xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
41 
42 struct cmos_rtc {
43 	struct rtc_device	*rtc;
44 	struct device		*dev;
45 	int			irq;
46 	struct resource		*iomem;
47 
48 	void			(*wake_on)(struct device *);
49 	void			(*wake_off)(struct device *);
50 
51 	u8			enabled_wake;
52 	u8			suspend_ctrl;
53 
54 	/* newer hardware extends the original register set */
55 	u8			day_alrm;
56 	u8			mon_alrm;
57 	u8			century;
58 };
59 
60 /* both platform and pnp busses use negative numbers for invalid irqs */
61 #define is_valid_irq(n)		((n) >= 0)
62 
63 static const char driver_name[] = "rtc_cmos";
64 
65 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
66  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
67  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
68  */
69 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
70 
71 static inline int is_intr(u8 rtc_intr)
72 {
73 	if (!(rtc_intr & RTC_IRQF))
74 		return 0;
75 	return rtc_intr & RTC_IRQMASK;
76 }
77 
78 /*----------------------------------------------------------------*/
79 
80 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
81  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
82  * used in a broken "legacy replacement" mode.  The breakage includes
83  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
84  * other (better) use.
85  *
86  * When that broken mode is in use, platform glue provides a partial
87  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
88  * want to use HPET for anything except those IRQs though...
89  */
90 #ifdef CONFIG_HPET_EMULATE_RTC
91 #include <asm/hpet.h>
92 #else
93 
94 static inline int is_hpet_enabled(void)
95 {
96 	return 0;
97 }
98 
99 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
100 {
101 	return 0;
102 }
103 
104 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
105 {
106 	return 0;
107 }
108 
109 static inline int
110 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
111 {
112 	return 0;
113 }
114 
115 static inline int hpet_set_periodic_freq(unsigned long freq)
116 {
117 	return 0;
118 }
119 
120 static inline int hpet_rtc_dropped_irq(void)
121 {
122 	return 0;
123 }
124 
125 static inline int hpet_rtc_timer_init(void)
126 {
127 	return 0;
128 }
129 
130 extern irq_handler_t hpet_rtc_interrupt;
131 
132 static inline int hpet_register_irq_handler(irq_handler_t handler)
133 {
134 	return 0;
135 }
136 
137 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
138 {
139 	return 0;
140 }
141 
142 #endif
143 
144 /*----------------------------------------------------------------*/
145 
146 #ifdef RTC_PORT
147 
148 /* Most newer x86 systems have two register banks, the first used
149  * for RTC and NVRAM and the second only for NVRAM.  Caller must
150  * own rtc_lock ... and we won't worry about access during NMI.
151  */
152 #define can_bank2	true
153 
154 static inline unsigned char cmos_read_bank2(unsigned char addr)
155 {
156 	outb(addr, RTC_PORT(2));
157 	return inb(RTC_PORT(3));
158 }
159 
160 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
161 {
162 	outb(addr, RTC_PORT(2));
163 	outb(val, RTC_PORT(2));
164 }
165 
166 #else
167 
168 #define can_bank2	false
169 
170 static inline unsigned char cmos_read_bank2(unsigned char addr)
171 {
172 	return 0;
173 }
174 
175 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
176 {
177 }
178 
179 #endif
180 
181 /*----------------------------------------------------------------*/
182 
183 static int cmos_read_time(struct device *dev, struct rtc_time *t)
184 {
185 	/* REVISIT:  if the clock has a "century" register, use
186 	 * that instead of the heuristic in get_rtc_time().
187 	 * That'll make Y3K compatility (year > 2070) easy!
188 	 */
189 	get_rtc_time(t);
190 	return 0;
191 }
192 
193 static int cmos_set_time(struct device *dev, struct rtc_time *t)
194 {
195 	/* REVISIT:  set the "century" register if available
196 	 *
197 	 * NOTE: this ignores the issue whereby updating the seconds
198 	 * takes effect exactly 500ms after we write the register.
199 	 * (Also queueing and other delays before we get this far.)
200 	 */
201 	return set_rtc_time(t);
202 }
203 
204 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
205 {
206 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
207 	unsigned char	rtc_control;
208 
209 	if (!is_valid_irq(cmos->irq))
210 		return -EIO;
211 
212 	/* Basic alarms only support hour, minute, and seconds fields.
213 	 * Some also support day and month, for alarms up to a year in
214 	 * the future.
