xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 94cdda6b)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #include <linux/dmi.h>
45 
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <asm-generic/rtc.h>
48 
49 struct cmos_rtc {
50 	struct rtc_device	*rtc;
51 	struct device		*dev;
52 	int			irq;
53 	struct resource		*iomem;
54 
55 	void			(*wake_on)(struct device *);
56 	void			(*wake_off)(struct device *);
57 
58 	u8			enabled_wake;
59 	u8			suspend_ctrl;
60 
61 	/* newer hardware extends the original register set */
62 	u8			day_alrm;
63 	u8			mon_alrm;
64 	u8			century;
65 };
66 
67 /* both platform and pnp busses use negative numbers for invalid irqs */
68 #define is_valid_irq(n)		((n) > 0)
69 
70 static const char driver_name[] = "rtc_cmos";
71 
72 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
73  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
74  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
75  */
76 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
77 
78 static inline int is_intr(u8 rtc_intr)
79 {
80 	if (!(rtc_intr & RTC_IRQF))
81 		return 0;
82 	return rtc_intr & RTC_IRQMASK;
83 }
84 
85 /*----------------------------------------------------------------*/
86 
87 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
88  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
89  * used in a broken "legacy replacement" mode.  The breakage includes
90  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
91  * other (better) use.
92  *
93  * When that broken mode is in use, platform glue provides a partial
94  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
95  * want to use HPET for anything except those IRQs though...
96  */
97 #ifdef CONFIG_HPET_EMULATE_RTC
98 #include <asm/hpet.h>
99 #else
100 
101 static inline int is_hpet_enabled(void)
102 {
103 	return 0;
104 }
105 
106 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
107 {
108 	return 0;
109 }
110 
111 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
112 {
113 	return 0;
114 }
115 
116 static inline int
117 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
118 {
119 	return 0;
120 }
121 
122 static inline int hpet_set_periodic_freq(unsigned long freq)
123 {
124 	return 0;
125 }
126 
127 static inline int hpet_rtc_dropped_irq(void)
128 {
129 	return 0;
130 }
131 
132 static inline int hpet_rtc_timer_init(void)
133 {
134 	return 0;
135 }
136 
137 extern irq_handler_t hpet_rtc_interrupt;
138 
139 static inline int hpet_register_irq_handler(irq_handler_t handler)
140 {
141 	return 0;
142 }
143 
144 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
145 {
146 	return 0;
147 }
148 
149 #endif
150 
151 /*----------------------------------------------------------------*/
152 
153 #ifdef RTC_PORT
154 
155 /* Most newer x86 systems have two register banks, the first used
156  * for RTC and NVRAM and the second only for NVRAM.  Caller must
157  * own rtc_lock ... and we won't worry about access during NMI.
158  */
159 #define can_bank2	true
160 
161 static inline unsigned char cmos_read_bank2(unsigned char addr)
162 {
163 	outb(addr, RTC_PORT(2));
164 	return inb(RTC_PORT(3));
165 }
166 
167 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
168 {
169 	outb(addr, RTC_PORT(2));
170 	outb(val, RTC_PORT(3));
171 }
172 
173 #else
174 
175 #define can_bank2	false
176 
177 static inline unsigned char cmos_read_bank2(unsigned char addr)
178 {
179 	return 0;
180 }
181 
182 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
183 {
184 }
185 
186 #endif
187 
188 /*----------------------------------------------------------------*/
189 
190 static int cmos_read_time(struct device *dev, struct rtc_time *t)
191 {
192 	/* REVISIT:  if the clock has a "century" register, use
193 	 * that instead of the heuristic in get_rtc_time().
194 	 * That'll make Y3K compatility (year > 2070) easy!
195 	 */
196 	get_rtc_time(t);
197 	return 0;
198 }
199 
200 static int cmos_set_time(struct device *dev, struct rtc_time *t)
201 {
202 	/* REVISIT:  set the "century" register if available
203 	 *
204 	 * NOTE: this ignores the issue whereby updating the seconds
205 	 * takes effect exactly 500ms after we write the register.
206 	 * (Also queueing and other delays before we get this far.)
207 	 */
208 	return set_rtc_time(t);
209 }
210 
211 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
212 {
213 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
214 	unsigned char	rtc_control;
215 
216 	if (!is_valid_irq(cmos->irq))
217 		return -EIO;
218 
219 	/* Basic alarms only support hour, minute, and seconds fields.
220 	 * Some also support day and month, for alarms up to a year in
221 	 * the future.
