520 } 521 spin_unlock_irq(&rtc_lock); 522 523 return retval; 524 } 525 526 static struct bin_attribute nvram = { 527 .attr = { 528 .name = "nvram", 529 .mode = S_IRUGO | S_IWUSR, 530 }, 531 532 .read = cmos_nvram_read, 533 .write = cmos_nvram_write, 534 /* size gets set up later */ 535 }; 536 537 /*----------------------------------------------------------------*/ 538 539 static struct cmos_rtc cmos_rtc; 540 541 static irqreturn_t cmos_interrupt(int irq, void *p) 542 { 543 u8 irqstat; 544 u8 rtc_control; 545 546 spin_lock(&rtc_lock); 547 548 /* When the HPET interrupt handler calls us, the interrupt 549 * status is passed as arg1 instead of the irq number. But 550 * always clear irq status, even when HPET is in the way. 551 * 552 * Note that HPET and RTC are almost certainly out of phase, 553 * giving different IRQ status ... 554 */ 555 irqstat = CMOS_READ(RTC_INTR_FLAGS); 556 rtc_control = CMOS_READ(RTC_CONTROL); 557 if (is_hpet_enabled()) 558 irqstat = (unsigned long)irq & 0xF0; 559 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 560 561 /* All Linux RTC alarms should be treated as if they were oneshot. 562 * Similar code may be needed in system wakeup paths, in case the 563 * alarm woke the system. 564 */ 565 if (irqstat & RTC_AIE) { 566 rtc_control &= ~RTC_AIE; 567 CMOS_WRITE(rtc_control, RTC_CONTROL); 568 hpet_mask_rtc_irq_bit(RTC_AIE); 569 570 CMOS_READ(RTC_INTR_FLAGS); 571 } 572 spin_unlock(&rtc_lock); 573 574 if (is_intr(irqstat)) { 575 rtc_update_irq(p, 1, irqstat); 576 return IRQ_HANDLED; 577 } else 578 return IRQ_NONE; 579 } 580 581 #ifdef CONFIG_PNP 582 #define INITSECTION 583 584 #else 585 #define INITSECTION __init 586 #endif 587 588 static int INITSECTION 589 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 590 { 591 struct cmos_rtc_board_info *info = dev->platform_data; 592 int retval = 0; 593 unsigned char rtc_control; 594 unsigned address_space; 595 596 /* there can be only one ... */ 597 if (cmos_rtc.dev) 598 return -EBUSY; 599 600 if (!ports) 601 return -ENODEV; 602 603 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 604 * 605 * REVISIT non-x86 systems may instead use memory space resources 606 * (needing ioremap etc), not i/o space resources like this ... 607 */ 608 ports = request_region(ports->start, 609 resource_size(ports), 610 driver_name); 611 if (!ports) { 612 dev_dbg(dev, "i/o registers already in use\n"); 613 return -EBUSY; 614 } 615 616 cmos_rtc.irq = rtc_irq; 617 cmos_rtc.iomem = ports; 618 619 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 620 * driver did, but don't reject unknown configs. Old hardware 621 * won't address 128 bytes. Newer chips have multiple banks, 622 * though they may not be listed in one I/O resource. 623 */ 624 #if defined(CONFIG_ATARI) 625 address_space = 64; 626 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 627 || defined(__sparc__) || defined(__mips__) \ 628 || defined(__powerpc__) 629 address_space = 128; 630 #else 631 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 632 address_space = 128; 633 #endif 634 if (can_bank2 && ports->end > (ports->start + 1)) 635 address_space = 256; 636 637 /* For ACPI systems extension info comes from the FADT. On others, 638 * board specific setup provides it as appropriate. Systems where 639 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 640 * some almost-clones) can provide hooks to make that behave. 641 * 642 * Note that ACPI doesn't preclude putting these registers into 643 * "extended" areas of the chip, including some that we won't yet 644 * expect CMOS_READ and friends to handle. 