215 	 */
216 	t->time.tm_mday = -1;
217 	t->time.tm_mon = -1;
218 
219 	spin_lock_irq(&rtc_lock);
220 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
221 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
222 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
223 
224 	if (cmos->day_alrm) {
225 		/* ignore upper bits on readback per ACPI spec */
226 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
227 		if (!t->time.tm_mday)
228 			t->time.tm_mday = -1;
229 
230 		if (cmos->mon_alrm) {
231 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
232 			if (!t->time.tm_mon)
233 				t->time.tm_mon = -1;
234 		}
235 	}
236 
237 	rtc_control = CMOS_READ(RTC_CONTROL);
238 	spin_unlock_irq(&rtc_lock);
239 
240 	/* REVISIT this assumes PC style usage:  always BCD */
241 
242 	if (((unsigned)t->time.tm_sec) < 0x60)
243 		t->time.tm_sec = bcd2bin(t->time.tm_sec);
244 	else
245 		t->time.tm_sec = -1;
246 	if (((unsigned)t->time.tm_min) < 0x60)
247 		t->time.tm_min = bcd2bin(t->time.tm_min);
248 	else
249 		t->time.tm_min = -1;
250 	if (((unsigned)t->time.tm_hour) < 0x24)
251 		t->time.tm_hour = bcd2bin(t->time.tm_hour);
252 	else
253 		t->time.tm_hour = -1;
254 
255 	if (cmos->day_alrm) {
256 		if (((unsigned)t->time.tm_mday) <= 0x31)
257 			t->time.tm_mday = bcd2bin(t->time.tm_mday);
258 		else
259 			t->time.tm_mday = -1;
260 		if (cmos->mon_alrm) {
261 			if (((unsigned)t->time.tm_mon) <= 0x12)
262 				t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1;
263 			else
264 				t->time.tm_mon = -1;
265 		}
266 	}
267 	t->time.tm_year = -1;
268 
269 	t->enabled = !!(rtc_control & RTC_AIE);
270 	t->pending = 0;
271 
272 	return 0;
273 }
274 
275 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
276 {
277 	unsigned char	rtc_intr;
278 
279 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
280 	 * allegedly some older rtcs need that to handle irqs properly
281 	 */
282 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
283 
284 	if (is_hpet_enabled())
285 		return;
286 
287 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
288 	if (is_intr(rtc_intr))
289 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
290 }
291 
292 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
293 {
294 	unsigned char	rtc_control;
295 
296 	/* flush any pending IRQ status, notably for update irqs,
297 	 * before we enable new IRQs
298 	 */
299 	rtc_control = CMOS_READ(RTC_CONTROL);
300 	cmos_checkintr(cmos, rtc_control);
301 
302 	rtc_control |= mask;
303 	CMOS_WRITE(rtc_control, RTC_CONTROL);
304 	hpet_set_rtc_irq_bit(mask);
305 
306 	cmos_checkintr(cmos, rtc_control);
307 }
308 
309 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
310 {
311 	unsigned char	rtc_control;
312 
313 	rtc_control = CMOS_READ(RTC_CONTROL);
314 	rtc_control &= ~mask;
315 	CMOS_WRITE(rtc_control, RTC_CONTROL);
316 	hpet_mask_rtc_irq_bit(mask);
317 
318 	cmos_checkintr(cmos, rtc_control);
319 }
320 
321 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
322 {
323 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
324 	unsigned char	mon, mday, hrs, min, sec;
325 
326 	if (!is_valid_irq(cmos->irq))
327 		return -EIO;
328 
329 	/* REVISIT this assumes PC style usage:  always BCD */
330 
331 	/* Writing 0xff means "don't care" or "match all".  */
332 
333 	mon = t->time.tm_mon + 1;
334 	mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
335 
336 	mday = t->time.tm_mday;
337 	mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
338 
339 	hrs = t->time.tm_hour;
340 	hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
341 
342 	min = t->time.tm_min;
343 	min = (min < 60) ? bin2bcd(min) : 0xff;
344 
345 	sec = t->time.tm_sec;
346 	sec = (sec < 60) ? bin2bcd(sec) : 0xff;
347 
348 	spin_lock_irq(&rtc_lock);
349 
350 	/* next rtc irq must not be from previous alarm setting */
351 	cmos_irq_disable(cmos, RTC_AIE);
352 
353 	/* update alarm */
354 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
355 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
356 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
357 
358 	/* the system may support an "enhanced" alarm */
359 	if (cmos->day_alrm) {
360 		CMOS_WRITE(mday, cmos->day_alrm);
361 		if (cmos->mon_alrm)
362 			CMOS_WRITE(mon, cmos->mon_alrm);
363 	}
364 
365 	/* FIXME the HPET alarm glue currently ignores day_alrm
366 	 * and mon_alrm ...