222 	 */
223 	t->time.tm_mday = -1;
224 	t->time.tm_mon = -1;
225 
226 	spin_lock_irq(&rtc_lock);
227 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
228 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
229 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
230 
231 	if (cmos->day_alrm) {
232 		/* ignore upper bits on readback per ACPI spec */
233 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
234 		if (!t->time.tm_mday)
235 			t->time.tm_mday = -1;
236 
237 		if (cmos->mon_alrm) {
238 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
239 			if (!t->time.tm_mon)
240 				t->time.tm_mon = -1;
241 		}
242 	}
243 
244 	rtc_control = CMOS_READ(RTC_CONTROL);
245 	spin_unlock_irq(&rtc_lock);
246 
247 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
248 		if (((unsigned)t->time.tm_sec) < 0x60)
249 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
250 		else
251 			t->time.tm_sec = -1;
252 		if (((unsigned)t->time.tm_min) < 0x60)
253 			t->time.tm_min = bcd2bin(t->time.tm_min);
254 		else
255 			t->time.tm_min = -1;
256 		if (((unsigned)t->time.tm_hour) < 0x24)
257 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
258 		else
259 			t->time.tm_hour = -1;
260 
261 		if (cmos->day_alrm) {
262 			if (((unsigned)t->time.tm_mday) <= 0x31)
263 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
264 			else
265 				t->time.tm_mday = -1;
266 
267 			if (cmos->mon_alrm) {
268 				if (((unsigned)t->time.tm_mon) <= 0x12)
269 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
270 				else
271 					t->time.tm_mon = -1;
272 			}
273 		}
274 	}
275 	t->time.tm_year = -1;
276 
277 	t->enabled = !!(rtc_control & RTC_AIE);
278 	t->pending = 0;
279 
280 	return 0;
281 }
282 
283 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
284 {
285 	unsigned char	rtc_intr;
286 
287 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
288 	 * allegedly some older rtcs need that to handle irqs properly
289 	 */
290 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
291 
292 	if (is_hpet_enabled())
293 		return;
294 
295 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
296 	if (is_intr(rtc_intr))
297 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
298 }
299 
300 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
301 {
302 	unsigned char	rtc_control;
303 
304 	/* flush any pending IRQ status, notably for update irqs,
305 	 * before we enable new IRQs
306 	 */
307 	rtc_control = CMOS_READ(RTC_CONTROL);
308 	cmos_checkintr(cmos, rtc_control);
309 
310 	rtc_control |= mask;
311 	CMOS_WRITE(rtc_control, RTC_CONTROL);
312 	hpet_set_rtc_irq_bit(mask);
313 
314 	cmos_checkintr(cmos, rtc_control);
315 }
316 
317 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
318 {
319 	unsigned char	rtc_control;
320 
321 	rtc_control = CMOS_READ(RTC_CONTROL);
322 	rtc_control &= ~mask;
323 	CMOS_WRITE(rtc_control, RTC_CONTROL);
324 	hpet_mask_rtc_irq_bit(mask);
325 
326 	cmos_checkintr(cmos, rtc_control);
327 }
328 
329 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
330 {
331 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
332 	unsigned char mon, mday, hrs, min, sec, rtc_control;
333 
334 	if (!is_valid_irq(cmos->irq))
335 		return -EIO;
336 
337 	mon = t->time.tm_mon + 1;
338 	mday = t->time.tm_mday;
339 	hrs = t->time.tm_hour;
340 	min = t->time.tm_min;
341 	sec = t->time.tm_sec;
342 
343 	rtc_control = CMOS_READ(RTC_CONTROL);
344 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
345 		/* Writing 0xff means "don't care" or "match all".  */
346 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
347 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
348 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
349 		min = (min < 60) ? bin2bcd(min) : 0xff;
350 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
351 	}
352 
353 	spin_lock_irq(&rtc_lock);
354 
355 	/* next rtc irq must not be from previous alarm setting */
356 	cmos_irq_disable(cmos, RTC_AIE);
357 
358 	/* update alarm */
359 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
360 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
361 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
362 
363 	/* the system may support an "enhanced" alarm */
364 	if (cmos->day_alrm) {
365 		CMOS_WRITE(mday, cmos->day_alrm);
366 		if (cmos->mon_alrm)
367 			CMOS_WRITE(mon, cmos->mon_alrm);
368 	}
369 
370 	/* FIXME the HPET alarm glue currently ignores day_alrm
371 	 * and mon_alrm ...