645 */ 646 if (info) { 647 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 648 cmos_rtc.day_alrm = info->rtc_day_alarm; 649 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 650 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 651 if (info->rtc_century && info->rtc_century < 128) 652 cmos_rtc.century = info->rtc_century; 653 654 if (info->wake_on && info->wake_off) { 655 cmos_rtc.wake_on = info->wake_on; 656 cmos_rtc.wake_off = info->wake_off; 657 } 658 } 659 660 cmos_rtc.dev = dev; 661 dev_set_drvdata(dev, &cmos_rtc); 662 663 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 664 &cmos_rtc_ops, THIS_MODULE); 665 if (IS_ERR(cmos_rtc.rtc)) { 666 retval = PTR_ERR(cmos_rtc.rtc); 667 goto cleanup0; 668 } 669 670 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 671 672 spin_lock_irq(&rtc_lock); 673 674 /* force periodic irq to CMOS reset default of 1024Hz; 675 * 676 * REVISIT it's been reported that at least one x86_64 ALI mobo 677 * doesn't use 32KHz here ... for portability we might need to 678 * do something about other clock frequencies. 679 */ 680 cmos_rtc.rtc->irq_freq = 1024; 681 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 682 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 683 684 /* disable irqs */ 685 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 686 687 rtc_control = CMOS_READ(RTC_CONTROL); 688 689 spin_unlock_irq(&rtc_lock); 690 691 /* FIXME: 692 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 693 */ 694 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 695 dev_warn(dev, "only 24-hr supported\n"); 696 retval = -ENXIO; 697 goto cleanup1; 698 } 699 700 if (is_valid_irq(rtc_irq)) { 701 irq_handler_t rtc_cmos_int_handler; 702 703 if (is_hpet_enabled()) { 704 int err; 705 706 rtc_cmos_int_handler = hpet_rtc_interrupt; 707 err = hpet_register_irq_handler(cmos_interrupt); 708 if (err != 0) { 709 printk(KERN_WARNING "hpet_register_irq_handler " 710 " failed in rtc_init()."); 711 goto cleanup1; 712 } 713 } else 714 rtc_cmos_int_handler = cmos_interrupt; 715 716 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 717 0, dev_name(&cmos_rtc.rtc->dev), 718 cmos_rtc.rtc); 719 if (retval < 0) { 720 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 721 goto cleanup1; 722 } 723 } 724 hpet_rtc_timer_init(); 725 726 /* export at least the first block of NVRAM */ 727 nvram.size = address_space - NVRAM_OFFSET; 728 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 729 if (retval < 0) { 730 dev_dbg(dev, "can't create nvram file? %d\n", retval); 731 goto cleanup2; 732 } 733 734 pr_info("%s: %s%s, %zd bytes nvram%s\n", 735 dev_name(&cmos_rtc.rtc->dev), 736 !is_valid_irq(rtc_irq) ? "no alarms" : 737 cmos_rtc.mon_alrm ? "alarms up to one year" : 738 cmos_rtc.day_alrm ? "alarms up to one month" : 739 "alarms up to one day", 740 cmos_rtc.century ? ", y3k" : "", 741 nvram.size, 742 is_hpet_enabled() ? ", hpet irqs" : ""); 743 744 return 0; 745 746 cleanup2: 747 if (is_valid_irq(rtc_irq)) 748 free_irq(rtc_irq, cmos_rtc.rtc); 749 cleanup1: 750 cmos_rtc.dev = NULL; 751 rtc_device_unregister(cmos_rtc.rtc); 752 cleanup0: 753 release_region(ports->start, resource_size(ports)); 754 return retval; 755 } 756 757 static void cmos_do_shutdown(void) 758 { 759 spin_lock_irq(&rtc_lock); 760 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 761 spin_unlock_irq(&rtc_lock); 762 } 763 764 static void __exit cmos_do_remove(struct device *dev) 765 { 766 struct cmos_rtc *cmos = dev_get_drvdata(dev); 767 struct resource *ports; 768 769 cmos_do_shutdown(); 770 771 sysfs_remove_bin_file(&dev->kobj, &nvram); 772 773 if (is_valid_irq(cmos->irq)) { 774 free_irq(cmos->irq, cmos->rtc); 775 hpet_unregister_irq_handler(cmos_interrupt); 776 } 777 778 