367 	 */
368 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
369 
370 	if (t->enabled)
371 		cmos_irq_enable(cmos, RTC_AIE);
372 
373 	spin_unlock_irq(&rtc_lock);
374 
375 	return 0;
376 }
377 
378 static int cmos_irq_set_freq(struct device *dev, int freq)
379 {
380 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
381 	int		f;
382 	unsigned long	flags;
383 
384 	if (!is_valid_irq(cmos->irq))
385 		return -ENXIO;
386 
387 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
388 	f = ffs(freq);
389 	if (f-- > 16)
390 		return -EINVAL;
391 	f = 16 - f;
392 
393 	spin_lock_irqsave(&rtc_lock, flags);
394 	hpet_set_periodic_freq(freq);
395 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
396 	spin_unlock_irqrestore(&rtc_lock, flags);
397 
398 	return 0;
399 }
400 
401 static int cmos_irq_set_state(struct device *dev, int enabled)
402 {
403 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
404 	unsigned long	flags;
405 
406 	if (!is_valid_irq(cmos->irq))
407 		return -ENXIO;
408 
409 	spin_lock_irqsave(&rtc_lock, flags);
410 
411 	if (enabled)
412 		cmos_irq_enable(cmos, RTC_PIE);
413 	else
414 		cmos_irq_disable(cmos, RTC_PIE);
415 
416 	spin_unlock_irqrestore(&rtc_lock, flags);
417 	return 0;
418 }
419 
420 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
421 
422 static int
423 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
424 {
425 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
426 	unsigned long	flags;
427 
428 	switch (cmd) {
429 	case RTC_AIE_OFF:
430 	case RTC_AIE_ON:
431 	case RTC_UIE_OFF:
432 	case RTC_UIE_ON:
433 		if (!is_valid_irq(cmos->irq))
434 			return -EINVAL;
435 		break;
436 	/* PIE ON/OFF is handled by cmos_irq_set_state() */
437 	default:
438 		return -ENOIOCTLCMD;
439 	}
440 
441 	spin_lock_irqsave(&rtc_lock, flags);
442 	switch (cmd) {
443 	case RTC_AIE_OFF:	/* alarm off */
444 		cmos_irq_disable(cmos, RTC_AIE);
445 		break;
446 	case RTC_AIE_ON:	/* alarm on */
447 		cmos_irq_enable(cmos, RTC_AIE);
448 		break;
449 	case RTC_UIE_OFF:	/* update off */
450 		cmos_irq_disable(cmos, RTC_UIE);
451 		break;
452 	case RTC_UIE_ON:	/* update on */
453 		cmos_irq_enable(cmos, RTC_UIE);
454 		break;
455 	}
456 	spin_unlock_irqrestore(&rtc_lock, flags);
457 	return 0;
458 }
459 
460 #else
461 #define	cmos_rtc_ioctl	NULL
462 #endif
463 
464 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
465 
466 static int cmos_procfs(struct device *dev, struct seq_file *seq)
467 {
468 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
469 	unsigned char	rtc_control, valid;
470 
471 	spin_lock_irq(&rtc_lock);
472 	rtc_control = CMOS_READ(RTC_CONTROL);
473 	valid = CMOS_READ(RTC_VALID);
474 	spin_unlock_irq(&rtc_lock);
475 
476 	/* NOTE:  at least ICH6 reports battery status using a different
477 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
478 	 */
479 	return seq_printf(seq,
480 			"periodic_IRQ\t: %s\n"
481 			"update_IRQ\t: %s\n"
482 			"HPET_emulated\t: %s\n"
483 			// "square_wave\t: %s\n"
484 			// "BCD\t\t: %s\n"
485 			"DST_enable\t: %s\n"
486 			"periodic_freq\t: %d\n"
487 			"batt_status\t: %s\n",
488 			(rtc_control & RTC_PIE) ? "yes" : "no",
489 			(rtc_control & RTC_UIE) ? "yes" : "no",
490 			is_hpet_enabled() ? "yes" : "no",
491 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
492 			// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
493 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
494 			cmos->rtc->irq_freq,
495 			(valid & RTC_VRT) ? "okay" : "dead");
496 }
497 
498 #else
499 #define	cmos_procfs	NULL
500 #endif
501 
502 static const struct rtc_class_ops cmos_rtc_ops = {
503 	.ioctl		= cmos_rtc_ioctl,
504 	.read_time	= cmos_read_time,
505 	.set_time	= cmos_set_time,
506 	.read_alarm	= cmos_read_alarm,
507 	.set_alarm	= cmos_set_alarm,
508 	.proc		= cmos_procfs,
509 	.irq_set_freq	= cmos_irq_set_freq,
510 	.irq_set_state	= cmos_irq_set_state,
511 };
512 
513 /*----------------------------------------------------------------*/
514 
515 /*
516  * All these chips have at least 64 bytes of address space, shared by
517  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
518  * by boot firmware.  Modern chips have 128 or 256 bytes.