372 	 */
373 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
374 
375 	if (t->enabled)
376 		cmos_irq_enable(cmos, RTC_AIE);
377 
378 	spin_unlock_irq(&rtc_lock);
379 
380 	return 0;
381 }
382 
383 /*
384  * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
385  */
386 static bool alarm_disable_quirk;
387 
388 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
389 {
390 	alarm_disable_quirk = true;
391 	pr_info("BIOS has alarm-disable quirk - RTC alarms disabled\n");
392 	return 0;
393 }
394 
395 static const struct dmi_system_id rtc_quirks[] __initconst = {
396 	/* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
397 	{
398 		.callback = set_alarm_disable_quirk,
399 		.ident    = "IBM Truman",
400 		.matches  = {
401 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
402 			DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
403 		},
404 	},
405 	/* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
406 	{
407 		.callback = set_alarm_disable_quirk,
408 		.ident    = "Gigabyte GA-990XA-UD3",
409 		.matches  = {
410 			DMI_MATCH(DMI_SYS_VENDOR,
411 					"Gigabyte Technology Co., Ltd."),
412 			DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
413 		},
414 	},
415 	/* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
416 	{
417 		.callback = set_alarm_disable_quirk,
418 		.ident    = "Toshiba Satellite L300",
419 		.matches  = {
420 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
421 			DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
422 		},
423 	},
424 	{}
425 };
426 
427 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
428 {
429 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
430 	unsigned long	flags;
431 
432 	if (!is_valid_irq(cmos->irq))
433 		return -EINVAL;
434 
435 	if (alarm_disable_quirk)
436 		return 0;
437 
438 	spin_lock_irqsave(&rtc_lock, flags);
439 
440 	if (enabled)
441 		cmos_irq_enable(cmos, RTC_AIE);
442 	else
443 		cmos_irq_disable(cmos, RTC_AIE);
444 
445 	spin_unlock_irqrestore(&rtc_lock, flags);
446 	return 0;
447 }
448 
449 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
450 
451 static int cmos_procfs(struct device *dev, struct seq_file *seq)
452 {
453 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
454 	unsigned char	rtc_control, valid;
455 
456 	spin_lock_irq(&rtc_lock);
457 	rtc_control = CMOS_READ(RTC_CONTROL);
458 	valid = CMOS_READ(RTC_VALID);
459 	spin_unlock_irq(&rtc_lock);
460 
461 	/* NOTE:  at least ICH6 reports battery status using a different
462 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
463 	 */
464 	seq_printf(seq,
465 		   "periodic_IRQ\t: %s\n"
466 		   "update_IRQ\t: %s\n"
467 		   "HPET_emulated\t: %s\n"
468 		   // "square_wave\t: %s\n"
469 		   "BCD\t\t: %s\n"
470 		   "DST_enable\t: %s\n"
471 		   "periodic_freq\t: %d\n"
472 		   "batt_status\t: %s\n",
473 		   (rtc_control & RTC_PIE) ? "yes" : "no",
474 		   (rtc_control & RTC_UIE) ? "yes" : "no",
475 		   is_hpet_enabled() ? "yes" : "no",
476 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
477 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
478 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
479 		   cmos->rtc->irq_freq,
480 		   (valid & RTC_VRT) ? "okay" : "dead");
481 
482 	return 0;
483 }
484 
485 #else
486 #define	cmos_procfs	NULL
487 #endif
488 
489 static const struct rtc_class_ops cmos_rtc_ops = {
490 	.read_time		= cmos_read_time,
491 	.set_time		= cmos_set_time,
492 	.read_alarm		= cmos_read_alarm,
493 	.set_alarm		= cmos_set_alarm,
494 	.proc			= cmos_procfs,
495 	.alarm_irq_enable	= cmos_alarm_irq_enable,
496 };
497 
498 /*----------------------------------------------------------------*/
499 
500 /*
501  * All these chips have at least 64 bytes of address space, shared by
502  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
503  * by boot firmware.  Modern chips have 128 or 256 bytes.
504  */
505 
506 #define NVRAM_OFFSET	(RTC_REG_D + 1)
507 
508 static ssize_t
509 cmos_nvram_read(struct file *filp, struct kobject *kobj,
510 		struct bin_attribute *attr,
511 		char *buf, loff_t off, size_t count)
512 {
513 	int	retval;
514 
515 	if (unlikely(off >= attr->size))
516 		return 0;
517 	if (unlikely(off < 0))
518 		return -EINVAL;
519 	if ((off + count) > attr->size)
520 		count = attr->size - off;
521 
522 	off += NVRAM_OFFSET;
523 	spin_lock_irq(&rtc_lock);
524 	for (retval = 0; count; count--, off++, retval++) {
525 		if (off < 128)
526 			*buf++ = CMOS_READ(off);
527 		else if (can_bank2)
528 			*buf++ = cmos_read_bank2(off);
529 		else
530 			break;
531 	}
532 	spin_unlock_irq(&rtc_lock);
533 
534 	return retval;
535 }
536 
537 static ssize_t
538 cmos_nvram_write(struct file *filp, struct kobject *kobj,
539 		struct bin_attribute *attr,
540 		char *buf, loff_t off, size_t count)
541 {
542 	struct cmos_rtc	*cmos;
543 	int		retval;
544 
545 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
546 	if (unlikely(off >= attr->size))
547 		return -EFBIG;
548 	if (unlikely(off < 0))
549 		return -EINVAL;
550 	if ((off + count) > attr->size)
551 		count = attr->size - off;
552 
553 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
554 	 * checksum on part of the NVRAM data.  That's currently ignored
555 	 * here.  If userspace is smart enough to know what fields of
556 	 * NVRAM to update, updating checksums is also part of its job.