rtc_device_unregister(cmos->rtc); 779 cmos->rtc = NULL; 780 781 ports = cmos->iomem; 782 release_region(ports->start, resource_size(ports)); 783 cmos->iomem = NULL; 784 785 cmos->dev = NULL; 786 dev_set_drvdata(dev, NULL); 787 } 788 789 #ifdef CONFIG_PM 790 791 static int cmos_suspend(struct device *dev) 792 { 793 struct cmos_rtc *cmos = dev_get_drvdata(dev); 794 unsigned char tmp; 795 796 /* only the alarm might be a wakeup event source */ 797 spin_lock_irq(&rtc_lock); 798 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 799 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 800 unsigned char mask; 801 802 if (device_may_wakeup(dev)) 803 mask = RTC_IRQMASK & ~RTC_AIE; 804 else 805 mask = RTC_IRQMASK; 806 tmp &= ~mask; 807 CMOS_WRITE(tmp, RTC_CONTROL); 808 809 /* shut down hpet emulation - we don't need it for alarm */ 810 hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE); 811 cmos_checkintr(cmos, tmp); 812 } 813 spin_unlock_irq(&rtc_lock); 814 815 if (tmp & RTC_AIE) { 816 cmos->enabled_wake = 1; 817 if (cmos->wake_on) 818 cmos->wake_on(dev); 819 else 820 enable_irq_wake(cmos->irq); 821 } 822 823 pr_debug("%s: suspend%s, ctrl %02x\n", 824 dev_name(&cmos_rtc.rtc->dev), 825 (tmp & RTC_AIE) ? ", alarm may wake" : "", 826 tmp); 827 828 return 0; 829 } 830 831 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 832 * after a detour through G3 "mechanical off", although the ACPI spec 833 * says wakeup should only work from G1/S4 "hibernate". To most users, 834 * distinctions between S4 and S5 are pointless. So when the hardware 835 * allows, don't draw that distinction. 836 */ 837 static inline int cmos_poweroff(struct device *dev) 838 { 839 return cmos_suspend(dev); 840 } 841 842 static int cmos_resume(struct device *dev) 843 { 844 struct cmos_rtc *cmos = dev_get_drvdata(dev); 845 unsigned char tmp = cmos->suspend_ctrl; 846 847 /* re-enable any irqs previously active */ 848 if (tmp & RTC_IRQMASK) { 849 unsigned char mask; 850 851 if (cmos->enabled_wake) { 852 if (cmos->wake_off) 853 cmos->wake_off(dev); 854 else 855 disable_irq_wake(cmos->irq); 856 cmos->enabled_wake = 0; 857 } 858 859 spin_lock_irq(&rtc_lock); 860 do { 861 CMOS_WRITE(tmp, RTC_CONTROL); 862 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 863 864 mask = CMOS_READ(RTC_INTR_FLAGS); 865 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 866 if (!is_hpet_enabled() || !is_intr(mask)) 867 break; 868 869 /* force one-shot behavior if HPET blocked 870 * the wake alarm's irq 871 */ 872 rtc_update_irq(cmos->rtc, 1, mask); 873 tmp &= ~RTC_AIE; 874 hpet_mask_rtc_irq_bit(RTC_AIE); 875 } while (mask & RTC_AIE); 876 spin_unlock_irq(&rtc_lock); 877 } 878 879 pr_debug("%s: resume, ctrl %02x\n", 880 dev_name(&cmos_rtc.rtc->dev), 881 tmp); 882 883 return 0; 884 } 885 886 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 887 888 #else 889 890 static inline int cmos_poweroff(struct device *dev) 891 { 892 return -ENOSYS; 893 } 894 895 #endif 896 897 /*----------------------------------------------------------------*/ 898 899 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 900 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 901 * probably list them in similar PNPBIOS tables; so PNP is more common. 902 * 903 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 904 * predate even PNPBIOS should set up platform_bus devices. 905 */ 906 907 #ifdef CONFIG_ACPI 908 909 #include <linux/acpi.h> 910 911 static u32 rtc_handler(void *context) 912 { 913 acpi_clear_event(ACPI_EVENT_RTC); 914 acpi_disable_event(ACPI_EVENT_RTC, 0); 915 return ACPI_INTERRUPT_HANDLED; 916 } 917 918 static inline void rtc_wake_setup(void) 919 { 920 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL); 921 /* 922 * After the RTC handler is installed, the Fixed_RTC event should 923 * be disabled. Only when the RTC alarm is set will it be enabled. 