519  */
520 
521 #define NVRAM_OFFSET	(RTC_REG_D + 1)
522 
523 static ssize_t
524 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
525 		char *buf, loff_t off, size_t count)
526 {
527 	int	retval;
528 
529 	if (unlikely(off >= attr->size))
530 		return 0;
531 	if (unlikely(off < 0))
532 		return -EINVAL;
533 	if ((off + count) > attr->size)
534 		count = attr->size - off;
535 
536 	off += NVRAM_OFFSET;
537 	spin_lock_irq(&rtc_lock);
538 	for (retval = 0; count; count--, off++, retval++) {
539 		if (off < 128)
540 			*buf++ = CMOS_READ(off);
541 		else if (can_bank2)
542 			*buf++ = cmos_read_bank2(off);
543 		else
544 			break;
545 	}
546 	spin_unlock_irq(&rtc_lock);
547 
548 	return retval;
549 }
550 
551 static ssize_t
552 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
553 		char *buf, loff_t off, size_t count)
554 {
555 	struct cmos_rtc	*cmos;
556 	int		retval;
557 
558 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
559 	if (unlikely(off >= attr->size))
560 		return -EFBIG;
561 	if (unlikely(off < 0))
562 		return -EINVAL;
563 	if ((off + count) > attr->size)
564 		count = attr->size - off;
565 
566 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
567 	 * checksum on part of the NVRAM data.  That's currently ignored
568 	 * here.  If userspace is smart enough to know what fields of
569 	 * NVRAM to update, updating checksums is also part of its job.
570 	 */
571 	off += NVRAM_OFFSET;
572 	spin_lock_irq(&rtc_lock);
573 	for (retval = 0; count; count--, off++, retval++) {
574 		/* don't trash RTC registers */
575 		if (off == cmos->day_alrm
576 				|| off == cmos->mon_alrm
577 				|| off == cmos->century)
578 			buf++;
579 		else if (off < 128)
580 			CMOS_WRITE(*buf++, off);
581 		else if (can_bank2)
582 			cmos_write_bank2(*buf++, off);
583 		else
584 			break;
585 	}
586 	spin_unlock_irq(&rtc_lock);
587 
588 	return retval;
589 }
590 
591 static struct bin_attribute nvram = {
592 	.attr = {
593 		.name	= "nvram",
594 		.mode	= S_IRUGO | S_IWUSR,
595 	},
596 
597 	.read	= cmos_nvram_read,
598 	.write	= cmos_nvram_write,
599 	/* size gets set up later */
600 };
601 
602 /*----------------------------------------------------------------*/
603 
604 static struct cmos_rtc	cmos_rtc;
605 
606 static irqreturn_t cmos_interrupt(int irq, void *p)
607 {
608 	u8		irqstat;
609 	u8		rtc_control;
610 
611 	spin_lock(&rtc_lock);
612 
613 	/* When the HPET interrupt handler calls us, the interrupt
614 	 * status is passed as arg1 instead of the irq number.  But
615 	 * always clear irq status, even when HPET is in the way.
616 	 *
617 	 * Note that HPET and RTC are almost certainly out of phase,
618 	 * giving different IRQ status ...
619 	 */
620 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
621 	rtc_control = CMOS_READ(RTC_CONTROL);
622 	if (is_hpet_enabled())
623 		irqstat = (unsigned long)irq & 0xF0;
624 	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
625 
626 	/* All Linux RTC alarms should be treated as if they were oneshot.
627 	 * Similar code may be needed in system wakeup paths, in case the
628 	 * alarm woke the system.