557 	 */
558 	off += NVRAM_OFFSET;
559 	spin_lock_irq(&rtc_lock);
560 	for (retval = 0; count; count--, off++, retval++) {
561 		/* don't trash RTC registers */
562 		if (off == cmos->day_alrm
563 				|| off == cmos->mon_alrm
564 				|| off == cmos->century)
565 			buf++;
566 		else if (off < 128)
567 			CMOS_WRITE(*buf++, off);
568 		else if (can_bank2)
569 			cmos_write_bank2(*buf++, off);
570 		else
571 			break;
572 	}
573 	spin_unlock_irq(&rtc_lock);
574 
575 	return retval;
576 }
577 
578 static struct bin_attribute nvram = {
579 	.attr = {
580 		.name	= "nvram",
581 		.mode	= S_IRUGO | S_IWUSR,
582 	},
583 
584 	.read	= cmos_nvram_read,
585 	.write	= cmos_nvram_write,
586 	/* size gets set up later */
587 };
588 
589 /*----------------------------------------------------------------*/
590 
591 static struct cmos_rtc	cmos_rtc;
592 
593 static irqreturn_t cmos_interrupt(int irq, void *p)
594 {
595 	u8		irqstat;
596 	u8		rtc_control;
597 
598 	spin_lock(&rtc_lock);
599 
600 	/* When the HPET interrupt handler calls us, the interrupt
601 	 * status is passed as arg1 instead of the irq number.  But
602 	 * always clear irq status, even when HPET is in the way.
603 	 *
604 	 * Note that HPET and RTC are almost certainly out of phase,
605 	 * giving different IRQ status ...
606 	 */
607 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
608 	rtc_control = CMOS_READ(RTC_CONTROL);
609 	if (is_hpet_enabled())
610 		irqstat = (unsigned long)irq & 0xF0;
611 
612 	/* If we were suspended, RTC_CONTROL may not be accurate since the
613 	 * bios may have cleared it.
614 	 */
615 	if (!cmos_rtc.suspend_ctrl)
616 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
617 	else
618 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
619 
620 	/* All Linux RTC alarms should be treated as if they were oneshot.
621 	 * Similar code may be needed in system wakeup paths, in case the
622 	 * alarm woke the system.
623 	 */
624 	if (irqstat & RTC_AIE) {
625 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
626 		rtc_control &= ~RTC_AIE;
627 		CMOS_WRITE(rtc_control, RTC_CONTROL);
628 		hpet_mask_rtc_irq_bit(RTC_AIE);
629 		CMOS_READ(RTC_INTR_FLAGS);
630 	}
631 	spin_unlock(&rtc_lock);
632 
633 	if (is_intr(irqstat)) {
634 		rtc_update_irq(p, 1, irqstat);
635 		return IRQ_HANDLED;
636 	} else
637 		return IRQ_NONE;
638 }
639 
640 #ifdef	CONFIG_PNP
641 #define	INITSECTION
642 
643 #else
644 #define	INITSECTION	__init
645 #endif
646 
647 static int INITSECTION
648 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
649 {
650 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
651 	int				retval = 0;
652 	unsigned char			rtc_control;
653 	unsigned			address_space;
654 	u32				flags = 0;
655 
656 	/* there can be only one ... */
657 	if (cmos_rtc.dev)
658 		return -EBUSY;
659 
660 	if (!ports)
661 		return -ENODEV;
662 
663 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
664 	 *
665 	 * REVISIT non-x86 systems may instead use memory space resources
666 	 * (needing ioremap etc), not i/o space resources like this ...