924 */ 925 acpi_clear_event(ACPI_EVENT_RTC); 926 acpi_disable_event(ACPI_EVENT_RTC, 0); 927 } 928 929 static void rtc_wake_on(struct device *dev) 930 { 931 acpi_clear_event(ACPI_EVENT_RTC); 932 acpi_enable_event(ACPI_EVENT_RTC, 0); 933 } 934 935 static void rtc_wake_off(struct device *dev) 936 { 937 acpi_disable_event(ACPI_EVENT_RTC, 0); 938 } 939 940 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 941 * its device node and pass extra config data. This helps its driver use 942 * capabilities that the now-obsolete mc146818 didn't have, and informs it 943 * that this board's RTC is wakeup-capable (per ACPI spec). 944 */ 945 static struct cmos_rtc_board_info acpi_rtc_info; 946 947 static void __devinit 948 cmos_wake_setup(struct device *dev) 949 { 950 if (acpi_disabled) 951 return; 952 953 rtc_wake_setup(); 954 acpi_rtc_info.wake_on = rtc_wake_on; 955 acpi_rtc_info.wake_off = rtc_wake_off; 956 957 /* workaround bug in some ACPI tables */ 958 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 959 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 960 acpi_gbl_FADT.month_alarm); 961 acpi_gbl_FADT.month_alarm = 0; 962 } 963 964 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 965 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 966 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 967 968 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 969 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 970 dev_info(dev, "RTC can wake from S4\n"); 971 972 dev->platform_data = &acpi_rtc_info; 973 974 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 975 device_init_wakeup(dev, 1); 976 } 977 978 #else 979 980 static void __devinit 981 cmos_wake_setup(struct device *dev) 982 { 983 } 984 985 #endif 986 987 #ifdef CONFIG_PNP 988 989 #include <linux/pnp.h> 990 991 static int __devinit 992 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 993 { 994 cmos_wake_setup(&pnp->dev); 995 996 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0)) 997 /* Some machines contain a PNP entry for the RTC, but 998 * don't define the IRQ. It should always be safe to 999 * hardcode it in these cases 1000 */ 1001 return cmos_do_probe(&pnp->dev, 1002 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1003 else 1004 return cmos_do_probe(&pnp->dev, 1005 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1006 pnp_irq(pnp, 0)); 1007 } 1008 1009 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1010 { 1011 cmos_do_remove(&pnp->dev); 1012 } 1013 1014 #ifdef CONFIG_PM 1015 1016 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg) 1017 { 1018 return cmos_suspend(&pnp->dev); 1019 } 1020 1021 static int cmos_pnp_resume(struct pnp_dev *pnp) 1022 { 1023 return cmos_resume(&pnp->dev); 1024 } 1025 1026 #else 1027 #define cmos_pnp_suspend NULL 1028 #define cmos_pnp_resume NULL 1029 #endif 1030 1031 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1032 { 1033 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev)) 1034 return; 1035 1036 cmos_do_shutdown(); 1037 } 1038 1039 static const struct pnp_device_id rtc_ids[] = { 1040 { .id = "PNP0b00", }, 1041 { .id = "PNP0b01", }, 1042 { .id = "PNP0b02", }, 1043 { }, 1044 }; 1045 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1046 1047 static struct pnp_driver cmos_pnp_driver = { 1048 .name = (char *) driver_name, 1049 .id_table = rtc_ids, 1050 .probe = cmos_pnp_probe, 1051 .remove = __exit_p(cmos_pnp_remove), 1052 .shutdown = cmos_pnp_shutdown, 1053 1054 /* flag ensures resume() gets called, and stops syslog spam */ 1055 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1056 .suspend = cmos_pnp_suspend, 1057 .resume = cmos_pnp_resume, 1058 }; 1059 1060 #endif /* CONFIG_PNP */ 1061 1062 #ifdef CONFIG_OF 1063 static const struct of_device_id of_cmos_match[] = { 1064 { 1065 .compatible = "motorola,mc146818", 1066 }, 1067 { }, 1068 }; 1069 MODULE_DEVICE_TABLE(of, of_cmos_match); 1070 1071 static __init void cmos_of_init(struct platform_device *pdev) 1072 { 1073 struct device_node *node = pdev->dev.of_node; 1074 struct rtc_time time; 1075 int ret; 1076 const __be32 *val; 1077 1078 if (!node) 1079 return; 1080 1081 val = of_get_property(node, "ctrl-reg", NULL); 1082 if (val) 1083 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1084 1085 val = of_get_property(node, "freq-reg", NULL); 1086 if (val) 1087 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1088 1089 get_rtc_time(&time); 1090 ret = rtc_valid_tm(&time); 1091 if (ret) { 1092 struct rtc_time def_time = { 1093 .tm_year = 1, 1094 .tm_mday = 1, 1095 }; 1096 set_rtc_time(&def_time); 1097 } 1098 } 1099 #else 1100 static inline void cmos_of_init(struct platform_device *pdev) {} 1101 #define of_cmos_match NULL 1102 #endif 1103 /*----------------------------------------------------------------*/ 1104 1105 /* Platform setup should have set up an RTC device, when PNP is 1106 * unavailable ... this could happen even on (older) PCs. 1107 */ 1108 1109 static int __init cmos_platform_probe(struct platform_device *pdev) 1110 { 1111 cmos_of_init(pdev); 1112 cmos_wake_setup(&pdev->dev); 1113 return cmos_do_probe(&pdev->dev, 1114 platform_get_resource(pdev, IORESOURCE_IO, 0), 1115 platform_get_irq(pdev, 0)); 1116 } 1117 1118 static int __exit cmos_platform_remove(struct platform_device *pdev) 1119 { 1120 cmos_do_remove(&pdev->dev); 1121 return 0; 1122 } 1123 1124 static void cmos_platform_shutdown(struct platform_device *pdev) 1125 { 1126 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev)) 1127 return; 1128 1129 cmos_do_shutdown(); 1130 } 1131 1132 /* work with hotplug and coldplug */ 1133 MODULE_ALIAS("platform:rtc_cmos"); 1134 1135 static struct platform_driver cmos_platform_driver = { 1136 .remove = __exit_p(cmos_platform_remove), 1137 .shutdown = cmos_platform_shutdown, 1138 .driver = { 1139 .name = (char *) driver_name, 1140 #ifdef CONFIG_PM 1141 .pm = &cmos_pm_ops, 1142 #endif 1143 .of_match_table = of_cmos_match, 1144 } 1145 }; 1146 1147 #ifdef CONFIG_PNP 1148 static bool pnp_driver_registered; 1149 #endif 1150 static bool platform_driver_registered; 1151 1152 static int __init cmos_init(void) 1153 { 1154 int retval = 0; 1155 1156 #ifdef CONFIG_PNP 1157 retval = pnp_register_driver(&cmos_pnp_driver); 1158 if (retval == 0) 1159 pnp_driver_registered = true; 1160 #endif 1161 1162 if (!cmos_rtc.dev) { 1163 retval = platform_driver_probe(&cmos_platform_driver, 1164 cmos_platform_probe); 1165 if (retval == 0) 1166 platform_driver_registered = true; 1167 } 1168 1169 if (retval == 0) 1170 return 0; 1171 1172 #ifdef CONFIG_PNP 1173 if (pnp_driver_registered) 1174 pnp_unregister_driver(&cmos_pnp_driver); 1175 #endif 1176 return retval; 1177 } 1178 module_init(cmos_init); 1179 1180 static void __exit cmos_exit(void) 1181 { 1182 #ifdef CONFIG_PNP 1183 if (pnp_driver_registered) 1184 pnp_unregister_driver(&cmos_pnp_driver); 1185 #endif 1186 if (platform_driver_registered) 1187 platform_driver_unregister(&cmos_platform_driver); 1188 } 1189 module_exit(cmos_exit); 1190 1191 1192 MODULE_AUTHOR("David Brownell"); 1193 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1194 MODULE_LICENSE("GPL"); 1195