629 	 */
630 	if (irqstat & RTC_AIE) {
631 		rtc_control &= ~RTC_AIE;
632 		CMOS_WRITE(rtc_control, RTC_CONTROL);
633 		hpet_mask_rtc_irq_bit(RTC_AIE);
634 
635 		CMOS_READ(RTC_INTR_FLAGS);
636 	}
637 	spin_unlock(&rtc_lock);
638 
639 	if (is_intr(irqstat)) {
640 		rtc_update_irq(p, 1, irqstat);
641 		return IRQ_HANDLED;
642 	} else
643 		return IRQ_NONE;
644 }
645 
646 #ifdef	CONFIG_PNP
647 #define	INITSECTION
648 
649 #else
650 #define	INITSECTION	__init
651 #endif
652 
653 static int INITSECTION
654 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
655 {
656 	struct cmos_rtc_board_info	*info = dev->platform_data;
657 	int				retval = 0;
658 	unsigned char			rtc_control;
659 	unsigned			address_space;
660 
661 	/* there can be only one ... */
662 	if (cmos_rtc.dev)
663 		return -EBUSY;
664 
665 	if (!ports)
666 		return -ENODEV;
667 
668 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
669 	 *
670 	 * REVISIT non-x86 systems may instead use memory space resources
671 	 * (needing ioremap etc), not i/o space resources like this ...
672 	 */
673 	ports = request_region(ports->start,
674 			ports->end + 1 - ports->start,
675 			driver_name);
676 	if (!ports) {
677 		dev_dbg(dev, "i/o registers already in use\n");
678 		return -EBUSY;
679 	}
680 
681 	cmos_rtc.irq = rtc_irq;
682 	cmos_rtc.iomem = ports;
683 
684 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
685 	 * driver did, but don't reject unknown configs.   Old hardware
686 	 * won't address 128 bytes.  Newer chips have multiple banks,
687 	 * though they may not be listed in one I/O resource.
688 	 */
689 #if	defined(CONFIG_ATARI)
690 	address_space = 64;
691 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__sparc__)
692 	address_space = 128;
693 #else
694 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
695 	address_space = 128;
696 #endif
697 	if (can_bank2 && ports->end > (ports->start + 1))
698 		address_space = 256;
699 
700 	/* For ACPI systems extension info comes from the FADT.  On others,
701 	 * board specific setup provides it as appropriate.  Systems where
702 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
703 	 * some almost-clones) can provide hooks to make that behave.
704 	 *
705 	 * Note that ACPI doesn't preclude putting these registers into
706 	 * "extended" areas of the chip, including some that we won't yet
707 	 * expect CMOS_READ and friends to handle.
708 	 */
709 	if (info) {
710 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
711 			cmos_rtc.day_alrm = info->rtc_day_alarm;
712 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
713 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
714 		if (info->rtc_century && info->rtc_century < 128)
715 			cmos_rtc.century = info->rtc_century;
716 
717 		if (info->wake_on && info->wake_off) {
718 			cmos_rtc.wake_on = info->wake_on;
719 			cmos_rtc.wake_off = info->wake_off;
720 		}
721 	}
722 
723 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
724 				&cmos_rtc_ops, THIS_MODULE);
725 	if (IS_ERR(cmos_rtc.rtc)) {
726 		retval = PTR_ERR(cmos_rtc.rtc);
727 		goto cleanup0;
728 	}
729 
730 	cmos_rtc.dev = dev;
731 	dev_set_drvdata(dev, &cmos_rtc);
732 	rename_region(ports, cmos_rtc.rtc->dev.bus_id);
733 
734 	spin_lock_irq(&rtc_lock);
735 
736 	/* force periodic irq to CMOS reset default of 1024Hz;
737 	 *
738 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
739 	 * doesn't use 32KHz here ... for portability we might need to
740 	 * do something about other clock frequencies.