667 	 */
668 	if (RTC_IOMAPPED)
669 		ports = request_region(ports->start, resource_size(ports),
670 				       driver_name);
671 	else
672 		ports = request_mem_region(ports->start, resource_size(ports),
673 					   driver_name);
674 	if (!ports) {
675 		dev_dbg(dev, "i/o registers already in use\n");
676 		return -EBUSY;
677 	}
678 
679 	cmos_rtc.irq = rtc_irq;
680 	cmos_rtc.iomem = ports;
681 
682 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
683 	 * driver did, but don't reject unknown configs.   Old hardware
684 	 * won't address 128 bytes.  Newer chips have multiple banks,
685 	 * though they may not be listed in one I/O resource.
686 	 */
687 #if	defined(CONFIG_ATARI)
688 	address_space = 64;
689 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
690 			|| defined(__sparc__) || defined(__mips__) \
691 			|| defined(__powerpc__)
692 	address_space = 128;
693 #else
694 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
695 	address_space = 128;
696 #endif
697 	if (can_bank2 && ports->end > (ports->start + 1))
698 		address_space = 256;
699 
700 	/* For ACPI systems extension info comes from the FADT.  On others,
701 	 * board specific setup provides it as appropriate.  Systems where
702 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
703 	 * some almost-clones) can provide hooks to make that behave.
704 	 *
705 	 * Note that ACPI doesn't preclude putting these registers into
706 	 * "extended" areas of the chip, including some that we won't yet
707 	 * expect CMOS_READ and friends to handle.
708 	 */
709 	if (info) {
710 		if (info->flags)
711 			flags = info->flags;
712 		if (info->address_space)
713 			address_space = info->address_space;
714 
715 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
716 			cmos_rtc.day_alrm = info->rtc_day_alarm;
717 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
718 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
719 		if (info->rtc_century && info->rtc_century < 128)
720 			cmos_rtc.century = info->rtc_century;
721 
722 		if (info->wake_on && info->wake_off) {
723 			cmos_rtc.wake_on = info->wake_on;
724 			cmos_rtc.wake_off = info->wake_off;
725 		}
726 	}
727 
728 	cmos_rtc.dev = dev;
729 	dev_set_drvdata(dev, &cmos_rtc);
730 
731 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
732 				&cmos_rtc_ops, THIS_MODULE);
733 	if (IS_ERR(cmos_rtc.rtc)) {
734 		retval = PTR_ERR(cmos_rtc.rtc);
735 		goto cleanup0;
736 	}
737 
738 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
739 
740 	spin_lock_irq(&rtc_lock);
741 
742 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
743 		/* force periodic irq to CMOS reset default of 1024Hz;
744 		 *
745 		 * REVISIT it's been reported that at least one x86_64 ALI
746 		 * mobo doesn't use 32KHz here ... for portability we might
747 		 * need to do something about other clock frequencies.
748 		 */
749 		cmos_rtc.rtc->irq_freq = 1024;
750 		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
751 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
752 	}
753 
754 	/* disable irqs */
755 	if (is_valid_irq(rtc_irq))
756 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
757 
758 	rtc_control = CMOS_READ(RTC_CONTROL);
759 
760 	spin_unlock_irq(&rtc_lock);
761 
762 	/* FIXME:
763 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
764 	 */
765 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
766 		dev_warn(dev, "only 24-hr supported\n");
767 		retval = -ENXIO;
768 		goto cleanup1;
769 	}
770 
771 	if (is_valid_irq(rtc_irq)) {
772 		irq_handler_t rtc_cmos_int_handler;
773 
774 		if (is_hpet_enabled()) {
775 			rtc_cmos_int_handler = hpet_rtc_interrupt;
776 			retval = hpet_register_irq_handler(cmos_interrupt);
777 			if (retval) {
778 				dev_warn(dev, "hpet_register_irq_handler "
779 						" failed in rtc_init().");
780 				goto cleanup1;
781 			}
782 		} else
783 			rtc_cmos_int_handler = cmos_interrupt;
784 
785 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
786 				0, dev_name(&cmos_rtc.rtc->dev),
787 				cmos_rtc.rtc);
788 		if (retval < 0) {
789 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
790 			goto cleanup1;
791 		}
792 	}
793 	hpet_rtc_timer_init();
794 
795 	/* export at least the first block of NVRAM */
796 	nvram.size = address_space - NVRAM_OFFSET;
797 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
798 	if (retval < 0) {
799 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
800 		goto cleanup2;
801 	}
802 
803 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
804 		!is_valid_irq(rtc_irq) ? "no alarms" :
805 			cmos_rtc.mon_alrm ? "alarms up to one year" :
806 			cmos_rtc.day_alrm ? "alarms up to one month" :