741 	 */
742 	cmos_rtc.rtc->irq_freq = 1024;
743 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
744 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
745 
746 	/* disable irqs */
747 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
748 
749 	rtc_control = CMOS_READ(RTC_CONTROL);
750 
751 	spin_unlock_irq(&rtc_lock);
752 
753 	/* FIXME teach the alarm code how to handle binary mode;
754 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
755 	 */
756 	if (is_valid_irq(rtc_irq) &&
757 	    (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) {
758 		dev_dbg(dev, "only 24-hr BCD mode supported\n");
759 		retval = -ENXIO;
760 		goto cleanup1;
761 	}
762 
763 	if (is_valid_irq(rtc_irq)) {
764 		irq_handler_t rtc_cmos_int_handler;
765 
766 		if (is_hpet_enabled()) {
767 			int err;
768 
769 			rtc_cmos_int_handler = hpet_rtc_interrupt;
770 			err = hpet_register_irq_handler(cmos_interrupt);
771 			if (err != 0) {
772 				printk(KERN_WARNING "hpet_register_irq_handler "
773 						" failed in rtc_init().");
774 				goto cleanup1;
775 			}
776 		} else
777 			rtc_cmos_int_handler = cmos_interrupt;
778 
779 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
780 				IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
781 				cmos_rtc.rtc);
782 		if (retval < 0) {
783 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
784 			goto cleanup1;
785 		}
786 	}
787 	hpet_rtc_timer_init();
788 
789 	/* export at least the first block of NVRAM */
790 	nvram.size = address_space - NVRAM_OFFSET;
791 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
792 	if (retval < 0) {
793 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
794 		goto cleanup2;
795 	}
796 
797 	pr_info("%s: alarms up to one %s%s, %zd bytes nvram, %s irqs\n",
798 			cmos_rtc.rtc->dev.bus_id,
799 			is_valid_irq(rtc_irq)
800 				?  (cmos_rtc.mon_alrm
801 					? "year"
802 					: (cmos_rtc.day_alrm
803 						? "month" : "day"))
804 				: "no",
805 			cmos_rtc.century ? ", y3k" : "",
806 			nvram.size,
807 			is_hpet_enabled() ? ", hpet irqs" : "");
808 
809 	return 0;
810 
811 cleanup2:
812 	if (is_valid_irq(rtc_irq))
813 		free_irq(rtc_irq, cmos_rtc.rtc);
814 cleanup1:
815 	cmos_rtc.dev = NULL;
816 	rtc_device_unregister(cmos_rtc.rtc);
817 cleanup0:
818 	release_region(ports->start, ports->end + 1 - ports->start);
819 	return retval;
820 }
821 
822 static void cmos_do_shutdown(void)
823 {
824 	spin_lock_irq(&rtc_lock);
825 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
826 	spin_unlock_irq(&rtc_lock);
827 }
828 
829 static void __exit cmos_do_remove(struct device *dev)
830 {
831 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
832 	struct resource *ports;
833 
834 	cmos_do_shutdown();
835 
836 	sysfs_remove_bin_file(&dev->kobj, &nvram);
837 
838 	if (is_valid_irq(cmos->irq)) {
839 		free_irq(cmos->irq, cmos->rtc);
840 		hpet_unregister_irq_handler(cmos_interrupt);
841 	}
842 
843 	rtc_device_unregister(cmos->rtc);
844 	cmos->rtc = NULL;
845 
846 	ports = cmos->iomem;
847 	release_region(ports->start, ports->end + 1 - ports->start);
848 	cmos->iomem = NULL;
849 
850 	cmos->dev = NULL;
851 	dev_set_drvdata(dev, NULL);
852 }
853 
854 #ifdef	CONFIG_PM
855 
856 static int cmos_suspend(struct device *dev, pm_message_t mesg)
857 {
858 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
859 	unsigned char	tmp;
860 
861 	/* only the alarm might be a wakeup event source */
862 	spin_lock_irq(&rtc_lock);
863 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
864 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
865 		unsigned char	mask;
866 
867 		if (device_may_wakeup(dev))
868 			mask = RTC_IRQMASK & ~RTC_AIE;
869 		else
870 			mask = RTC_IRQMASK;
871 		tmp &= ~mask;
872 		CMOS_WRITE(tmp, RTC_CONTROL);
873 		hpet_mask_rtc_irq_bit(mask);
874 
875 		cmos_checkintr(cmos, tmp);
876 	}
877 	spin_unlock_irq(&rtc_lock);
878 
879 	if (tmp & RTC_AIE) {
880 		cmos->enabled_wake = 1;
881 		if (cmos->wake_on)
882 			cmos->wake_on(dev);
883 		else
884 			enable_irq_wake(cmos->irq);
885 	}
886 
887 	pr_debug("%s: suspend%s, ctrl %02x\n",
888 			cmos_rtc.rtc->dev.bus_id,
889 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
890 			tmp);
891 
892 	return 0;
893 }
894 
895 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
896  * after a detour through G3 "mechanical off", although the ACPI spec
897  * says wakeup should only work from G1/S4 "hibernate".  To most users,
898  * distinctions between S4 and S5 are pointless.  So when the hardware
899  * allows, don't draw that distinction.
900  */
901 static inline int cmos_poweroff(struct device *dev)
902 {
903 	return cmos_suspend(dev, PMSG_HIBERNATE);
904 }
905 
906 static int cmos_resume(struct device *dev)
907 {
908 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
909 	unsigned char	tmp = cmos->suspend_ctrl;
910 
911 	/* re-enable any irqs previously active */
912 	if (tmp & RTC_IRQMASK) {
913 		unsigned char	mask;
914 
915 		if (cmos->enabled_wake) {
916 			if (cmos->wake_off)
917 				cmos->wake_off(dev);
918 			else
919 				disable_irq_wake(cmos->irq);
920 			cmos->enabled_wake = 0;
921 		}
922 
923 		spin_lock_irq(&rtc_lock);
924 		do {
925 			CMOS_WRITE(tmp, RTC_CONTROL);
926 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
927 
928 			mask = CMOS_READ(RTC_INTR_FLAGS);
929 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
930 			if (!is_hpet_enabled() || !is_intr(mask))
931 				break;
932 
933 			/* force one-shot behavior if HPET blocked
934 			 * the wake alarm's irq
935 			 */
936 			rtc_update_irq(cmos->rtc, 1, mask);
937 			tmp &= ~RTC_AIE;
938 			hpet_mask_rtc_irq_bit(RTC_AIE);
939 		} while (mask & RTC_AIE);
940 		spin_unlock_irq(&rtc_lock);
941 	}
942 
943 	pr_debug("%s: resume, ctrl %02x\n",
944 			cmos_rtc.rtc->dev.bus_id,
945 			tmp);
946 
947 	return 0;
948 }
949 
950 #else
951 #define	cmos_suspend	NULL
952 #define	cmos_resume	NULL
953 
954 static inline int cmos_poweroff(struct device *dev)
955 {
956 	return -ENOSYS;
957 }
958 
959 #endif
960 
961 /*----------------------------------------------------------------*/
962 
963 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
964  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
965  * probably list them in similar PNPBIOS tables; so PNP is more common.
966  *
967  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
968  * predate even PNPBIOS should set up platform_bus devices.
969  */
970 
971 #ifdef	CONFIG_ACPI
972 
973 #include <linux/acpi.h>
974 
975 #ifdef	CONFIG_PM
976 static u32 rtc_handler(void *context)
977 {
978 	acpi_clear_event(ACPI_EVENT_RTC);
979 	acpi_disable_event(ACPI_EVENT_RTC, 0);
980 	return ACPI_INTERRUPT_HANDLED;
981 }
982 
983 static inline void rtc_wake_setup(void)
984 {
985 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
986 	/*
987 	 * After the RTC handler is installed, the Fixed_RTC event should
988 	 * be disabled. Only when the RTC alarm is set will it be enabled.
989 	 */
990 	acpi_clear_event(ACPI_EVENT_RTC);
991 	acpi_disable_event(ACPI_EVENT_RTC, 0);
992 }
993 
994 static void rtc_wake_on(struct device *dev)
995 {
996 	acpi_clear_event(ACPI_EVENT_RTC);
997 	acpi_enable_event(ACPI_EVENT_RTC, 0);
998 }
999 
1000 static void rtc_wake_off(struct device *dev)
1001 {
1002 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1003 }
1004 #else
1005 #define rtc_wake_setup()	do{}while(0)
1006 #define rtc_wake_on		NULL
1007 #define rtc_wake_off		NULL
1008 #endif
1009 
1010 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1011  * its device node and pass extra config data.  This helps its driver use
1012  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1013  * that this board's RTC is wakeup-capable (per ACPI spec).
1014  */
1015 static struct cmos_rtc_board_info acpi_rtc_info;
1016 
1017 static void __devinit
1018 cmos_wake_setup(struct device *dev)
1019 {
1020 	if (acpi_disabled)
1021 		return;
1022 
1023 	rtc_wake_setup();
1024 	acpi_rtc_info.wake_on = rtc_wake_on;
1025 	acpi_rtc_info.wake_off = rtc_wake_off;
1026 
1027 	/* workaround bug in some ACPI tables */
1028 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1029 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1030 			acpi_gbl_FADT.month_alarm);
1031 		acpi_gbl_FADT.month_alarm = 0;
1032 	}
1033 
1034 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1035 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1036 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1037 
1038 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1039 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1040 		dev_info(dev, "RTC can wake from S4\n");
1041 
1042 	dev->platform_data = &acpi_rtc_info;
1043 
1044 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1045 	device_init_wakeup(dev, 1);
1046 }
1047 
1048 #else
1049 