807 			"alarms up to one day",
808 		cmos_rtc.century ? ", y3k" : "",
809 		nvram.size,
810 		is_hpet_enabled() ? ", hpet irqs" : "");
811 
812 	return 0;
813 
814 cleanup2:
815 	if (is_valid_irq(rtc_irq))
816 		free_irq(rtc_irq, cmos_rtc.rtc);
817 cleanup1:
818 	cmos_rtc.dev = NULL;
819 	rtc_device_unregister(cmos_rtc.rtc);
820 cleanup0:
821 	if (RTC_IOMAPPED)
822 		release_region(ports->start, resource_size(ports));
823 	else
824 		release_mem_region(ports->start, resource_size(ports));
825 	return retval;
826 }
827 
828 static void cmos_do_shutdown(int rtc_irq)
829 {
830 	spin_lock_irq(&rtc_lock);
831 	if (is_valid_irq(rtc_irq))
832 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
833 	spin_unlock_irq(&rtc_lock);
834 }
835 
836 static void __exit cmos_do_remove(struct device *dev)
837 {
838 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
839 	struct resource *ports;
840 
841 	cmos_do_shutdown(cmos->irq);
842 
843 	sysfs_remove_bin_file(&dev->kobj, &nvram);
844 
845 	if (is_valid_irq(cmos->irq)) {
846 		free_irq(cmos->irq, cmos->rtc);
847 		hpet_unregister_irq_handler(cmos_interrupt);
848 	}
849 
850 	rtc_device_unregister(cmos->rtc);
851 	cmos->rtc = NULL;
852 
853 	ports = cmos->iomem;
854 	if (RTC_IOMAPPED)
855 		release_region(ports->start, resource_size(ports));
856 	else
857 		release_mem_region(ports->start, resource_size(ports));
858 	cmos->iomem = NULL;
859 
860 	cmos->dev = NULL;
861 }
862 
863 #ifdef CONFIG_PM
864 
865 static int cmos_suspend(struct device *dev)
866 {
867 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
868 	unsigned char	tmp;
869 
870 	/* only the alarm might be a wakeup event source */
871 	spin_lock_irq(&rtc_lock);
872 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
873 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
874 		unsigned char	mask;
875 
876 		if (device_may_wakeup(dev))
877 			mask = RTC_IRQMASK & ~RTC_AIE;
878 		else
879 			mask = RTC_IRQMASK;
880 		tmp &= ~mask;
881 		CMOS_WRITE(tmp, RTC_CONTROL);
882 		hpet_mask_rtc_irq_bit(mask);
883 
884 		cmos_checkintr(cmos, tmp);
885 	}
886 	spin_unlock_irq(&rtc_lock);
887 
888 	if (tmp & RTC_AIE) {
889 		cmos->enabled_wake = 1;
890 		if (cmos->wake_on)
891 			cmos->wake_on(dev);
892 		else
893 			enable_irq_wake(cmos->irq);
894 	}
895 
896 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
897 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
898 			tmp);
899 
900 	return 0;
901 }
902 
903 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
904  * after a detour through G3 "mechanical off", although the ACPI spec
905  * says wakeup should only work from G1/S4 "hibernate".  To most users,
906  * distinctions between S4 and S5 are pointless.  So when the hardware
907  * allows, don't draw that distinction.
908  */
909 static inline int cmos_poweroff(struct device *dev)
910 {
911 	return cmos_suspend(dev);
912 }
913 
914 #ifdef	CONFIG_PM_SLEEP
915 
916 static int cmos_resume(struct device *dev)
917 {
918 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
919 	unsigned char tmp;
920 
921 	if (cmos->enabled_wake) {
922 		if (cmos->wake_off)
923 			cmos->wake_off(dev);
924 		else
925 			disable_irq_wake(cmos->irq);
926 		cmos->enabled_wake = 0;
927 	}
928 
929 	spin_lock_irq(&rtc_lock);
930 	tmp = cmos->suspend_ctrl;
931 	cmos->suspend_ctrl = 0;
932 	/* re-enable any irqs previously active */
933 	if (tmp & RTC_IRQMASK) {
934 		unsigned char	mask;
935 
936 		if (device_may_wakeup(dev))
937 			hpet_rtc_timer_init();
938 
939 		do {
940 			CMOS_WRITE(tmp, RTC_CONTROL);
941 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
942 
943 			mask = CMOS_READ(RTC_INTR_FLAGS);
944 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
945 			if (!is_hpet_enabled() || !is_intr(mask))
946 				break;
947 
948 			/* force one-shot behavior if HPET blocked
949 			 * the wake alarm's irq
950 			 */
951 			rtc_update_irq(cmos->rtc, 1, mask);
952 			tmp &= ~RTC_AIE;
953 			hpet_mask_rtc_irq_bit(RTC_AIE);
954 		} while (mask & RTC_AIE);
955 	}
956 	spin_unlock_irq(&rtc_lock);
957 
958 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
959 
960 	return 0;
961 }
962 
963 #endif
964 #else
965 
966 static inline int cmos_poweroff(struct device *dev)
967 {
968 	return -ENOSYS;
969 }
970 
971 #endif
972 
973 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
974 
975 /*----------------------------------------------------------------*/
976 
977 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
978  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
979  * probably list them in similar PNPBIOS tables; so PNP is more common.
980  *
981  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
982  * predate even PNPBIOS should set up platform_bus devices.
983  */
984 
985 #ifdef	CONFIG_ACPI
986 
987 #include <linux/acpi.h>
988 
989 static u32 rtc_handler(void *context)
990 {
991 	struct device *dev = context;
992 
993 	pm_wakeup_event(dev, 0);
994 	acpi_clear_event(ACPI_EVENT_RTC);
995 	acpi_disable_event(ACPI_EVENT_RTC, 0);
996 	return ACPI_INTERRUPT_HANDLED;
997 }
998 
999 static inline void rtc_wake_setup(struct device *dev)
1000 {
1001 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1002 	/*
1003 	 * After the RTC handler is installed, the Fixed_RTC event should
1004 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1005 	 */
1006 	acpi_clear_event(ACPI_EVENT_RTC);
1007 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1008 }
1009 
1010 static void rtc_wake_on(struct device *dev)
1011 {
1012 	acpi_clear_event(ACPI_EVENT_RTC);
1013 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1014 }
1015 
1016 static void rtc_wake_off(struct device *dev)
1017 {
1018 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1019 }
1020 
1021 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1022  * its device node and pass extra config data.  This helps its driver use
1023  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1024  * that this board's RTC is wakeup-capable (per ACPI spec).
1025  */
1026 static struct cmos_rtc_board_info acpi_rtc_info;
1027 
1028 static void cmos_wake_setup(struct device *dev)
1029 {
1030 	if (acpi_disabled)
1031 		return;
1032 
1033 	rtc_wake_setup(dev);
1034 	acpi_rtc_info.wake_on = rtc_wake_on;
1035 	acpi_rtc_info.wake_off = rtc_wake_off;
1036 
1037 	/* workaround bug in some ACPI tables */
1038 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1039 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1040 			acpi_gbl_FADT.month_alarm);
1041 		acpi_gbl_FADT.month_alarm = 0;
1042 	}
1043 
1044 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1045 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1046 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1047 
1048 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1049 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1050 		dev_info(dev, "RTC can wake from S4\n");
1051 
1052 	dev->platform_data = &acpi_rtc_info;
1053 
1054 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1055 	device_init_wakeup(dev, 1);
1056 }
1057 
1058 #else
1059 
1060 static void cmos_wake_setup(struct device *dev)
1061 {
1062 }
1063 
1064 #endif
1065 
1066 #ifdef	CONFIG_PNP
1067 
1068 #include <linux/pnp.h>
1069 
1070 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1071 {
1072 	cmos_wake_setup(&pnp->dev);
1073 
1074 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1075 		/* Some machines contain a PNP entry for the RTC, but
1076 		 * don't define the IRQ. It should always be safe to
1077 		 * hardcode it in these cases
1078 		 */
1079 		return cmos_do_probe(&pnp->dev,
1080 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1081 	else
1082 		return cmos_do_probe(&pnp->dev,
1083 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1084 				pnp_irq(pnp, 0));
1085 }
1086 
1087 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1088 {
1089 	cmos_do_remove(&pnp->dev);
1090 }
1091 
1092 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1093 {
1094 	struct device *dev = &pnp->dev;
1095 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1096 
1097 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1098 		return;
1099 
1100 	cmos_do_shutdown(cmos->irq);
1101 }
1102 
1103 static const struct pnp_device_id rtc_ids[] = {
1104 	{ .id = "PNP0b00", },
1105 	{ .id = "PNP0b01", },
1106 	{ .id = "PNP0b02", },
1107 	{ },
1108 };
1109 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1110 
1111 static struct pnp_driver cmos_pnp_driver = {
1112 	.name		= (char *) driver_name,
1113 	.id_table	= rtc_ids,
1114 	.probe		= cmos_pnp_probe,
1115 	.remove		= __exit_p(cmos_pnp_remove),
1116 	.shutdown	= cmos_pnp_shutdown,
1117 
1118 	/* flag ensures resume() gets called, and stops syslog spam */
1119 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1120 	.driver		= {
1121 			.pm = &cmos_pm_ops,
1122 	},
1123 };
1124 
1125 #endif	/* CONFIG_PNP */
1126 
1127 #ifdef CONFIG_OF
1128 static const struct of_device_id of_cmos_match[] = {
1129 	{
1130 		.compatible = "motorola,mc146818",
1131 	},
1132 	{ },
1133 };
1134 MODULE_DEVICE_TABLE(of, of_cmos_match);
1135 
1136 static __init void cmos_of_init(struct platform_device *pdev)
1137 {
1138 	struct device_node *node = pdev->dev.of_node;
1139 	struct rtc_time time;
1140 	int ret;
1141 	const __be32 *val;
1142 
1143 	if (!node)
1144 		return;
1145 
1146 	val = of_get_property(node, "ctrl-reg", NULL);
1147 	if (val)
1148 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1149 
1150 	val = of_get_property(node, "freq-reg", NULL);
1151 	if (val)
1152 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1153 
1154 	get_rtc_time(&time);
1155 	ret = rtc_valid_tm(&time);
1156 	if (ret) {
1157 		struct rtc_time def_time = {
1158 			.tm_year = 1,
1159 			.tm_mday = 1,
1160 		};
1161 		set_rtc_time(&def_time);
1162 	}
1163 }
1164 #else
1165 static inline void cmos_of_init(struct platform_device *pdev) {}
1166 #endif
1167 /*----------------------------------------------------------------*/
1168 
1169 /* Platform setup should have set up an RTC device, when PNP is
1170  * unavailable ... this could happen even on (older) PCs.