1050 static void __devinit
1051 cmos_wake_setup(struct device *dev)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 #ifdef	CONFIG_PNP
1058 
1059 #include <linux/pnp.h>
1060 
1061 static int __devinit
1062 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1063 {
1064 	cmos_wake_setup(&pnp->dev);
1065 
1066 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1067 		/* Some machines contain a PNP entry for the RTC, but
1068 		 * don't define the IRQ. It should always be safe to
1069 		 * hardcode it in these cases
1070 		 */
1071 		return cmos_do_probe(&pnp->dev,
1072 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1073 	else
1074 		return cmos_do_probe(&pnp->dev,
1075 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1076 				pnp_irq(pnp, 0));
1077 }
1078 
1079 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1080 {
1081 	cmos_do_remove(&pnp->dev);
1082 }
1083 
1084 #ifdef	CONFIG_PM
1085 
1086 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1087 {
1088 	return cmos_suspend(&pnp->dev, mesg);
1089 }
1090 
1091 static int cmos_pnp_resume(struct pnp_dev *pnp)
1092 {
1093 	return cmos_resume(&pnp->dev);
1094 }
1095 
1096 #else
1097 #define	cmos_pnp_suspend	NULL
1098 #define	cmos_pnp_resume		NULL
1099 #endif
1100 
1101 static void cmos_pnp_shutdown(struct device *pdev)
1102 {
1103 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev))
1104 		return;
1105 
1106 	cmos_do_shutdown();
1107 }
1108 
1109 static const struct pnp_device_id rtc_ids[] = {
1110 	{ .id = "PNP0b00", },
1111 	{ .id = "PNP0b01", },
1112 	{ .id = "PNP0b02", },
1113 	{ },
1114 };
1115 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1116 
1117 static struct pnp_driver cmos_pnp_driver = {
1118 	.name		= (char *) driver_name,
1119 	.id_table	= rtc_ids,
1120 	.probe		= cmos_pnp_probe,
1121 	.remove		= __exit_p(cmos_pnp_remove),
1122 
1123 	/* flag ensures resume() gets called, and stops syslog spam */
1124 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1125 	.suspend	= cmos_pnp_suspend,
1126 	.resume		= cmos_pnp_resume,
1127 	.driver		= {
1128 		.name	  = (char *)driver_name,
1129 		.shutdown = cmos_pnp_shutdown,
1130 	}
1131 };
1132 
1133 #endif	/* CONFIG_PNP */
1134 
1135 /*----------------------------------------------------------------*/
1136 
1137 /* Platform setup should have set up an RTC device, when PNP is
1138  * unavailable ... this could happen even on (older) PCs.
1139  */
1140 
1141 static int __init cmos_platform_probe(struct platform_device *pdev)
1142 {
1143 	cmos_wake_setup(&pdev->dev);
1144 	return cmos_do_probe(&pdev->dev,
1145 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1146 			platform_get_irq(pdev, 0));
1147 }
1148 
1149 static int __exit cmos_platform_remove(struct platform_device *pdev)
1150 {
1151 	cmos_do_remove(&pdev->dev);
1152 	return 0;
1153 }
1154 
1155 static void cmos_platform_shutdown(struct platform_device *pdev)
1156 {
1157 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1158 		return;
1159 
1160 	cmos_do_shutdown();
1161 }
1162 
1163 /* work with hotplug and coldplug */
1164 MODULE_ALIAS("platform:rtc_cmos");
1165 
1166 static struct platform_driver cmos_platform_driver = {
1167 	.remove		= __exit_p(cmos_platform_remove),
1168 	.shutdown	= cmos_platform_shutdown,
1169 	.driver = {
1170 		.name		= (char *) driver_name,
1171 		.suspend	= cmos_suspend,
1172 		.resume		= cmos_resume,
1173 	}
1174 };
1175 
1176 static int __init cmos_init(void)
1177 {
1178 	int retval = 0;
1179 
1180 #ifdef	CONFIG_PNP
1181 	pnp_register_driver(&cmos_pnp_driver);
1182 #endif
1183 
1184 	if (!cmos_rtc.dev)
1185 		retval = platform_driver_probe(&cmos_platform_driver,
1186 					       cmos_platform_probe);
1187 
1188 	if (retval == 0)
1189 		return 0;
1190 
1191 #ifdef	CONFIG_PNP
1192 	pnp_unregister_driver(&cmos_pnp_driver);
1193 #endif
1194 	return retval;
1195 }
1196 module_init(cmos_init);
1197 
1198 static void __exit cmos_exit(void)
1199 {
1200 #ifdef	CONFIG_PNP
1201 	pnp_unregister_driver(&cmos_pnp_driver);
1202 #endif
1203 	platform_driver_unregister(&cmos_platform_driver);
1204 }
1205 module_exit(cmos_exit);
1206 
1207 
1208 MODULE_AUTHOR("David Brownell");
1209 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1210 MODULE_LICENSE("GPL");
1211