1171  */
1172 
1173 static int __init cmos_platform_probe(struct platform_device *pdev)
1174 {
1175 	struct resource *resource;
1176 	int irq;
1177 
1178 	cmos_of_init(pdev);
1179 	cmos_wake_setup(&pdev->dev);
1180 
1181 	if (RTC_IOMAPPED)
1182 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1183 	else
1184 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1185 	irq = platform_get_irq(pdev, 0);
1186 	if (irq < 0)
1187 		irq = -1;
1188 
1189 	return cmos_do_probe(&pdev->dev, resource, irq);
1190 }
1191 
1192 static int __exit cmos_platform_remove(struct platform_device *pdev)
1193 {
1194 	cmos_do_remove(&pdev->dev);
1195 	return 0;
1196 }
1197 
1198 static void cmos_platform_shutdown(struct platform_device *pdev)
1199 {
1200 	struct device *dev = &pdev->dev;
1201 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1202 
1203 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1204 		return;
1205 
1206 	cmos_do_shutdown(cmos->irq);
1207 }
1208 
1209 /* work with hotplug and coldplug */
1210 MODULE_ALIAS("platform:rtc_cmos");
1211 
1212 static struct platform_driver cmos_platform_driver = {
1213 	.remove		= __exit_p(cmos_platform_remove),
1214 	.shutdown	= cmos_platform_shutdown,
1215 	.driver = {
1216 		.name		= driver_name,
1217 #ifdef CONFIG_PM
1218 		.pm		= &cmos_pm_ops,
1219 #endif
1220 		.of_match_table = of_match_ptr(of_cmos_match),
1221 	}
1222 };
1223 
1224 #ifdef CONFIG_PNP
1225 static bool pnp_driver_registered;
1226 #endif
1227 static bool platform_driver_registered;
1228 
1229 static int __init cmos_init(void)
1230 {
1231 	int retval = 0;
1232 
1233 #ifdef	CONFIG_PNP
1234 	retval = pnp_register_driver(&cmos_pnp_driver);
1235 	if (retval == 0)
1236 		pnp_driver_registered = true;
1237 #endif
1238 
1239 	if (!cmos_rtc.dev) {
1240 		retval = platform_driver_probe(&cmos_platform_driver,
1241 					       cmos_platform_probe);
1242 		if (retval == 0)
1243 			platform_driver_registered = true;
1244 	}
1245 
1246 	dmi_check_system(rtc_quirks);
1247 
1248 	if (retval == 0)
1249 		return 0;
1250 
1251 #ifdef	CONFIG_PNP
1252 	if (pnp_driver_registered)
1253 		pnp_unregister_driver(&cmos_pnp_driver);
1254 #endif
1255 	return retval;
1256 }
1257 module_init(cmos_init);
1258 
1259 static void __exit cmos_exit(void)
1260 {
1261 #ifdef	CONFIG_PNP
1262 	if (pnp_driver_registered)
1263 		pnp_unregister_driver(&cmos_pnp_driver);
1264 #endif
1265 	if (platform_driver_registered)
1266 		platform_driver_unregister(&cmos_platform_driver);
1267 }
1268 module_exit(cmos_exit);
1269 
1270 
1271 MODULE_AUTHOR("David Brownell");
1272 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1273 MODULE_LICENSE("GPL");
1274